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Abstract: Invasive and expansive plant species are considered a threat to natural biodiversity because
of their high adaptability and low habitat requirements. Species investigated in this research, including
Solidago spp., Calamagrostis epigejos, and Rubus spp., are successfully displacing native vegetation and
claiming new areas, which in turn severely decreases natural ecosystem richness, as they rapidly
encroach on protected areas (e.g., Natura 2000 habitats). Because of the damage caused, the European
Union (EU) has committed all its member countries to monitor biodiversity. In this paper we
compared two machine learning algorithms, Support Vector Machine (SVM) and Random Forest
(RF), to identify Solidago spp., Calamagrostis epigejos, and Rubus spp. on HySpex hyperspectral aerial
images. SVM and RF are reliable and well-known classifiers that achieve satisfactory results in the
literature. Data sets containing 30, 50, 100, 200, and 300 pixels per class in the training data set were
used to train SVM and RF classifiers. The classifications were performed on 430-spectral bands and on
the most informative 30 bands extracted using the Minimum Noise Fraction (MNF) transformation.
As a result, maps of the spatial distribution of analyzed species were achieved; high accuracies were
observed for all data sets and classifiers (an average F1 score above 0.78). The highest accuracies
were obtained using 30 MNF bands and 300 sample pixels per class in the training data set (average
F1 score > 0.9). Lower training data set sample sizes resulted in decreased average F1 scores, up to
13 percentage points in the case of 30-pixel samples per class.

Keywords: Natura 2000; invasive species; expansive species; support vector machine; random
forest; biodiversity

1. Introduction

The spread of invasive and expansive species is one of the main threats to biodiversity and
functioning of ecosystems [1]. This results in transformation of natural habitats, displacement of native
species, and degrading environmental conditions (e.g., number of existing micro- and macrophytes).
It also generates economic losses by degrading the quality of soil and destroying road and railway
infrastructure [2]. In the European Union (EU), it is estimated that the cost of controlling and combating
invasive species amounts to approximately 12 billion EUR per year [3]. Implementation of appropriate
remedial strategies and effective limitation of the invasion’s effects require constant monitoring, which
is emphasized in the EU Regulation No. 1143/2014.

The species that pose a threat to natural habitats protected under the Natura 2000 program in
Poland include, for example, native expansive plants such as blackberry shrubs (Rubus spp. L.),
perennial wood small-reed (Calamagrostis epigejos (L.) Roth), and foreign invasive goldenrod species
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(Solidago spp. L). These species do not have high requirements concerning their habitat; they also
reproduce quickly, both in terms of vegetative and generative reproduction, and they stifle other
plants [4]. They negatively impact valuable natural habitats, such as inland sand calcareous grasslands,
mountain and lowland Nardus grasslands, Molinia meadows, and alluvial meadows. They are
extensively used in fresh low pastures in mountain hay and bent-grass meadows [5–7]. In order to
prevent further changes in the vegetation, these harmful species should be identified and removed
preferably at the early stages of invasion.

The current monitoring of plant species changes is based on fixed target areas. Individual specimens
of the species found in target areas are counted, and the observed regularities are extrapolated to
the whole area, which can differentiate due to, for example, environmental components or land use.
In comparison to traditional fields, remote sensing allows for objective and repetitive monitoring
that can be conducted both on local and global scales [8,9]. Considering the complexity of class
distinctions, both intra-class similarities and differences between classes, the data which can be used
for this purpose are multispectral, such as Landsat [10], WorldView-2 [11], or hyperspectral data
(e.g., HyMap) [12]. As hyperspectral data constitute a source of ongoing information about spectral
reflection, they provide a lot of information about the biophysical and chemical characteristics of the
analyzed vegetation [13–15]. Either hyperspectral satellite data (e.g., Hyperion [16] and CHRIS [15,17])
or aerial data (e.g., APEX [18] and AISA [19,20]) are used, depending on the size of the research area and
the canopy characteristics of the identified vegetation. Airborne data are more useful for the detection
of small, less compact patches of plant species because of their high spatial resolution [16]. The study
of Mediterranean plants in southern France confirms that spectral and spatial resolution influence the
accuracy of vegetation mapping [21]. The highest accuracy of classification of five vegetation types was
obtained using the airborne hyperspectral imaging sensor, HyMap. Depending on the classification
method used, the overall accuracies (OAs) ranged from 62.3% for k-nearest neighbor (k-nn), 67.7% for
Random Forest (RF), and 70.2% for Support Vector Machine (SVM), up to 72.5% for Artificial Neural
Networks (ANNs), while the use of ASTER satellite data resulted in slightly lower accuracy levels
(from 60.3%), and the worst results were obtained using multispectral data Landsat 7 ETM + (59.3%).

