Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Pre-Processing
2.3. Methods
2.4. Accuracy Assessment
3. Results
3.1. Monitoring Forest Area with GIS Data
3.2. Comparative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnesoeur, V.; Locatelli, B.; Guariguata, M.R.; Ochoa-Tocachi, B.F.; Vanacker, V.; Mao, Z.; Stokes, A.; Mathez-Stiefel, S.-L. Impacts of forests and forestation on hydrological services in the Andes: A systematic review. For. Ecol. Manag. 2019, 433, 569–584. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zeng, Z.; Wu, J.; Peng, L.; Lakshmi, V.; Yang, H.; Liu, J. Large Uncertainty on Forest Area Change in the Early 21st Century among Widely Used Global Land Cover Datasets. Remote Sens. 2020, 12, 3502. [Google Scholar] [CrossRef]
- Wang, W.J.; Ma, S.; He, H.S.; Liu, Z.; Thompson, F.R., III; Jin, W.; Wu, Z.F.; Spetich, M.A.; Wang, L.; Xue, S.; et al. Effects of rising atmospheric CO2, climate change, and nitrogen deposition on aboveground net primary production in a temperate forest. Environ. Res. Lett. 2019, 14, 104005. [Google Scholar] [CrossRef]
- Duveneck, M.J.; Thompson, J.R. Climate change imposes phenological trade-offs on forest net primary productivity. J. Geophys. Res. Biogeosci. 2017, 122, 2298–2313. [Google Scholar] [CrossRef]
- Peters, E.B.; Wythers, K.R.; Zhang, S.; Bradford, J.B.; Reich, P.B. Potential climate change impacts on temperate forest ecosystem processes. Can. J. For. Res. 2013, 43, 939–950. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 11 May 2023).
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Chivulescu, S.; García-Duro, J.; Pitar, D.; Leca, Ș.; Badea, O. Past and Future of Temperate Forests State under Climate Change Effects in the Romanian Southern Carpathians. Forests 2021, 12, 885. [Google Scholar] [CrossRef]
- Mihai, G.; Alexandru, A.-M.; Nita, I.-A.; Birsan, M.-V. Climate Change in the Provenance Regions of Romania over the Last 70 Years: Implications for Forest Management. Forests 2022, 13, 1203. [Google Scholar] [CrossRef]
- Romeiro, J.M.N.; Eid, T.; Antón-Fernández, C.; Kangas, A.; Trømborg, E. Natural disturbances risks in European Boreal and Temperate forests and their links to climate change—A review of modelling approaches. For. Ecol. Manag. 2022, 509, 120071. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2020, 4, 63–70. [Google Scholar] [CrossRef]
- Forest Europe. State of Europe’s Forests 2020. Available online: https://foresteurope.org/state-europes-forests-2020/ (accessed on 5 April 2022).
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Franklin, S.E.; Guo, X.; Cattet, M. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists. Sensors 2010, 10, 9647–9667. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D. Monitoring Forest Cover Changes Using Remote Sensing and GIS: A Global Prospective. Res. J. Environ. Sci. 2011, 5, 105–123. [Google Scholar] [CrossRef] [Green Version]
- Thompson, I.D.; Guariguata, M.R.; Okabe, K.; Bahamondez, C.; Nasi, R.; Heymell, V.; Sabogal, C. An Operational Framework for Defining and Monitoring Forest Degradation. Ecol. Soc. 2013, 18, 20. [Google Scholar] [CrossRef]
- Grecchi, R.C.; Beuchle, R.; Shimabukuro, Y.E.; Aragão, L.E.; Arai, E.; Simonetti, D.; Achard, F. An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 70–80. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. 2017, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Almeida Filho, R.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sens. Environ. 1995, 52, 137–154. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Morán, E.; Mausel, P. Application of spectral mixture analysis to Amazonian land-use and land-cover classification. Int. J. Remote Sens. 2004, 25, 5345–5358. [Google Scholar] [CrossRef]
- Johnson, B.; Tateishi, R.; Kobayashi, T. Remote Sensing of Fractional Green Vegetation Cover Using Spatially-Interpolated Endmembers. Remote Sens. 2012, 4, 2619–2634. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Li, L.; Gong, H.; Jin, Q.; Li, X.; Song, R.; Chen, Y.; He, C.; Huang, Y.; Yao, Y. Multisource Remote Sensing Imagery Fusion Scheme Based on Bidimensional Empirical Mode Decomposition (BEMD) and Its Application to the Extraction of Bamboo Forest. Remote Sens. 2016, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Linhui, L.; Weipeng, J.; Huihui, W. Extracting the Forest Type from Remote Sensing Images by Random Forest. IEEE Sensors J. 2020, 21, 17447–17454. [Google Scholar] [CrossRef]
- Vohland, M.; Stoffels, J.; Hau, C.; Schüler, G. Remote sensing techniques for forest parameter assessment: Multispectral classification and linear spectral mixture analysis. Silva Fenn. 2007, 41, 471. [Google Scholar] [CrossRef] [Green Version]
- Heumann, B.W. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach. Remote Sens. 2011, 3, 2440–2460. [Google Scholar] [CrossRef] [Green Version]
- Gudex-Cross, D.; Pontius, J.; Adams, A. Enhanced forest cover mapping using spectral unmixing and object-based classification of multi-temporal Landsat imagery. Remote Sens. Environ. 2017, 196, 193–204. [Google Scholar] [CrossRef]
- Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Zagajewski, B.; Kluczek, M.; Raczko, E.; Njegovec, A.; Dabija, A.; Kycko, M. Comparison of Random Forest, Support Vector Machines, and Neural Networks for Post-Disaster Forest Species Mapping of the Krkonoše/Karkonosze Transboundary Biosphere Reserve. Remote Sens. 2021, 13, 2581. [Google Scholar] [CrossRef]
- Asner, G.P.; Broadbent, E.N.; Oliveira, P.J.C.; Keller, M.; Knapp, D.E.; Silva, J.N.M. Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 12947–12950. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Loveland, T.R.; Townshend, J.R.G.; DeFries, R.S.; Pittman, K.W.; Arunarwati, B.; Stolle, F.; Steininger, M.K.; et al. Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc. Natl. Acad. Sci. USA 2008, 105, 9439–9444. [Google Scholar] [CrossRef] [Green Version]
- Townshend, J.R.; Masek, J.G.; Huang, C.; Vermote, E.F.; Gao, F.; Channan, S.; Sexton, J.O.; Feng, M.; Narasimhan, R.; Kim, D.; et al. Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. Int. J. Digit. Earth 2012, 5, 373–397. [Google Scholar] [CrossRef] [Green Version]
- Czerwinski, C.J.; King, D.J.; Mitchell, S.W. Mapping forest growth and decline in a temperate mixed forest using temporal trend analysis of Landsat imagery, 1987–2010. Remote Sens. Environ. 2014, 141, 188–200. [Google Scholar] [CrossRef]
- Da Ponte, E.; Mack, B.; Wohlfart, C.; Rodas, O.; Fleckenstein, M.; Oppelt, N.; Dech, S.; Kuenzer, C. Assessing Forest Cover Dynamics and Forest Perception in the Atlantic Forest of Paraguay, Combining Remote Sensing and Household Level Data. Forests 2017, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Turubanova, S.; Tyukavina, A.; Krylov, A.; McCarty, J.; Radeloff, V.; Hansen, M. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ. 2015, 159, 28–43. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sens. 2020, 12, 426. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000–2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 18. [Google Scholar] [CrossRef]
- Negassa, M.D.; Mallie, D.T.; Gemeda, D.O. Forest cover change detection using Geographic Information Systems and remote sensing techniques: A spatio-temporal study on Komto Protected forest priority area, East Wollega Zone, Ethiopia. Environ. Syst. Res. 2020, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Li, Z.; Liu, X.; Zhu, L.; Tang, Y.; Zhang, B.; Xu, B.; Liu, M.; Meng, Y.; Liu, B. Multi-Type Forest Change Detection Using BFAST and Monthly Landsat Time Series for Monitoring Spatiotemporal Dynamics of Forests in Subtropical Wetland. Remote Sens. 2020, 12, 341. [Google Scholar] [CrossRef] [Green Version]
- Elhag, M.; Boteva, S.; Al-Amri, N. Forest cover assessment using remote-sensing techniques in Crete Island, Greece. Open Geosci. 2021, 13, 345–358. [Google Scholar] [CrossRef]
- Wang, W.; Liu, R.; Gan, F.; Zhou, P.; Zhang, X.; Ding, L. Monitoring and Evaluating Restoration Vegetation Status in Mine Region Using Remote Sensing Data: Case Study in Inner Mongolia, China. Remote Sens. 2021, 13, 1350. [Google Scholar] [CrossRef]
- Erfanifard, Y.; Nasirabad, M.L.; Stereńczak, K. Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series. Remote Sens. 2022, 14, 4912. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Shafri, H.Z.M.; Suhaili, A.; Mansor, S. The Performance of Maximum Likelihood, Spectral Angle Mapper, Neural Network and Decision Tree Classifiers in Hyperspectral Image Analysis. J. Comput. Sci. 2007, 3, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12 (Suppl. S1), S27–S31. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GISci. Remote Sens. 2017, 55, 331–354. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Adugna, T.; Xu, W.; Fan, J. Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens. 2022, 14, 574. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Doan, T.M.; Tomppo, E.; McRoberts, R.E. Land Use/Land Cover Mapping Using Multitemporal Sentinel-2 Imagery and Four Classification Methods—A Case Study from Dak Nong, Vietnam. Remote Sens. 2020, 12, 1367. [Google Scholar] [CrossRef]
- Ruggeri, S.; Henao-Cespedes, V.; Garcés-Gómez, Y.A.; Uzcátegui, A.P. Optimized unsupervised CORINE Land Cover mapping using linear spectral mixture analysis and object-based image analysis. Egypt. J. Remote Sens. Space Sci. 2021, 24, 1061–1069. [Google Scholar] [CrossRef]
- Dabija, A.; Kluczek, M.; Zagajewski, B.; Raczko, E.; Kycko, M.; Al-Sulttani, A.H.; Tardà, A.; Pineda, L.; Corbera, J. Comparison of Support Vector Machines and Random Forests for Corine Land Cover Mapping. Remote Sens. 2021, 13, 777. [Google Scholar] [CrossRef]
- Congalton, R.G.; Mead, R.A.; Oderwald, R.G.; Heinen, J.; Mead, R.A.; Oderwald, R.G.; Heinen, J. Nationwide Forestry Applications Program. Analysis of Forest Classification Accuracy. Research Report. 1981. Available online: https://ntrs.nasa.gov/citations/19810020961 (accessed on 28 November 2021).
