Corn Phenology Detection Using the Derivative Dynamic Time Warping Method and Sentinel-2 Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Remote Sensing Data and Preprocessing
2.3. Annual Crop Inventory (ACI) Data
2.4. Ground Truth Data
3. Methodology
3.1. Overview of DDTW Principle
3.2. Crop Phenology Determination
3.2.1. Establishment of Phenological Curve Template
3.2.2. Time Series Starting Point Adjustment
3.2.3. Sakoe–Chiba Band Constraint
3.2.4. DDTW Alignment and Phenology Determination
3.3. Crop Phenology Evaluation
4. Results
4.1. Establishment of Phenological Curve Template Results
4.2. Time Series Starting Point Adjustment Result
4.3. Temporal and Spatial Distribution of Corn Phenology
4.4. Accuracy of the DDTW Phenology Detection for Corn
5. Discussion
5.1. Contributions and Advantages of the Study
5.2. Limitations of the Proposed Method and Outlooks
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased Plant Growth in the Northern High Latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Reed, B.C. Surface Phenology and Satellite Sensor-Derived Onset of Greenness: An Initial Comparison. Int. J. Remote Sens. 1999, 20, 3451–3457. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A Continental Phenology Model for Monitoring Vegetation Responses to Interannual Climatic Variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping Crop Phenology in near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Anderson, M.C.; Hain, C.R.; Jurecka, F.; Trnka, M.; Hlavinka, P.; Dulaney, W.; Otkin, J.A.; Johnson, D.; Gao, F. Relationships between the Evaporative Stress Index and Winter Wheat and Spring Barley Yield Anomalies in the Czech Republic. Clim. Res. 2016, 70, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Walthall, C.; Anderson, C.; Takle, E.; Baumgard, L.; Wright-Morton, L. Climate Change and Agriculture in the United States: Effects and Adaptation; Adventure Scientists: Bozeman, MT, USA, 2013. [Google Scholar]
- Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Tetrault, R. The Evaporative Stress Index as an Indicator of Agricultural Drought in Brazil: An Assessment Based on Crop Yield Impacts. Remote Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- Yang, Y.; Anderson, M.C.; Gao, F.; Wardlow, B.; Hain, C.R.; Otkin, J.A.; Alfieri, J.; Yang, Y.; Sun, L.; Dulaney, W. Field-Scale Mapping of Evaporative Stress Indicators of Crop Yield: An Application over Mead, NE, USA. Remote Sens. Environ. 2018, 210, 387–402. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Asner, G.P.; Townsend, A.R.; Braswell, B.H. Satellite Observation of El Nino Effects on Amazon Forest Phenology and Productivity. Geophys. Res. Lett. 2000, 27, 981–984. [Google Scholar] [CrossRef] [Green Version]
- Knudby, A. An AVHRR-Based Model of Groundnut Yields in the Peanut Basin of Senegal. Int. J. Remote Sens. 2004, 25, 3161–3175. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Epstein, H.E.; Lauenroth, W.K.; Burke, I.C. ANPP Estimates from NDVI for the Central Grassland Region of the United States. Ecology 1997, 78, 953–958. [Google Scholar] [CrossRef]
- Roetzer, T.; Wittenzeller, M.; Haeckel, H.; Nekovar, J. Phenology in Central Europe—Differences and Trends of Spring Phenophases in Urban and Rural Areas. Int. J. Biometeorol. 2000, 44, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J.; Fung, I.Y.; Keeling, C.D.; Gammon, R.H. Relationship between Atmospheric CO2 Variations and a Satellite-Derived Vegetation Index. Nature 1986, 319, 195–199. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Shan, B.; Shang, J.; Dong, T.; He, Y. Near Real-Time Detection and Forecasting of within-Field Phenology of Winter Wheat and Corn Using Sentinel-2 Time-Series Data. ISPRS J. Photogramm. Remote Sens. 2023, 196, 105–119. [Google Scholar] [CrossRef]
- Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A.; Verma, S.B.; Suyker, A.E.; Arkebauer, T.J. A Two-Step Filtering Approach for Detecting Maize and Soybean Phenology with Time-Series MODIS Data. Remote Sens. Environ. 2010, 114, 2146–2159. [Google Scholar] [CrossRef]
- Gan, L.; Cao, X.; Chen, X.; Dong, Q.; Cui, X.; Chen, J. Comparison of MODIS-Based Vegetation Indices and Methods for Winter Wheat Green-up Date Detection in Huanghuai Region of China. Agric. For. Meteorol. 2020, 288, 108019. [Google Scholar] [CrossRef]
- Vrieling, A.; Skidmore, A.K.; Wang, T.; Meroni, M.; Ens, B.J.; Oosterbeek, K.; O’Connor, B.; Darvishzadeh, R.; Heurich, M.; Shepherd, A. Spatially Detailed Retrievals of Spring Phenology from Single-Season High-Resolution Image Time Series. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 19–30. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Sensitivity of Vegetation Phenology Detection to the Temporal Resolution of Satellite Data. Int. J. Remote Sens. 2009, 30, 2061–2074. [Google Scholar] [CrossRef]
- Sakamoto, T. Refined Shape Model Fitting Methods for Detecting Various Types of Phenological Information on Major US Crops. ISPRS J. Photogramm. Remote Sens. 2018, 138, 176–192. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X.; Yang, Z. Mapping Corn and Soybean Phenometrics at Field Scales over the United States Corn Belt by Fusing Time Series of Landsat 8 and Sentinel-2 Data with VIIRS Data. ISPRS J. Photogramm. Remote Sens. 2022, 186, 55–69. [Google Scholar] [CrossRef]