Multi-dimensional, large-scale image data can be used effectively when their use is based on
modern classification methods, i.e., Support Vector Machine (SVM) [22] or Random Forest (RF) [23].
Both are considered to be among the most effective classification methods [21]. The SVM algorithm
transforms the original space and then constructs an optimal hyperplane in the multi-dimensional
feature space, which divides the data into different classes with the largest possible margin of separation.
The algorithm works well on noisy data and small numbers of training pixels; it is sufficient to develop
support vectors and usually has a higher level of accuracy than other classification algorithms [21,24].
The SVM method was compared with different types of neural networks (MLP, multilayer perceptrons;
CANFIS, co-active neurofuzzy inference systems) used for classifying five types of cultivated plants in
Spain using HyMap data [25]. Results have shown that, despite small differences in the classification
accuracy (OASVM = 96,4% 29, OAMLP = 94,5%, OARBF = 94,1%, OACANFIS = 94,2%), the SVM algorithm
is more efficient than neural networks in terms of stability, reliability, simplicity, as well as the speed
of the classification process. Moreover, SVM achieved very high accuracies (OA = 93%) during the
detection of invasive Solanum mauritianum shrubs on Pinus patula plantations in southern Africa on the
basis of AISA Eagle images [20].

On the other hand, the RF algorithm works by creating many decision trees based on a random
subset of training data, and the final decision is made by combining individual tree votes [23].
The advantage of this method is its resistance to overfitting of the training set and its short classification
time. Good results were achieved by using the RF method to study the invasion of Euphorbia
escula and Centaurea maculosa in Montana [15]. The accuracy levels of classification based on the
airborne hyperspectral HySpex images for the mentioned plant species were 86% and 84%, respectively.
Additionally, the Random Forest algorithm has proved its worth in identifying two expansive grassland
species, Molinia caerulea and Calamagrostis epigejos, in the Silesia Upland in Poland. HySpex and LiDAR
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(light detection and ranging) products from the Riegl LMS-Q680i scanner were used in the study,
obtaining the highest median Kappa of 0.85 (F1 = 0.89, which is a mathematical product of the user
(UA) and producer accuracies (PA)) for M. caerulea identification and 0.65 (F1 = 0.73) for C. epigejos [26].

The use of SVM and RF methods yielded good results during the classification of 20 types of
grassy vegetation in the Hortobágy National Park in eastern Hungary on the basis of AISA Eagle II
data [27]. The highest accuracy of classification was obtained on the first nine Minimum Noise Fraction
(MNF) transformation bands of the hyperspectral image and by using 30 random training pixels
(OASVM= 82.06%, OARF = 79.14%, OAML = 80.78%). However, when the training set was reduced to 10
pixels, SVM and RF methods still maintained high levels of accuracy (79.57% and 76.55%, respectively),
while the ML accuracy dropped significantly to 52.56%. The low level of sensitivity to the training
sample size is a big advantage of these algorithms, especially SVM. On the other hand, the RF algorithm
had a short image classification time (3 minutes) compared to the other methods used on the same
data set (SVM = 16 min, ML = 8 min). Studies of Mediterranean vegetation (mainly shrubs varying
in height from about 0.5 m to almost 5 m) that were carried out in Languedoc in southern France
demonstrated that RF and SVM methods obtained better information from hyperspectral data than
any traditional classifiers (e.g., classification tree (CT), linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), and k-nearest neighbor (k-nn)), especially when the spectral differences
between classes were small [21]. When distinguishing 15 species of plants, the overall accuracies of
the classification for modern methods, i.e., SVM and RF (OASVM = 39.2–47.9%, OARF = 39.3–49.5%),
were higher than those recorded for traditional methods (OACT = 28.6–44.4%, OALDA = 37–45.1%,
OAQDA = 37.5–39.3%, OAk-nn = 18–28.8%), depending on the set of input data. The artificial neural
network (ANN) method was also used to identify plant species; however, this experiment did not lead
to satisfactory results.

The aim of the current analysis was to verify whether the expansive/invasive Rubus spp.,
Calamagrostis epigejos, and Solidago spp. were characterized by a specific set of spectral characteristics
that allowed them to be distinguished from the surrounding species, which altogether create a mix of
fuzzy, covered patterns. Moreover, an analysis of the impact of the number of pixels in training data
set on the classification accuracy was performed. Well-known reference classification algorithms were
applied, SVM and RF methods, which are commonly used because of their effectiveness.

The proposed method could be applied in extensively used agricultural areas (considering
traditionally used farming methods), and not limited to only selected test areas.