- Bleahu, M.; Bordea, S. Munții Bihor Vlădeasa; Editura Sport-Turism: București, Romania, 1981; p. 496. [Google Scholar]
- Mauri, A.; Girardello, M.; Strona, G.; Beck, P.S.A.; Forzieri, G.; Caudullo, G.; Manca, F.; Cescatti, A. EU-Trees4F, a dataset on the future distribution of European tree species. Sci. Data 2022, 9, 37. [Google Scholar] [CrossRef]
- CORINE Land Cover—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 27 November 2021).
- Chen, H.R.; Tseng, Y.H. Study of automatic image rectification and registration of scanned historical aerial photographs. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 1229–1236. [Google Scholar] [CrossRef] [Green Version]
- United States Geological Survey. Available online: https://glovis.usgs.gov/ (accessed on 18 August 2021).
- Civco, D.L. Topographic Normalization of Landsat Thematic Mapper Digital Imagery. Photogramm. Eng. Remote Sens. 1989, 55, 1303–1309. Available online: https://www.asprs.org/wp-content/uploads/pers/1989journal/sep/1989_sep_1303-1309.pdf (accessed on 28 November 2021).
- Geoportal ANCPI. Available online: https://geoportal.ancpi.ro/portal/apps/webappviewer/index.html?id=3f34ee5af71c400396dda574f0d53274 (accessed on 15 January 2022).
- Liang, S.; Li, X.; Wang, J. Advanced Remote Sensing: Terrestrial Information Extraction and Applications; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780128158265. [Google Scholar]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. Solid Earth 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [Google Scholar] [CrossRef] [Green Version]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among Semi-Arid Landscape Endmembers Using Spectral Angle Mapper (SAM) Algorithm, Summaries of the 4th Annual JPL Airborne Geoscience Workshop, JPL Pub-92-14, AVIRIS Workshop. 1992. Available online: https://ntrs.nasa.gov/citations/19940012238 (accessed on 27 November 2021).
- Sohn, Y.; Rebello, N.S. Supervised and Unsupervised Spectral Angle Classifiers. Photogramm. Eng. Remote Sens. 2002, 68, 1271–1280. Available online: https://www.asprs.org/wp-content/uploads/pers/2002journal/december/2002_dec_1271-1280.pdfpdf (accessed on 28 November 2021).
- Abe, B.T.; Olugbara, O.O.; Marwala, T. Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification. J. Earth Syst. Sci. 2014, 123, 779–790. [Google Scholar] [CrossRef]
- Yang, C.; Wu, G.; Ding, K.; Shi, T.; Li, Q.; Wang, J. Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods. Remote Sens. 2017, 9, 1222. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Weng, Q. Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1053–1062. [Google Scholar] [CrossRef] [Green Version]
- De Asis, A.M.; Omasa, K.; Oki, K.; Shimizu, Y. Accuracy and applicability of linear spectral unmixing in delineating potential erosion areas in tropical watersheds. Int. J. Remote Sens. 2008, 29, 4151–4171. [Google Scholar] [CrossRef]
- Mezned, N.; Abdeljaoued, S.; Boussema, M.R. A comparative study for unmixing based Landsat ETM+ and ASTER image fusion. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S131–S137. [Google Scholar] [CrossRef]
- Bai, L.; Lin, H.; Sun, H.; Mo, D.; Yan, E. Spectral Unmixing Approach in Remotely Sensed Forest Cover Estimation: A Study of Subtropical Forest in Southeast China. Phys. Procedia 2012, 25, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Ettritch, G.; Bunting, P.; Jones, G.; Hardy, A. Monitoring the coastal zone using earth observation: Application of linear spectral unmixing to coastal dune systems in Wales. Remote Sens. Ecol. Conserv. 2018, 4, 303–319. [Google Scholar] [CrossRef]
- Taureau, F.; Robin, M.; Proisy, C.; Fromard, F.; Imbert, D.; Debaine, F. Mapping the Mangrove Forest Canopy Using Spectral Unmixing of Very High Spatial Resolution Satellite Images. Remote Sens. 2019, 11, 367. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Yang, J.; Guo, X. Green Vegetation Cover Dynamics in a Heterogeneous Grassland: Spectral Unmixing of Landsat Time Series from 1999 to 2014. Remote Sens. 2020, 12, 3826. [Google Scholar] [CrossRef]
- De Smith, M.J.; Goodchild, M.F.; Longley, P. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools. 617. Available online: https://www.spatialanalysisonline.com/ (accessed on 26 November 2021).
