Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Observation Data
2.1.2. Numerical Analysis Data
2.2. Atmospheric Ducts Model
2.2.1. Evaporation Duct Model
2.2.2. Lower Atmospheric Duct Model
2.3. Evaporation Duct Diagnostic Model
2.4. Parabolic Equation Model
3. Results and Discussion
3.1. Evaporation Duct
3.1.1. Characteristics of Evaporating Ducts
3.1.2. Electromagnetic Propagation Characteristics in Evaporation Duct Environment
3.2. Lower Atmospheric Ducts
3.2.1. Characteristics of Lower Atmospheric Ducts
3.2.2. Electromagnetic Propagation in Surface Duct Environment
3.3. Electromagnetic Propagation in Hybrid Duct Environment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulessa, A.S.; Barrios, A.; Claverie, J.; Garrett, S.; Haack, T.; Hacker, J.M.; Hansen, H.J.; Horgan, K.; Hurtaud, Y.; Lemon, C.; et al. The Tropical Air-Sea Propagation Study (TAPS). Bull. Am. Meteorol. Soc. 2017, 98, 517–537. [Google Scholar] [CrossRef]
- Gunashekar, S.D.; Warrington, E.M.; Siddle, D.R. Long-term statistics related to evaporation duct propagation of 2 GHz radio waves in the English Channel. Radio Sci. 2010, 45, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Thompson, W.T.; Haack, T. An Investigation of Sea Surface Temperature Influence on Microwave Refractivity: The Wallops-2000 Experiment. J. Appl. Meteorol. Clim. 2011, 50, 2319–2337. [Google Scholar] [CrossRef]
- Huang, L.-F.; Liu, C.-G.; Wang, H.-G.; Zhu, Q.-L.; Zhang, L.-J.; Han, J.; Zhang, Y.-S.; Wang, Q.-N. Experimental Analysis of Atmospheric Ducts and Navigation Radar Over-the-Horizon Detection. Remote Sens. 2022, 14, 2588. [Google Scholar] [CrossRef]
- Kaissassou, S.; Lenouo, A.; Tchawoua, C.; Lopez, P.; Gaye, A.T. Climatology of radar anomalous propagation over West Africa. J. Atmos. Sol.-Terr. Phys. 2015, 123, 1–12. [Google Scholar] [CrossRef]
- Wang, S.; Yang, K.; Shi, Y.; Yang, F.; Zhang, H.; Ma, Y. Prediction of Over-the-Horizon Electromagnetic Wave Propagation in Evaporation Ducts Based on the Gated Recurrent Unit Network Model. IEEE Trans. Antennas Propag. 2023, 71, 3485–3496. [Google Scholar] [CrossRef]
- Wang, S.; Yang, K.; Shi, Y.; Yang, F. Observations of Anomalous Over-the-Horizon Propagation in the Evaporation Duct Induced by Typhoon Kompasu (202118). IEEE Antennas Wirel. Propag. Lett. 2022, 21, 963–967. [Google Scholar] [CrossRef]
- Alappattu, D.P.; Wang, Q.; Kalogiros, J. Anomalous propagation conditions over eastern Pacific Ocean derived from MAGIC data. Radio Sci. 2016, 51, 1142–1156. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sheng, L.; Wa Ng, W. Elevated Ducts and Low Clouds over the Central Western Pacific Ocean in Winter Based on GPS Soundings and Satellite Observation. J. Ocean. Univ. China 2021, 20, 244–256. [Google Scholar] [CrossRef]
- Cheng, Y.; Zha, M.; You, Z.; Zhang, Y. Duct climatology over the South China Sea based on European Center for Medium Range Weather Forecast reanalysis data. J. Atmos. Sol.-Terr. Phys. 2021, 222, 105720. [Google Scholar] [CrossRef]
- Liang, Z.; Ding, J.; Fei, J.; Cheng, X.; Huang, X. Maintenance and Sudden Change of a Strong Elevated Ducting Event Associated with High Pressure and Marine Low-Level Jet. J. Meteorol. Res. 2020, 34, 1287. [Google Scholar] [CrossRef]