2. Materials and Methods

2.1. Study Area and Objects of the Study

The research area was located in southern Poland near the town of Malinowice (Silesian Province)
and covered an area of approximately 10.6 km2 of the Natura 2000 habitat (Figure 1). This is an upland
area covering the Tarnogóra Hummock and the Katowice Upland and is in a transitional temperate
climate. This area is dominated by grasslands, meadows, and forests. Blackberry (mainly Rubus caesius
L., European dewberry), various species of goldenrod (Solidago spp.), and wood small-reed grass
(Calamagrostis epigejos) occur very frequently in this area.

Rubus spp. L., a genus of plant in the Rosaceae family commonly called bramble, is one of the
most important expansive species [28]. Blackberries are native to Asia, Europe, and North and South
America [29], and they often pose a threat to young forest crops and habitats protected under the
Natura 2000 program. They are typically shrubs (can be up to 3 meters high) with perennial roots,
biennial prickly stems, and edible fruits which are aggregates of drupelets [29]. Blackberries can be
found in all kinds of environments, including forests, shrubs, meadows, wastelands, and roadsides.
Vegetative reproduction and production of a large number of seeds that are spread by birds and
other animals allows them to quickly colonize new areas [30]. They bloom from May to September.
According to the latest data, there are 105 Rubus species in Poland alone [31]. Rubus spp. L. is linked to
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negative economic and environmental consequences (e.g., changes in the dominant type of vegetation,
soil depletion, or increased susceptibility to fires) [32]. The spectral characteristics of Rubus spp.
are very similar, which is why they were identified collectively in the paper without division into
individual species.Remote Sens. 2018, 10, x FOR PEER REVIEW 4 of 23 
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Another widespread, expansive species that degrades grassland and meadow communities is
Calamagrostis epigejos (L.) Roth, commonly referred to as wood small-reed [33]. It is a perennial grass
in the Poaceae family, which is native to the Eurasian area [5], and has spread to North America [34].
The plant has thick and rigid blades that can be up to 2 meters high and has complex inflorescences in
the form of a panicle. Wood small-reed propagates vegetatively, through numerous stolons, as well
as generatively, through seeds (i.e., kernels) [35]. It blooms from July to September, often forming
extensive single-species fields whose colors vary from green to brown to purple. Wood small-reed
grows in meadows, forests, urban areas, along railways, and on the roadsides. A large amount of reed
biomass is deposited in non-hay areas, and its lengthy decomposition time causes acidification of the
substrate and hinders development of other plants [36].
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Some of the most invasive plants that pose a huge threat to native species and biodiversity of entire
ecosystems are representatives of the goldenrod genus (Solidago spp. L.). They are perennials from the
Asteraceae family, imported from North America to Europe as decorative plants [37]. Goldenrod occurs
in the form of three invasive species: Solidago canadensis (Canadian goldenrod), Solidago gigantea (tall
goldenrod), and Solidago graminifolia (grass-leaved goldenrod) [38,39]. These plants have stiff sprouts
that can be up to 2 meters tall, ending in pyramidal panicle clusters, which are formed by flowers
clustered in heads [40]. They propagate vegetatively, thanks to underground rhizomes, and generatively
with the help of light seeds (achenes with pappus) that can be spread over considerable distances [41].
They quickly begin to dominate and often form dense single-species patches. They bloom from July to
October, forming characteristic yellow inflorescences. Goldenrods have a high tolerance for various
soil types, but they require exposure to full sun [42]. They grow in open habitats such as meadows,
wastelands, anthropogenic areas, and along roads and river banks [2].

2.2. Field Measurements

The field studies were conducted in the summer of 2017. Compact polygons (in the shape
of circles with a radius of 3 meters) of Rubus spp., Solidago spp., Calamagrostis epigejos, and other
background plants were located within the research area with the help of the Leica CS20 GNSS device
(Figure 2). The number of polygons was proportional to the prevalence of species in the research area
and amounted to 50 polygons for blackberry and wood small-reed, 60 polygons for goldenrod, and
100 polygons for background plants.
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Figure 2. Collection of reference plot locations—plot for Calamagrostis epigejos shown in above picture.

Then, the polygons were transferred to ArcMap 10.3, where photo interpretation techniques were
used to create an additional 30 reference polygons for other types of land cover (i.e., trees, buildings,
bare soil, and shaded areas). These additional classes were meant to indicate for the algorithm the
spectral properties of objects that occurred in the research area and constituted non-forest vegetation.
Finally, reference polygons were created for eight classes: Calamagrostis epigejos, Solidago spp., Rubus
spp., other plants, trees, bare soils, buildings, and shadows (Figure 1).