- Anchang, J.Y.; Ananga, E.O.; Pu, R. An efficient unsupervised index based approach for mapping urban vegetation from IKONOS imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 211–220. [Google Scholar] [CrossRef]
- Wegmueller, S.A.; Townsend, P.A. Astrape: A System for Mapping Severe Abiotic Forest Disturbances Using High Spatial Resolution Satellite Imagery and Unsupervised Classification. Remote Sens. 2021, 13, 1634. [Google Scholar] [CrossRef]
- Gui, R.; Song, W.; Pu, X.; Lu, Y.; Liu, C.; Chen, L. A River Channel Extraction Method Based on a Digital Elevation Model Retrieved from Satellite Imagery. Water 2022, 14, 2387. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Fang, Y.; Zuo, X.; Yu, X. Automatic Change Detection Method of Multitemporal Remote Sensing Images Based on 2D-Otsu Algorithm Improved by Firefly Algorithm. J. Sensors 2015, 2015, 327123. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Sun, W.; Li, J.; Zhao, Y.; Zhang, Y.; Chen, G. An improved Otsu method for oil spill detection from SAR images. Oceanologia 2017, 59, 311–317. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Næsset, E. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 2014, 140, 306–317. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, T.; Zeng, Y.; Wang, S. An Adaptive-Parameter Pixel Unmixing Method for Mapping Evergreen Forest Fractions Based on Time-Series NDVI: A Case Study of Southern China. Remote Sens. 2021, 13, 4678. [Google Scholar] [CrossRef]
- Aslan, N.; Koc-San, D. The Use of Land Cover Indices for Rapid Surface Urban Heat Island Detection from Multi-Temporal Landsat Imageries. ISPRS Int. J. Geo-Inf. 2021, 10, 416. [Google Scholar] [CrossRef]
- ArcGIS Pro Help. Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/binary-thresholding-function.htm (accessed on 28 November 2021).
- Machín, A.M.; Marcello, J.; Hernández-Cordero, A.I.; Abasolo, J.M.; Eugenio, F. Vegetation species mapping in a coastal-dune ecosystem using high resolution satellite imagery. GISci. Remote Sens. 2018, 56, 210–232. [Google Scholar] [CrossRef]
- Villa, A.; Chanussot, J.; Benediktsson, J.A.; Jutten, C. Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution. IEEE J. Sel. Top. Signal Process. 2010, 5, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Oommen, T.; Misra, D.; Twarakavi, N.K.C.; Prakash, A.; Sahoo, B.; Bandopadhyay, S. An Objective Analysis of Support Vector Machine Based Classification for Remote Sensing. Math. Geosci. 2008, 40, 409–424. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Svoboda, J.; Štych, P.; Laštovička, J.; Paluba, D.; Kobliuk, N. Random Forest Classification of Land Use, Land-Use Change and Forestry (LULUCF) Using Sentinel-2 Data—A Case Study of Czechia. Remote Sens. 2022, 14, 1189. [Google Scholar] [CrossRef]
- Strahler, A.H. The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sens. Environ. 1980, 10, 135–163. [Google Scholar] [CrossRef]
- Gualtieri, J.A.; Cromp, R.F. Support vector machines for hyperspectral remote sensing classification. In Proceedings of the 27th AIPR Workshop: Advances in Computer-Assisted Recognition, Washington, DC, USA, 14–16 October 1998; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; pp. 221–232. [Google Scholar] [CrossRef] [Green Version]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A Coefficient of Agreement as a Measure of Thematic Classification Accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. Available online: https://www.asprs.org/wp-content/uploads/pers/1986journal/feb/1986_feb_223-227.pdf (accessed on 18 September 2021).
- Whiteside, T.G.; Maier, S.W.; Boggs, G.S. Area-based and location-based validation of classified image objects. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 117–130. [Google Scholar] [CrossRef]
- Congalton, R.G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildland Fire 2001, 10, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Löw, F.; Dimov, D.; Kenjabaev, S.; Zaitov, S.; Stulina, G.; Dukhovny, V. Land cover change detection in the Aralkum with multi-source satellite datasets. GISci. Remote Sens. 2021, 59, 17–35. [Google Scholar] [CrossRef]
- Zhan, Q.; Molenaar, M.; Tempfli, K.; Shi, W. Quality assessment for geo-spatial objects derived from remotely sensed data. Int. J. Remote Sens. 2005, 26, 2953–2974. [Google Scholar] [CrossRef]
- Szantoi, Z.; Escobedo, F.; Abd-Elrahman, A.; Smith, S.; Pearlstine, L. Analyzing fine-scale wetland composition using high resolution imagery and texture features. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 204–212. [Google Scholar] [CrossRef]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 20 February 2022).
- Zylshal; Sulma, S.; Yulianto, F.; Nugroho, J.T.; Sofan, P. A Support Vector Machine Object Based Image Analysis Approach on Urban Green Space Extraction Using Pleiades-1A Imagery. Model. Earth Syst. Environ. 2016, 2, 54. [Google Scholar] [CrossRef] [Green Version]
- Büttner, G.; Kosztra, B.; Maucha, G.; Pataki, R.; Kleeschulte, S.; Hazeu, G.; Vittek, M.; Schröder, C.; Littkopf, A. CORINE Land Cover. User Manual; Copernicus Land Monitoring Service; European Environment Agency (EEA): Copenhagen, Denmark, 2021. [Google Scholar]
- Copernicus Land Monitoring Service, High Resolution Layers. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers (accessed on 20 April 2022).