- Zhu, J.; Zou, H.; Kong, L.; Zhou, L.; Li, P.; Cheng, W.; Bian, S. Surface atmospheric duct over Svalbard, Arctic, related to atmospheric and ocean conditions in winter. Arct. Antarct. Alp. Res. 2022, 54, 264–273. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, D.; Zhang, L.; Wang, H.; Kang, S.; Lin, L. C band transhorizon signal characterisations in evaporation duct propagation environment over Bohai Sea of China. IET Microw. Antennas Propag. 2019, 13, 407–413. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, P.; Zhou, F.; Zhou, Z. Comparison of evaporation duct height statistics based on surface bulk measurements over Yongxing Island. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1306–1310. [Google Scholar] [CrossRef]
- Wang, B. Evaporation Duct Height Nowcasting in China’s Yellow Sea Based on Deep Learning. Remote Sens. 2021, 13, 1557. [Google Scholar]
- Pozderac, J.; Johnson, J.; Yardim, C.; Merrill, C.; de Paolo, T.; Terrill, E.; Ryan, F.; Frederickson, P. X-Band Beacon-Receiver Array Evaporation Duct Height Estimation. IEEE Trans. Antennas Propag. 2015, 66, 916–917. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, K.; Yang, Y.; Ma, Y. A New Evaporation Duct Climatology over the SCS. J. Meteorol. Res. 2015, 29, 764–778. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, K.; Yang, Y.; Ma, Y. Spatio-temporal distribution of evaporation duct for the South China Sea. In Proceedings of the OCEANS 2014, Taipei, Taiwan, 7–10 April 2014. [Google Scholar]
- Shi, Y.; Wang, S.; Yang, F.; Yang, K. Statistical Analysis of Hybrid Atmospheric Ducts over the Northern South China Sea and Their Influence on Over-the-Horizon Electromagnetic Wave Propagation. J. Mar. Sci. Eng. 2023, 11, 669. [Google Scholar] [CrossRef]
- Guo, X.; Wu, J.; Zhang, J.; Han, J. Deep learning for solving inversion problem of atmospheric refractivity estimation. Sustain. Cities Soc. 2018, 43, 524–531. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, J.; Li, J.; Zhao, D.; Huang, L.; Zhu, J.; Lu, J.; Wang, X. An evaporation duct height prediction model based on a long short-term memory neural network. IEEE Trans. Antennas Propag. 2021, 69, 7795–7804. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Zhao, J.; Zhao, D.; Lu, J.; Wang, X. XGB Model: Research on Evaporation Duct Height Prediction Based on XGBoost Algorithm. Radioengineering 2020, 29, 81–93. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Wu, C.; He, X.; Zhong, Y. Application of the PJ and NPS evaporation duct models over the South China Sea (SCS) in winter. PLoS ONE 2017, 12, e0172284. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhao, D.; Zhang, L.; Wang, H.; Kang, S. A Comparison Study of Sensitivity on PJ and NPS Models in China Seas. J. Ocean. Univ. China 2019, 18, 22–30. [Google Scholar] [CrossRef]
- Ding, J.; Fei, J.; Huang, X.; Cheng, X.; Hu, X.; Ji, L. Development and validation of an evaporation duct model. Part I: Model establishment and sensitivity experiments. J. Meteorol. Res. 2015, 29, 467–481. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Qiao, J.; Li, J.; Zhou, C. Statistical Analysis of the Spatiotemporal Distribution of Lower Atmospheric Ducts over the Seas Adjacent to China, Based on the ECMWF Reanalysis Dataset. Remote Sens. 2022, 14, 4864. [Google Scholar] [CrossRef]