- Liu, L.; Cao, R.; Chen, J.; Shen, M.; Wang, S.; Zhou, J.; He, B. Detecting Crop Phenology from Vegetation Index Time-Series Data by Improved Shape Model Fitting in Each Phenological Stage. Remote Sens. Environ. 2022, 277, 113060. [Google Scholar] [CrossRef]
- Petitjean, F.; Ketterlin, A.; Gançarski, P. A Global Averaging Method for Dynamic Time Warping, with Applications to Clustering. Pattern Recognit. 2011, 44, 678–693. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gançarski, P. Satellite Image Time Series Analysis under Time Warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Romani, L.A.; Goncalves, R.R.V.; Zullo, J.; Traina, C.; Traina, A.J. New DTW-Based Method to Similarity Search in Sugar Cane Regions Represented by Climate and Remote Sensing Time Series. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 355–358. [Google Scholar]
- Sakoe, H.; Chiba, S. Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Trans. Acoust. Speech Signal Process. 1978, 26, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Csillik, O. Sentinel-2 Cropland Mapping Using Pixel-Based and Object-Based Time-Weighted Dynamic Time Warping Analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Csillik, O.; Belgiu, M.; Asner, G.P.; Kelly, M. Object-Based Time-Constrained Dynamic Time Warping Classification of Crops Using Sentinel-2. Remote Sens. 2019, 11, 1257. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Liu, G.; Huang, C.; Meng, X.; Liu, Q.; Wu, C.; Ablat, X.; Chen, Z.; Wang, Q. An Open-Boundary Locally Weighted Dynamic Time Warping Method for Cropland Mapping. ISPRS Int. J. Geo-Inf. 2018, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Maus, V.; Câmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; De Queiroz, G.R. A Time-Weighted Dynamic Time Warping Method for Land-Use and Land-Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Baumann, M.; Ozdogan, M.; Richardson, A.D.; Radeloff, V.C. Phenology from Landsat When Data Is Scarce: Using MODIS and Dynamic Time-Warping to Combine Multi-Year Landsat Imagery to Derive Annual Phenology Curves. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 72–83. [Google Scholar] [CrossRef]
- Huseby, R.B.; Aurdal, L.; Eikvil, L.; Solberg, R.; Vikhamar, D.; Solberg, A. Alignment of Growth Seasons from Satellite Data. In Proceedings of the International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Biloxi, MS, USA, 16–18 May 2005; pp. 213–216. [Google Scholar]
- Geler, Z. Role of Similarity Measures in Time Series Analysis. Ph.D. Thesis, University of Novi Sad (Serbia), Novi Sad, Serbia, 2015. [Google Scholar]
- Geler, Z.; Kurbalija, V.; Radovanović, M.; Ivanović, M. Impact of the Sakoe-Chiba Band on the DTW Time Series Distance Measure for k NN Classification. In Proceedings of the Knowledge Science, Engineering and Management: 7th International Conference, KSEM 2014, Sibiu, Romania, 16–18 October 2014; pp. 105–114. [Google Scholar]
- Kurbalija, V.; Radovanović, M.; Geler, Z.; Ivanović, M. The Influence of Global Constraints on DTW and LCS Similarity Measures for Time-Series Databases. In the Third International Conference on Software, Services and Semantic Technologies S3T 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 67–74. [Google Scholar]
- Kurbalija, V.; Radovanović, M.; Geler, Z.; Ivanović, M. The Influence of Global Constraints on Similarity Measures for Time-Series Databases. Knowl. Based Syst. 2014, 56, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Wang, J. Forest-Type Classification Using Time-Weighted Dynamic Time Warping Analysis in Mountain Areas: A Case Study in Southern China. Multidiscip. Digit. Publ. Inst. 2019, 10, 1040. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Yang, G.; Yang, X.; Cen, H.; Zhu, Y.; Han, S.; Yang, H.; He, Y.; Zhao, C. Determination of Key Phenological Phases of Winter Wheat Based on the Time-Weighted Dynamic Time Warping Algorithm and MODIS Time-Series Data. Remote Sens. 2021, 13, 1836. [Google Scholar] [CrossRef]
- Kumar, V.; Grossman, R. Derivative Dynamic Time Warping. In Proceedings of the 2001 SIAM International Conference on Data Mining; SIAM: Philadelphia, PA, USA, 2011. [Google Scholar]
- Rath, T.M.; Manmatha, R. Word Image Matching Using Dynamic Time Warping. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; Volume 2, p. II. [Google Scholar]
- Ventura, F.; Marletto, V.; Traini, S.; Tomei, F.; Botarelli, L.; Rossi, P. Validation of Development Models for Winter Cereals and Maize with Independent Agrophenological Observations in the BBCH Scale. Riv. Ital. Di Agrometeorol. 2009, 14, 17–26. [Google Scholar]
- Hird, J.N.; McDermid, G.J. Noise Reduction of NDVI Time Series: An Empirical Comparison of Selected Techniques. Remote Sens. Environ. 2009, 113, 248–258. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved Cloud and Cloud Shadow Detection in Landsats 4–8 and Sentinel-2 Imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Navarro, A.; Rolim, J.; Miguel, I.; Catalão, J.; Silva, J.; Painho, M.; Vekerdy, Z. Crop Monitoring Based on SPOT-5 Take-5 and Sentinel-1A Data for the Estimation of Crop Water Requirements. Remote Sens. 2016, 8, 525. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Ahn, B. Agriculture and Agri-Food Canada (AAFC). Available online: https://agriculture.canada.ca/en (accessed on 6 July 2023).