- Global Land Cover and Land Use Change, 2000–2020. Available online: https://glad.umd.edu/dataset/GLCLUC2020 (accessed on 18 July 2022).
- Furtuna, P.; Haidu, I.; Maier, N. Synoptic Processes Generating Windthrow. A Case Study for Apuseni Mountains (Romania). Geogr. Tech. 2018, 13, 52–61. [Google Scholar] [CrossRef]
- Pettit, J.L.; Janda, P.; Rydval, M.; Čada, V.; Schurman, J.S.; Nagel, T.A.; Bače, R.; Saulnier, M.; Hofmeister, J.; Matula, R.; et al. Both Cyclone-induced and Convective Storms Drive Disturbance Patterns in European Primary Beech Forests. J. Geophys. Res. Atmos. 2021, 126, e2020JD033929. [Google Scholar] [CrossRef]
- Ilies, G.; Ilies, M.; Hotea, M.; Bumbak, S.-V.; Hodor, N.; Ilies, D.-C.; Caciora, T.; Safarov, B.; Morar, C.; Valjarević, A.; et al. Integrating forest windthrow assessment data in the process of windscape reconstruction: Case of the extratropical storms downscaled for the Gutai Mountains (Romania). Front. Environ. Sci. 2022, 10, 926430. [Google Scholar] [CrossRef]
- Raport de Activitate Pentru Ariile Naturale Protejate—Parcul Natural Apuseni. Available online: https://parcapuseni.ro/images/situatii_financiare/Raport_de_activitate_2018_APN_Apuseni.pdf (accessed on 20 February 2022).
- Prada, M.; Popescu, D.E.; Bungau, C.; Pancu, R.; Bungau, C. Parametric Studies on European 20-20-20 Energy Policy Targets in University Environment. J. Environ. Prot. Ecol. 2017, 18, 1146–1157. [Google Scholar]
- Herman, G.; Caciora, T.; Ilies, D.C.; Ilies, A.; Deac, A.; Sturza, A.; Sonko, S.; Suba, N.; Nistor, S. 3D Modeling of the Cultural Heritage: Between Opportunity and Necessity. J. Appl. Eng. Sci. 2020, 10, 27–30. [Google Scholar] [CrossRef]
- Cicort-Lucaciu, A.Ş.; Cupşa, D.; Ilieş, D.; Ilieş, A.; Baiaş, Ş.; Sas, I. Feeding of Two Amphibian Species (Bombina variegata and Pelophylax ridibundus) from Artificial Habitats from Pădurea Craiului Mountains (Romania). North-West. J. Zool. 2011, 7, 297–303. Available online: http://herp-or.uv.ro/nwjz/ (accessed on 18 September 2021).
- Ungureanu, M.; Dragota, C.; Ilies, D.C.; Josan, I.; Gaceu, O. Climatic and Bioclimatic Touristic Potential of Padis Karst Plateau of the Bihor Mountains. J. Environ. Prot. Ecol. 2015, 16, 1543–1553. [Google Scholar]
- Gozner, M. Solutions for the development of leisure tourism by specific arrangements (cyclotourism) in the Albac–Arieşeni territorial system (Alba County, Romania). GeoJ. Tour. Geosites 2015, 15, 59–66. [Google Scholar]
- Fora, C.G.; Banu, C.M.; Chisăliţă, I.; Moatăr, M.M.; Oltean, I. Parasitoids and Parasitoids and Predators of Ips typographus (L.) in Unmanaged and Managed Spruce Forests in Natural Park Apuseni, Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 270–274. [Google Scholar] [CrossRef]
- Fora, C.G.; Balog, A. The Effects of the Management Strategies on Spruce Bark Beetles Populations (Ips typographus and Pityogenes chalcographus), in Apuseni Natural Park, Romania. Forests 2021, 12, 760. [Google Scholar] [CrossRef]
- Knorn, J.; Kuemmerle, T.; Radeloff, V.C.; Szabo, A.; Mindrescu, M.; Keeton, W.S.; Abrudan, I.; Griffiths, P.; Gancz, V.; Hostert, P. Forest restitution and protected area effectiveness in post-socialist Romania. Biol. Conserv. 2012, 146, 204–212. [Google Scholar] [CrossRef]
- Albulescu, A.-C.; Manton, M.; Larion, D.; Angelstam, P. The Winding Road towards Sustainable Forest Management in Romania, 1989–2022: A Case Study of Post-Communist Social–Ecological Transition. Land 2022, 11, 1198. [Google Scholar] [CrossRef]
