High-Resolution Image Products Acquired from Mid-Sized Uncrewed Aerial Systems for Land–Atmosphere Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mid-Size UAS Description
2.2. Altum Imager and Calibration
2.3. Flight Pattern Development
2.4. Post-Processing
Rλ = band reflectance
Lλ = band radiance from image
Iλ = band irradiance from DLS2
3. Results
3.1. Calibration
3.2. Data Quality and Validation
3.2.1. Thermal Imagery Comparison to Infrared Thermometers
3.2.2. Multispectral Imagery: Comparison to Space-Born Multispectral and Hyperspectral Imagery
3.2.3. Other Validating Attributes
3.3. Final Products
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blyth, E.; Gash, J.; Lloyd, A.; Pryor, M.; Weedon, G.P.; Shuttleworth, J. Evaluating the JULES land surface model energy fluxes using FLUXNET data. J. Hydrometeorol. 2010, 11, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, B.J.; Desai, A.R.; Metzger, S.; Townsend, P.A.; Schwartz, M.D.; Petty, G.W.; Mauder, M.; Vogelmann, H.; Andresen, C.G.; Augustine, T.J.; et al. Connecting land–atmosphere interactions to surface heterogeneity in CHEESEHEAD19. Bull. Am. Meteorol. Soc. 2021, 102, E421–E445. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, 12. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Richardson, A.D.; Reichstein, M.; Stoy, P.C.; Peylin, P.; Verbeeck, H.; Carvalhais, N.; Jung, M.; Hollinger, D.Y.; Kattge, J.; et al. Improving land surface models with FLUXNET data. Biogeosciences 2009, 6, 1341–1359. [Google Scholar] [CrossRef] [Green Version]
- Galleguillos, M.; Jacob, F.; Prévot, L.; French, A.; Lagacherie, P. Comparison of two temperature differencing methods to estimate daily evapotranspiration over a Mediterranean vineyard watershed from ASTER data. Remote Sens. Environ. 2011, 115, 1326–1340. [Google Scholar] [CrossRef]
- Huo, A.-D.; Li, J.-G.; Jiang, G.-Z.; Yang, Y. Temporal and spatial variation of surface evapotranspiration based on remote sensing in Golmud Region, China. Appl. Math. Inf. Sci. 2013, 7, 519–524. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.L.; Jia, Y.; Li, C.; Chen, K.S.; Sun, X.; Lou, J. Evaluating one- and two-source energy balance models in estimating surface evapotranspiration from Landsat-derived surface temperature and field measurements. Int. J. Remote Sens. 2013, 34, 3299–3313. [Google Scholar] [CrossRef]
- Morrison, T.; Calaf, M.; Higgins, C.W.; Drake, S.A.; Perelet, A.; Pardyjak, E. The Impact of Surface Temperature Heterogeneity on Near-Surface Heat Transport. Bound. Layer Meteorol. 2021, 180, 247–272. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 1–27. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration’s (NASA). Earth Observing System Data and Information System (EOSDIS) MODIS Data Products. Available online: https://modis.gsfc.nasa.gov/ (accessed on 23 July 2023).
- Using the U.S. Geological Survey (USGS) Landsat Level-1 Data Product. Available online: https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product (accessed on 23 July 2023).
- Sentinel Online—E.S.A. European Space Agency—Earth Online. Available online: https://sentinels.copernicus.eu/web/sentinel/home (accessed on 23 July 2023).
- Ustin, S.L.; Middleton, E.M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 2021, 10, 1–57. [Google Scholar] [CrossRef] [PubMed]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 978–994. [Google Scholar]
- Betts, A.K.; Ball, J.H. FIFE surface climate and site-average dataset 1987–1989. J. Atmos. Sci. 1998, 55, 1091–1108. [Google Scholar] [CrossRef]
- Brenner, C.; Thiem, C.E.; Wizemann, H.D.; Bernhardt, M.; Schulz, K. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system. Int. J. Remote Sens. 2017, 38, 3003–3026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankaran, S.; Zhou, J.; Khot, L.R.; Trapp, J.J.; Mndolwa, E.; Miklas, P.N. High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery. Comput. Electron. Agric. 2018, 151, 84–92. [Google Scholar] [CrossRef]
- Simpson, J.E.; Holman, F.; Nieto, H.; Voelksch, I.; Mauder, M.; Klatt, J.; Fiener, P.; Kaplan, J.O. High spatial and temporal resolution energy flux mapping of different land covers using an off-the-shelf unmanned aerial system. Remote Sens. 2021, 13, 1286. [Google Scholar] [CrossRef]