- Hess, M.; Barralis, G.; Bleiholder, H.; Buhr, L.; Eggers, T.H.; Hack, H.; Stauss, R. Use of the Extended BBCH Scale—General for the Descriptions of the Growth Stages of Mono; and Dicotyledonous Weed Species. Weed Res. 1997, 37, 433–441. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prudente, V.H.R.; Martins, V.S.; Vieira, D.C.; de Silva, N.R.F.E.; Adami, M.; Sanches, I.D. Limitations of Cloud Cover for Optical Remote Sensing of Agricultural Areas across South America. Remote Sens. Appl. Soc. Environ. 2020, 20, 100414. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud Cover throughout the Agricultural Growing Season: Impacts on Passive Optical Earth Observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
Date (DD/MM/YYYY) | Crops Visited | Date (DD/MM/YYYY) | Crops Visited |
---|---|---|---|
20/07/2020 | Corn | 03/09/2020 | Corn |
20/07/2020 | Corn | 10/09/2020 | Corn |
06/08/2020 | Corn | 20/09/2020 | Corn |
14/08/2020 | Corn | 27/09/2020 | Corn |
20/08/2020 | Corn | 17/10/2020 | Corn |
27/08/2020 | Corn |
BBCH Scale | Phenology Stage | Description |
---|---|---|
10 | Emergence | First leaf through coleoptile |
30 | Stem elongation | Beginning of stem elongation |
50 | Heading | Beginning of tassel emergence |
60 | Flowering | Male: stamens in middle of tassel visible Female: tip of ear emerging from leaf sheath |
70 | Development of Fruit | Beginning of grain development: kernels at blister stage, about 16% dry matter |
80 | Ripening | Kernel content soft |
90 | Senescence | Over-ripe: kernel hard and shiny, 70% dry matter |
Phenological Stage | RMSE | MAE | Bias |
---|---|---|---|
Emergence | 4.728 | 3.736 | 2.045 |
Stem elongation | 4.062 | 3.327 | 1.959 |
Heading | 3.033 | 2.727 | 1.364 |
Flowering | 3.132 | 2.636 | 1.909 |
Development of Fruit | 6.575 | 5.545 | 4.091 |
Ripening | 7.908 | 6.727 | 6.727 |
Senescence | 3.734 | 2.318 | 2.318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Bao, W.; Liao, C.; Chen, D.; Hu, H. Corn Phenology Detection Using the Derivative Dynamic Time Warping Method and Sentinel-2 Time Series. Remote Sens. 2023, 15, 3456. https://doi.org/10.3390/rs15143456
Ye J, Bao W, Liao C, Chen D, Hu H. Corn Phenology Detection Using the Derivative Dynamic Time Warping Method and Sentinel-2 Time Series. Remote Sensing. 2023; 15(14):3456. https://doi.org/10.3390/rs15143456
Chicago/Turabian StyleYe, Junyan, Wenhao Bao, Chunhua Liao, Dairong Chen, and Haoxuan Hu. 2023. "Corn Phenology Detection Using the Derivative Dynamic Time Warping Method and Sentinel-2 Time Series" Remote Sensing 15, no. 14: 3456. https://doi.org/10.3390/rs15143456
APA StyleYe, J., Bao, W., Liao, C., Chen, D., & Hu, H. (2023). Corn Phenology Detection Using the Derivative Dynamic Time Warping Method and Sentinel-2 Time Series. Remote Sensing, 15(14), 3456. https://doi.org/10.3390/rs15143456