- Sirkova, I. Duct occurrence and characteristics for Bulgarian Black sea shore derived from ECMWF data—ScienceDirect. J. Atmos. Sol.-Terr. Phys. 2015, 135, 107–117. [Google Scholar] [CrossRef]
- Von Engeln, A.; Teixeira, J. A ducting climatology derived from the European Centre for Medium-Range Weather Forecasts global analysis fields. J. Geophys. Res. 2004, 109, D18104. [Google Scholar] [CrossRef]
- Feng, G.; Huang, J.; Su, H. A New Ray Tracing Method Based on Piecewise Conformal Transformations. IEEE Trans. Microw. Theory Tech. 2022, 70, 2040–2052. [Google Scholar] [CrossRef]
- Dinc, E.; Akan, O.B. Channel Model for the Surface Ducts: Large-Scale Path-Loss, Delay Spread, and AOA. IEEE Trans. Antennas Propag. 2015, 63, 2728–2738. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.F.; Huang, S.X.; Wang, D.X. Using particle filter to track horizontal variations of atmospheric duct structure from radar sea clutter. Atmos. Meas. Tech. 2012, 5, 2859–2866. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Huang, S. Estimation of Atmospheric Duct Structure Using Radar Sea Clutter. J. Atmos. Sci. 2012, 69, 2808–2818. [Google Scholar] [CrossRef]
- Ozgun, O.; Sahin, V.; Erguden, M.E.; Apaydin, G.; Yilmaz, A.E.; Kuzuoglu, M.; Sevgi, L. PETOOL v2.0: Parabolic Equation Toolbox with Evaporation Duct Models and Real Environment Data. Comput. Phys. Commun. 2020, 256, 107454. [Google Scholar] [CrossRef]
- Shi, R.; Guo, X.; Wang, D.; Zeng, L.; Chen, J. Seasonal variability in coastal fronts and its influence on sea surface wind in the northern South China Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 119, 30–39. [Google Scholar] [CrossRef]
- Qiu, C.; Cui, Y.; Hu, S.; Dan, H. Seasonal variation of Guangdong coastal thermal front based on merged satellite data. J. Trop. Oceanogr. 2017, 36, 16–23. [Google Scholar]
- Wang, S.; Yang, K.; Shi, Y.; Zhang, H.; Yang, F.; Hu, D.; Dong, G.; Shu, Y. Long-term over-the-horizon microwave channel measurements and statistical analysis in evaporation ducts over the Yellow Sea. Front. Mar. Sci. 2023, 10, 2296–7745. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Ma, J. Exploration of X-Band Communication for Maritime Applications in the South China Sea. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 481–485. [Google Scholar] [CrossRef]
- Xu, L.; Yardim, C.; Mukherjee, S.; Burkholder, R.J.; Wang, Q.; Fernando, H.J.S. Frequency Diversity in Electromagnetic Remote Sensing of Lower Atmospheric Refractivity. IEEE Trans. Antennas Propag. 2022, 70, 547–558. [Google Scholar] [CrossRef]
- Kang, S.; Zhag, Y.; Wang, H. Atmospheric Duct in Troposphere Environment, 1st ed.; Science Press: Beijing, China, 2014; pp. 85–86. [Google Scholar]
- Ozgun, O.; Apaydin, G.; Kuzuoglu, M.; Sevgi, L. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain. Comput. Phys. Commun. 2011, 182, 2638–2654. [Google Scholar] [CrossRef]
- Ding, R.; Guang, Z.; Cheng, Y.; Shi, R.; Wang, D. Characteristics of Evaporation Duct over the South China Sea During 1998 Summer Monsoon. J. Trop. Meteorol. 2012, 28, 905–910. [Google Scholar]
- Haus, B.K.; Ortiz-Suslow, D.G.; Doyle, J.D.; Flagg, D.D.; Graber, H.C.; MacMahan, J.; Shen, L.; Wang, Q.; Willams, N.J.; Yardim, C. CLASI: Coordinating Innovative Observations and Modeling to Improve Coastal Environmental Prediction Systems. Bull. Am. Meteorol. Soc. 2022, 103, 889–898. [Google Scholar] [CrossRef]