- Baena, S.; Moat, J.; Whaley, O.; Boyd, D.S. Identifying species from the air: UASs and the very high-resolution challenge for plant conservation. PLoS ONE 2017, 12, e0188714. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of satellite and UAS-based multispectral imagery for vineyard variability assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.R.; Cho, H.J.; Ghosh, S.; Fox, A.; Downs, C.; Merani PB, T.; Kirui, P.; Jackson, N.; Mishra, S. Post-spill state of the marsh: Remote estimation of the ecological impact of the Gulf of Mexico oil spill on Louisiana Salt Marshes. Remote Sens. Environ. 2012, 118, 176–185. [Google Scholar] [CrossRef]
- Nassar, A.; Aboutalebi, M.; McKee, M.; Torres-Rua, A.F.; Kustas, W. Implications of sensor inconsistencies and remote sensing error in the use of small unmanned aerial systems for generation of information products for agricultural management. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III, Proceedings of the SPIE Commercial + Scientific Sensing and Imaging, Orlando, FL, USA, 21 May 2018; SPIE: Paris, France, 2018. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Nieto, H.; Kustas, W.P.; Torres-Rua, A.; Alfieri, J.G.; Gao, F.; Anderson, M.C.; White, W.A.; Song, L.; Alsina, M.M.; Prueger, J.H.; et al. Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery. Irrig. Sci. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- McKee, M.; Torres-Rua, A.F.; Aboutalebi, M.; Nassar, A.; Coopmans, C.; Kustas, W.; Gao, F.; Dokoozlian, N.; Sanchez, L.; Alsina, M.M. Challenges that beyond-visual-line-of-sight technology will create for UAS-based remote sensing in agriculture. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV, Proceedings of the SPIE Commercial + Scientific Sensing and Imaging, Baltimore, MD, USA, 14–18 April 2019; SPIE: Paris, France, 2019. [Google Scholar]
- Piccolo Flight Management Systems. Available online: https://www.collinsaerospace.com/what-we-do/industries/military-and-defense/avionics/autopilot/piccolo-flight-management-systems (accessed on 19 July 2023).
- Over, J.-S.R.; Ritchie, A.C.; Kranenburg, C.J.; Brown, J.A.; Buscombe, D.D.; Noble, T.; Sherwood, C.R.; Warrick, J.A.; Wernette, P.A. Processing Coastal Imagery with Agisoft Metashape Professional Edition, Version 1.6—Structure From Motion Workflow Documentation; United States Geological Survey: Reston, VA, USA, 2021.
- Schmid, B.; Tomlinson, J.M.; Hubbe, J.M.; Comstock, J.M.; Mei, F.; Chand, D.; Pekour, M.S.; Kluzek, C.D.; Andrews, E.; Biraud, S.C.; et al. The DOE ARM Aerial Facility. Bull. Amer. Meteor. Soc. 2014, 95, 723–742. [Google Scholar] [CrossRef]
- De Boer, G.; Ivey, M.; Schmid, B.; Lawrence, D.; Dexheimer, D.; Mei, F.; Hubbe, J.; Bendure, A.; Hardesty, J.; Shupe, M.D.; et al. A Bird’s-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska. Bull. Am. Meteorol. Soc. 2018, 99, 1197–1212. [Google Scholar] [CrossRef]
- UAVT Turboprop Engine on Display in Navmar ArcticShark at AUVSI XPONENTIAL. 2017. Available online: www.ajot.com/news/uavt-turboprop-engine-on-display-in-navmar-arcticshark-at-auvsi-xponential- (accessed on 1 May 2017).
- Mei, F.; Pekour, M.; Dexheimer, D.; de Boer, G.; Cook, R.; Tomlinson, J.; Schmid, B.; Goldberger, L.; Newsom, R.; Fast, J. Observational data from uncrewed systems over Southern Great Plains. Earth Syst. Sci. Data 2022, 14, 3423–3438. [Google Scholar] [CrossRef]
- MicaSense Altum and DLS2 Integration Guide. Available online: https://support.micasense.com/hc/en-us/articles/360010025413-Altum-Integration-Guide (accessed on 1 June 2022).
- Krishnan, P.; Meyers, T.P.; Hook, S.J.; Heuer, M.; Senn, D.; Dumas, E.J. Intercomparison of In Situ Sensors for Ground-Based Land Surface Temperature Measurements. Sensors 2020, 20, 5268. [Google Scholar] [CrossRef]
- Iqbal, F.; Lucieer, A.; Barry, K. Simplified radiometric calibration for UAS-mounted multispectral sensor. Eur. J. Remote Sens. 2018, 51, 301–313. [Google Scholar] [CrossRef]
- Tomlinson, J.; Morris, V. AAFIRT. ARM Aerial Facility- Unmanned Aircraft Systems, Tigershark (U3). (13 November 2021–15 November 2021). ARM Data Center [Dataset]. 2021. Available online: https://arm.gov/capabilities/instruments/irt-air (accessed on 23 July 2023).