- Plokhikh, R.; Shokparova, D.; Fodor, G.; Berghauer, S.; Tóth, A.; Suymukhanov, U.; Zhakupova, A.; Varga, I.; Zhu, K.; Dávid, L.D. Towards Sustainable Pasture Agrolandscapes: A Landscape-Ecological-Indicative Approach to Environmental Audits and Impact Assessments. Sustainability 2023, 15, 6913. [Google Scholar] [CrossRef]
- Rau, A.; Koibakova, Y.; Nurlan, B.; Nabiollina, M.; Kurmanbek, Z.; Issakov, Y.; Zhu, K.; Dávid, L.D. Increase in Productivity of Chestnut Soils on Irrigated Lands of Northern and Central Kazakhstan. Land 2023, 12, 672. [Google Scholar] [CrossRef]
- Zhu, K.; Cheng, Y.; Zang, W.; Zhou, Q.; El Archi, Y.; Mousazadeh, H.; Kabil, M.; Csobán, K.; Dávid, L.D. Multiscenario Simulation of Land-Use Change in Hubei Province, China Based on the Markov-FLUS Model. Land 2023, 12, 744. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, K.; Zhou, Q.; El Archi, Y.; Kabil, M.; Remenyik, B.; Dávid, L.D. Tourism Ecological Efficiency and Sustainable Development in the Hanjiang River Basin: A Super-Efficiency Slacks-Based Measure Model Study. Sustainability 2023, 15, 6159. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Deilmai, B.R.; Bin Ahmad, B.; Zabihi, H. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012052. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.; Warner, T.; Strager, M.; Conley, J.; Sharp, A. Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [Google Scholar] [CrossRef]
- Hasan, H.; Shafri, H.Z.; Habshi, M. A Comparison Between Support Vector Machine (SVM) and Convolutional Neural Network (CNN) Models For Hyperspectral Image Classification. IOP Conf. Ser. Earth Environ. Sci. 2019, 357, 012035. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Christovam, L.; Pessoa, G.G.; Shimabukuro, M.H.; Galo, M.L.B.T. Land use and land cover classification using hyperspectral imagery: Evaluating the performance of spectral angle mapper, support vector machine and random forest. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1841–1847. [Google Scholar] [CrossRef] [Green Version]
- Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Comparison of Support Vector Machine and Random Forest Algorithms for Invasive and Expansive Species Classification Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 516. [Google Scholar] [CrossRef] [Green Version]
- Bayrakdar, H.Y.; Kavlak, M.; Yılmazel, B.; Çabuk, A. Assessing the performance of machine learning algorithms in Google Earth Engine for land use and land cover analysis: A case study of Muğla province, Türkiye. J. Des. Resil. Arch. Plan. 2022, 3, 224–236. [Google Scholar] [CrossRef]
- Avci, C.; Budak, M.; Yağmur, N.; Balçik, F. Comparison between random forest and support vector machine algorithms for LULC classification. Int. J. Eng. Geosci. 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Sohn, Y.; Morán, E.; Gurri, F. Deforestation in North-Central Yucatan (1985–1995)—Mapping secondary succession of forest and agricultural land use in Sotuta using the cosine of the angle concept. Photogramm. Eng. Remote Sens. 1999, 65, 947–958. [Google Scholar]
- Li, G.; Lu, D.; Moran, E.; Hetrick, S. Land-cover classification in a moist tropical region of Brazil with Landsat Thematic Mapper imagery. Int. J. Remote Sens. 2011, 32, 8207–8230. [Google Scholar] [CrossRef] [Green Version]
Year | Data for GIS Processing | Remote Sensing Data |
---|---|---|
2003 | Google Earth | Landsat 7 ETM—27 May 2003 |
2005 | Orthophoto | Landsat 5 TM—18 July 2005 |
2009 | Orthophoto | Landsat 5 TM—26 May 2009 |
2011 | Google Earth 2011, Orthophoto 2012 | Landsat 5 TM—12 July 2011 |
2014 | Google Earth | Landsat 8 OLI—4 July 2014 |