Data Source | Station No | Longitude | Latitude | Meteorological Elements | Data Year Span |
---|---|---|---|---|---|
59,981 (XS) | 112.333°E | 16.833°N | sea level pressure, station pressure, wind speed, temperature, dew point | 2012–2022 | |
48,839 (BG) | 107.717°E | 20.133°N | sea level pressure, station pressure, wind speed, temperature, dew point, SST | 2011–2022 | |
AWS | 59,985 (XS) | 111.617°E | 16.533°N | ||
59,838 (BGE) | 108.617°E | 19.100°N | sea level pressure, | ||
48,848 (IPC) | 106.600°E | 17.483°N | station pressure, wind speed, | 2011–2022 | |
59,644 (BGN) | 109.100°E | 21.483°N | temperature, dew point | ||
48,845 (IPN) | 105.671°E | 18.737°N | |||
59,981 (XS) | 112.333°E | 16.833°N | 2010–2022 | ||
48,855 (IPS) | 108.200°E | 16.030°N | 2010–2022 | ||
Sounding stations | 48,845 (IPN) | 105.671°E | 18.737°N | pressure, altitude, temperature, dew point | 2014–2022 |
48,839 (BG) | 107.717°E | 20.133°N | 2013–2022 | ||
59,758 (HNC) | 110.350°E | 20.030°N | 2010–2022 |
Item | Content |
---|---|
Data Type | Conventional longitude and latitude grid data |
Temporal Span | 2010∼2022 |
Horizontal Resolution | 0.25° × 0.25° |
Vertical Pressure Layer (hPa) | 400, 450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850,875, 900, 925, 950, 975, 1000 |
Time Resolution | 1 h |
Spatial Range | 105°E∼113°E, 15°N∼23°N |
Meteorological Elements | Temperature, Specific humidity, Geopotential, V-component of wind, and U-component of wind |
Item | Content |
---|---|
Data Type | Conventional longitude and latitude grid data |
Time Span | 2011∼2022 |
Horizontal Resolution | 0.205° × 0.205° |
Spatial Range | 105°E∼113°E, 15°N∼23°N |
Meteorological Elements | Surface pressure, Specific humidity of 2 m, Temperature of 2 m, Surface temperature, U-component of wind at 10 m, V-component of wind at 10 m |
Radiation Source Parameters | Specific Settings |
---|---|
Frequency | 1 GHz, 3 GHz, 6 GHz, 9 GHz |
Antenna and receiving height | 8 m, 8 m |
Antenna elevation angle | 0°, 0.5°, 1°, 2°, 3° |
Polarization mode | Horizontal polarization |
Horizontal and vertical range | 0∼200 km, 0∼300 m |
Antenna and beam type | Parabolic antenna Gaussian beam |
3 dB beamwidth | 2° |
Station No | 48,845 (IPN) | 48,839 (BG) | 48,855 (IPS) | 59,758 (HNC) | 59,981 (XS) |
---|---|---|---|---|---|
Percentage (Total number of surface duct) | 58.0% (157) | 62.5% (104) | 73.6% (966) | 63.7% (537) | 98.7% (1228) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; Su, D.; Wang, T. Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea. Remote Sens. 2023, 15, 3317. https://doi.org/10.3390/rs15133317
Yang N, Su D, Wang T. Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea. Remote Sensing. 2023; 15(13):3317. https://doi.org/10.3390/rs15133317
Chicago/Turabian StyleYang, Ning, Debin Su, and Tao Wang. 2023. "Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea" Remote Sensing 15, no. 13: 3317. https://doi.org/10.3390/rs15133317
APA StyleYang, N., Su, D., & Wang, T. (2023). Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea. Remote Sensing, 15(13), 3317. https://doi.org/10.3390/rs15133317