- Collatz, W.; McKee, L.; Coopmans, C.; Torres-Rua, A.F.; Nieto, H.; Parry, C.; Elarab, M.; McKee, M.; Kustas, W. Inter-comparison of thermal measurements using ground-based sensors, UAV thermal cameras, and eddy covariance radiometers. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III, Proceedings of SPIE Commercial + Scientific Sensing and Imaging, Orlando, FL, USA, 21 May 2018; SPIE: Paris, France, 2018. [Google Scholar]
- Howie, J.; Goldberger, L.; Morris, V. IRT 25M Infrared Thermometer: Ground Surface Temperature, Averaged 60-s at 25-m Height. (13 November–15 November 2021). ARM Data Center [Dataset]. 2021. Available online: https://arm.gov/capabilities/instruments/irt (accessed on 23 July 2023).
- Tagestad, J.; Nelson, K.; Goldberger, L.; Gonzalez-Hirshfeld, I. PI Data: Multispectral and Thermal Surface Imagery and Surface Elevation Mosaics (CAMSPEC-AIR). (9 July 2022–18 July 2022). ARM Data Center. 2023. Available online: https://arm.gov/capabilities/instruments/camspec-air (accessed on 23 July 2023).
- He, C.; Chen, F.; Barlage, M.; Liu, C.; Newman, A.; Tang, W. Can convection-permitting modelling provide decent precipitation for offline high-resolution snowpack simulations over mountains? J. Geophys. Res. Atmos. 2019, 124, 12631–12654. [Google Scholar] [CrossRef]
- Pressel, K.G.; Sakaguchi, K. Developing and Testing Capabilities for Simulating Cases with Heterogeneous Land/Water Surfaces in a Novel Atmospheric Large Eddy Simulation Code; PNNL-32009; LDRD Final Report; Pacific Northwest National Laboratory: Richland, WA, USA, 2021. [Google Scholar]
- Simon, J.S.; Bragg, A.D.; Dirmeyer, P.A.; Chaney, N.W. Semi-Coupling of a Field-Scale Resolving Land-Surface Model and WRF-LES to Investigate the Influence of Land-Surface Heterogeneity on Cloud Development. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002602. [Google Scholar] [CrossRef]
- Mather, J. Introduction to Reading and Visualizing ARM Data; DOE Office of Science Atmospheric Radiation Measurement (ARM) Program; DOE/SC-ARM-TR-136. 1. 1.0.; Pacific Northwest National Laboratory: Richland, WA, USA, 2013. [Google Scholar]
Componet | TigerShark XP | ArcticShark |
---|---|---|
Engine | Herbrandson 337 | UEL 801 |
Payload power available (W) | 800 | 2500 |
Wingspan (m) | 6.6 | 6.6 |
Payload Weight (max, kg) | 22 | 45 |
Gross Weight (kg) | 234 | 295 |
Time Aloft 1 | 8–10 h | 8 h |
Typical True Airspeed (m/s) | 32 | 32 |
Nose type | Streamline | Bulbous |
Name | Center | Bandwidth |
---|---|---|
Blue | 475 nm | 32 nm |
Green | 560 nm | 27 nm |
Red | 668 nm | 14 nm |
Red-edge | 717 nm | 12 nm |
Near-infrared | 842 nm | 57 nm |
Thermal | 11,000 nm | 6000 nm |
AGL (m) | AGL (m) | Capture Rate * (s) Gs = 33 m/s | Capture Rate * (s) Gs = 59 m/s |
---|---|---|---|
609 | ~2000 | 3.1 | NA |
914 | ~3000 | 4.6 | 2.5 |
1220 | ~4000 | 6.1 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldberger, L.; Gonzalez-Hirshfeld, I.; Nelson, K.; Mehta, H.; Mei, F.; Tomlinson, J.; Schmid, B.; Tagestad, J. High-Resolution Image Products Acquired from Mid-Sized Uncrewed Aerial Systems for Land–Atmosphere Studies. Remote Sens. 2023, 15, 3940. https://doi.org/10.3390/rs15163940
Goldberger L, Gonzalez-Hirshfeld I, Nelson K, Mehta H, Mei F, Tomlinson J, Schmid B, Tagestad J. High-Resolution Image Products Acquired from Mid-Sized Uncrewed Aerial Systems for Land–Atmosphere Studies. Remote Sensing. 2023; 15(16):3940. https://doi.org/10.3390/rs15163940
Chicago/Turabian StyleGoldberger, Lexie, Ilan Gonzalez-Hirshfeld, Kristian Nelson, Hardeep Mehta, Fan Mei, Jason Tomlinson, Beat Schmid, and Jerry Tagestad. 2023. "High-Resolution Image Products Acquired from Mid-Sized Uncrewed Aerial Systems for Land–Atmosphere Studies" Remote Sensing 15, no. 16: 3940. https://doi.org/10.3390/rs15163940
APA StyleGoldberger, L., Gonzalez-Hirshfeld, I., Nelson, K., Mehta, H., Mei, F., Tomlinson, J., Schmid, B., & Tagestad, J. (2023). High-Resolution Image Products Acquired from Mid-Sized Uncrewed Aerial Systems for Land–Atmosphere Studies. Remote Sensing, 15(16), 3940. https://doi.org/10.3390/rs15163940