2016 | Orthophoto | Landsat 8 OLI—26 August 2016 |
2017 | Google Earth | Landsat 8 OLI—14 September 2017 |
2019 | Google Earth | Landsat 8 OLI—19 August 2019 |
Year | Coniferous Forest | Broad-Leaved Forest | Pasture | Pasture with Sparse Vegetation | Bare Rock | Road and Build | Total Number of Pixels |
---|---|---|---|---|---|---|---|
2003 | 12306 | 3012 | 2673 | 548 | 21 | 27 | 18587 |
2005 | 14696 | 4509 | 2951 | 387 | 21 | 23 | 22587 |
2009 | 13750 | 3943 | 2827 | 399 | 21 | 23 | 20963 |
2011 | 12560 | 3092 | 2870 | 660 | 21 | 27 | 19230 |
2014 | 12562 | 3084 | 2883 | 663 | 21 | 27 | 19240 |
2016 | 12306 | 2947 | 2748 | 1035 | 21 | 27 | 19084 |
2017 | 12303 | 2940 | 2742 | 1035 | 21 | 27 | 19068 |
2019 | 11923 | 2883 | 2080 | 1120 | 21 | 24 | 18051 |
Year | Total Area (ha) | FGIS (ha) | Percent FGIS (%) |
---|---|---|---|
2003 | 6535.81 | 5037.16 | 77.07 |
2005 | 5028.74 | 76.94 | |
2009 | 4911.17 | 75.14 | |
2011 | 4705.92 | 72.00 | |
2014 | 4627.28 | 70.80 | |
2016 | 4616.95 | 70.64 | |
2017 | 4558.50 | 69.75 | |
2019 | 6535.81 | 4459.80 | 68.24 |
Year | FGIS (ha) | FUNMIX_NB (ha) | FUNMIX_OM (ha) | FUNMIX_SVM (ha) | FSAM (ha) | FSVM (ha) | FMLC (ha) | FRF (ha) | Masked Pixels (ha) |
---|---|---|---|---|---|---|---|---|---|
2003 | 5037.16 | 5099.94 | 5202.99 | 5144.49 | 4441.05 | 4992.84 | 4309.65 | 4752.27 | 0 |
2005 | 5028.74 | 5139.09 | 5010.84 | 5211.00 | 4931.28 | 4897.71 | 4518.72 | 4784.49 | 0 |
2009 | 4911.17 | 4972.05 | 4929.39 | 4889.43 | 4223.70 | 4996.89 | 4266.18 | 4483.17 | 57.15 |
2011 | 4705.92 | 4961.61 | 4970.70 | 4697.82 | 4707.27 | 4805.82 | 3934.71 | 4555.17 | 134.28 |
2014 | 4627.28 | 4590.81 | 4480.47 | 4425.03 | 3987.27 | 4795.11 | 3847.41 | 4470.03 | 191.61 |
2016 | 4616.95 | 4528.26 | 4945.05 | 4665.78 | 3989.97 | 4836.96 | 4422.06 | 4587.75 | 57.97 |
2017 | 4558.50 | 4526.37 | 5187.69 | 5045.40 | 4555.89 | 4829.31 | 4521.87 | 4541.49 | 0 |
2019 | 4459.80 | 4506.93 | 4275.99 | 4445.01 | 4449.87 | 4640.49 | 4449.33 | 4345.50 | 0 |
Year | Difference FGIS_FUNMIX_NB (ha) | Difference FGIS_FUNMIX_OM (ha) | Difference FGIS_FUNMIX_SVM (ha) | Difference FGIS_FSAM (ha) | Difference FGIS_FSVM (ha) | Difference FGIS_FMLC (ha) | Difference FGIS_FRF (ha) |
---|---|---|---|---|---|---|---|
2003 | 62.78 | 165.83 | 107.33 | −596.11 | −44.32 | −727.51 | −284.89 |
2005 | 110.35 | −17.90 | 182.26 | −97.46 | −131.03 | −510.02 | −244.25 |
2009 | 60.88 | 18.22 | −21.74 | −687.47 | 85.72 | −644.99 | −428 |
2011 | 255.69 | 264.78 | −8.10 | 1.35 | 99.90 | −771.21 | −150.75 |
2014 | −36.47 | −146.81 | −202.25 | −640.01 | 167.83 | −779.87 | −157.25 |
2016 | −88.69 | 328.10 | 48.83 | −626.98 | 220.01 | −194.89 | −29.20 |
2017 | −32.13 | 629.19 | 486.90 | −2.61 | 270.81 | −36.63 | −17.01 |
2019 | 47.13 | −183.81 | −14.79 | −9.93 | 180.69 | −10.47 | −114.30 |
Sum (–) Difference | −157.29 | −348.52 | −246.89 | −2660.58 | −175.35 | −3675.6 | −1425.66 |
Sum (+) Difference | +536.82 | +1406.12 | +825.32 | +1.35 | +1024.94 | 0 | 0 |
Sum Total Difference | 694.11 | 1754.64 | 1072.21 | 2661.93 | 1200.29 | 3675.60 | 1425.66 |
Year | LSU_OM | LSU_NB | LSU_SVM | SAM | SVM | MLC | RF | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA1 (%) | PA2 (%) | PA1 (%) | PA2 (%) | PA1 (%) | PA2 (%) | PA1 (%) | PA2 (%) | PA1 (%) | PA2 (%) | PA1 (%) | PA2 (%) | PA1 (%) | PA2 (%) | |
2003 | 96 | 93 | 93 | 92 | 95 | 93 | 80 | 82 | 90 | 94 | 83 | 84 | 90 | 91 |
2005 | 93 | 93 | 96 | 94 | 96 | 95 | 83 | 85 | 93 | 93 | 87 | 87 | 93 | 92 |
2009 | 93 | 91 | 93 | 92 | 93 | 91 | 80 | 77 | 90 | 94 | 82 | 84 | 96 | 86 |
2011 | 96 | 94 | 95 | 94 | 94 | 91 | 92 | 87 | 96 | 94 | 86 | 81 | 92 | 91 |
2014 | 88 | 88 | 88 | 88 | 88 | 87 | 74 | 73 | 97 | 94 | 81 | 79 | 94 | 90 |
2016 | 97 | 95 | 91 | 91 | 94 | 93 | 85 | 79 | 94 | 95 | 88 | 90 | 95 | 91 |
2017 | 98 | 98 | 94 | 90 | 97 | 96 | 92 | 91 | 93 | 96 | 92 | 92 | 94 | 91 |
2019 | 96 | 90 | 98 | 93 | 99 | 92 | 97 | 90 | 96 | 95 | 98 | 92 | 93 | 91 |
Average | 95 | 93 | 94 | 92 | 95 | 92 | 86 | 83 | 94 | 94 | 87 | 86 | 93 | 90 |
Year | LSU_OM | LSU_NB | LSU_SVM | SAM | SVM | MLC | RF | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UA2 (%) | UA1 (%) | UA2 (%) | UA1 (%) | UA2 (%) | UA1 (%) | UA2 (%) | UA2 (%) | UA1 (%) | UA2 (%) | UA1 (%) | UA2 (%) | UA1 (%) | UA2 (%) | |
2003 | 95 | 90 | 96 | 93 | 96 | 92 | 95 | 92 | 98 | 95 | 99 | 98 | 98 | 97 |
2005 | 94 | 93 | 93 | 92 | 93 | 92 | 86 | 87 | 96 | 96 | 97 | 97 | 97 | 96 |
2009 | 94 | 91 | 94 | 91 | 94 | 91 | 90 | 90 | 93 | 92 | 98 | 96 | 99 | 96 |
2011 | 94 | 89 | 94 | 89 | 95 | 91 | 91 | 87 | 96 | 92 | 97 | 97 | 98 | 94 |
2014 | 95 | 91 | 95 | 88 | 94 | 91 | 87 | 84 | 95 | 91 | 99 | 95 | 95 | 93 |
2016 | 92 | 89 | 95 | 93 | 93 | 92 | 90 | 92 | 92 | 91 | 93 | 94 | 97 | 92 |
2017 | 90 | 86 | 94 | 91 | 92 | 87 | 93 | 91 | 94 | 90 | 96 | 93 | 98 | 92 |
2019 | 97 | 94 | 95 | 92 | 95 | 92 | 95 | 90 | 93 | 91 | 93 | 93 | 99 | 93 |
Average | 94 | 90 | 95 | 91 | 94 | 91 | 91 | 89 | 95 | 92 | 97 | 95 | 97 | 94 |
Year | OQ_LSU_OM (%) | OQ_LSU_NB (%) | OQ_LSU_SVM (%) | OQ_SAM (%) | OQ_SVM (%) | OQ_MLC (%) | OQ_RF (%) |
---|---|---|---|---|---|---|---|
2003 | 85 | 85 | 85 | 77 | 90 | 83 | 89 |
2005 | 87 | 94 | 88 | 76 | 90 | 85 | 89 |
2009 | 83 | 84 | 83 | 71 | 87 | 81 | 83 |
2011 | 84 | 84 | 84 | 77 | 87 | 79 | 85 |
2014 | 81 | 80 | 80 | 65 | 87 | 77 | 85 |
2016 | 85 | 85 | 85 | 74 | 87 | 85 | 84 |
2017 | 84 | 82 | 84 | 83 | 87 | 86 | 84 |
2019 | 84 | 85 | 85 | 82 | 87 | 86 | 85 |
Average | 84 | 85 | 84 | 76 | 88 | 83 | 86 |
Method | Ranking from PA1 | Ranking from PA2 | Ranking from UA1 | Ranking from UA2 | Ranking from OQ | The Average of Ranking Positions | Overall Ranking |
---|---|---|---|---|---|---|---|
LSU_OM | 1 | 2 | 3 | 5 | 4 | 3 | 4 |
LSU_NB | 2 | 3 | 2 | 4 | 3 | 2.8 | 3 |
LSU_SVM | 1 | 3 | 3 | 4 | 4 | 3 | 4 |
SAM | 5 | 6 | 4 | 6 | 6 | 5.4 | 6 |
SVM | 2 | 1 | 2 | 3 | 1 | 1.8 | 1 |
MLC | 4 | 5 | 1 | 1 | 5 | 3.2 | 5 |
RF | 3 | 4 | 1 | 2 | 2 | 2.4 | 2 |
SVM | RF | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Multi-band file | PA1 (%) | PA2 (%) | UA1 (%) | UA2 (%) | OQ (%) | PA1 (%) | PA2 (%) | UA1 (%) | UA2 (%) | OQ (%) |
Sentinel, 2019 | 95 | 93 | 99 | 93 | 87 | 98 | 94 | 98 | 93 | 87 |
Landsat 8 plus Sentinel Red-edge bands, 2019 | 93 | 92 | 99 | 93 | 86 | 99 | 92 | 99 | 93 | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaga, L.; Ilieș, D.C.; Wendt, J.A.; Rus, I.; Zhu, K.; Dávid, L.D. Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery. Remote Sens. 2023, 15, 3168. https://doi.org/10.3390/rs15123168
Blaga L, Ilieș DC, Wendt JA, Rus I, Zhu K, Dávid LD. Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery. Remote Sensing. 2023; 15(12):3168. https://doi.org/10.3390/rs15123168
Chicago/Turabian StyleBlaga, Lucian, Dorina Camelia Ilieș, Jan A. Wendt, Ioan Rus, Kai Zhu, and Lóránt Dénes Dávid. 2023. "Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery" Remote Sensing 15, no. 12: 3168. https://doi.org/10.3390/rs15123168
APA StyleBlaga, L., Ilieș, D. C., Wendt, J. A., Rus, I., Zhu, K., & Dávid, L. D. (2023). Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery. Remote Sensing, 15(12), 3168. https://doi.org/10.3390/rs15123168