2.3. Airborne Hyperspectral HySpex Data

Aerial hyperspectral data were obtained by MGGP Aero Sp. z o.o. on 29 August 2017 using
sensors located on a Cessna 402B aircraft. A hyperspectral image with a 16-bit radiometric resolution
was recorded with two HySpex Visible and Near Infrared (VNIR-1800) scanners and a Shortwave
Infrared (SWIR-384) scanner. The specification of both sensors is provided in the table below (Table 1).
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Table 1. Main technical characteristics of HySpex scanners used in this work.

Parameters HySpex VNIR-1800 HySpex SWIR-384

Spectral range 416–995 nm 954–2510 nm
Number of spectral bands 182 (163 1) 288

Spectral sampling 3.26 nm 5.45 nm
Spatial resolution 0.5 m 1 m

Spatial pixels 2 1800 384
Field of View (FOV) across track 17–34◦ 16–32◦

Instantaneous Field of View (IFOV) 0.01–0.04◦ 0.04–0.08◦
1 A number of spectral bands were deleted due to overlapping spectral ranges between VNIR-1800 and SWIR-384 sensors.
2 a number of pixels per scan line.

The aerial hyperspectral images were prepared for further processing in accordance with the
diagram presented in the schema (Figure 3). The data obtained by hyperspectral sensors were
converted to radiance units with HySpex RAD software. Then, the hyperspectral image was subjected
to geometric correction, which employed the digital surface model in PARGE (PARametric GEocoding)
software (ReSe Applications LLC, Wil, Switzerland), and atmospheric correction was performed with
the MODTRAN5 model in ATCOR4 (ATmospheric CORrection) software (ReSe Applications LLC, Wil,
Switzerland). Nine flight lines were mosaicked and re-sampled to achieve a uniform spatial resolution
of 1 m. Next, the last 21 bands in the SWIR range were removed because of the high level of noise
caused by the sensor’s lower SNR (Signal to Noise Ratio) at the extreme ranges of the imaged spectrum,
which ultimately resulted in a 430-band image in the spectral range of 416.18–2396.44 nm.
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In order to reduce HySpex data dimensionality, Minimum Noise Fraction (MNF) transformation
was applied. Based on MNF bands, eigenvalues, and visual assessment of transformed bands, the first
30 MNF bands were selected for further processing. Finally, two data sets were prepared for species
classification: the first one contained 430 HySpex bands while the second one contained 30 MNF bands.
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2.4. Classification Process and Accuracy Assessment

One of our goals was to analyze the impact of pixel number in the training data sets on classification
accuracy; hence, we created training data sets with a set number of pixels per class. Using stratified
random sampling, 50% of all reference polygons were selected to create a training test data set, while
remaining polygons were used to create a validation data set.

The training test data set was used to create subsets (training data sets with a set number of
pixels per class), and all remaining samples ended up in the test data set that was used for preliminary
accuracy assessment. The validation data set was created to eliminate spatial autocorrelation with
the training test data set (randomly selected pixels were used in the training and validation sets).
This allowed to create a spatially independent and stable validation data set, which was used to assess
final results.

To investigate the influence of training data set size on achieved classification results, the training
test data set was sub-sampled to create training data sets that contained exactly 30, 50, 100, 200, and
300 pixels per class. These sub-sampled data sets will be used for classifier training. If a given class had
fewer total available samples than required, random sampling with replacement was used, otherwise
random sampling without replacement was employed. If all available pixels for given class were
selected for training purposes, a copy of training data for this class was used instead.

An iterative accuracy assessment was used in order to objectively compare achieved results.
This was a procedure consisting of the following steps repeated 100 times:

1. Sub-sample the training test data set in order to create a training data set with a set number of
samples per class;

2. Train SVM and RF classifiers;
3. Assess accuracy using test and validation data sets; and
4. Save trained classifier models and accuracy measures for further analysis.

Pixel classification was carried out on the basis of the Support Vector Machine and Random
Forest algorithms in R software. The first stage of the training process was to optimize the learning
parameters of these algorithms in order to obtain the best possible settings. This task was completed
on the training and test sets before the division. A radial basis function was chosen for the SVM
algorithm because of its proven efficiency [43] and smaller number of computational difficulties [44].
The learning parameters of the compared classification algorithms were subjected to a tuning process.
A gamma value of 0.1 and cost of 1000 was obtained for the SVM algorithm. In the case of the Random
Forest algorithm, on the basis of the out-of-bag (OOB) error analysis, the mtry parameter (the number
of features randomly sampled at each split) was set at 140 for classification on 430 hyperspectral
bands and at 13 for classification on the set of the first 30 MNF transformation bands. In both cases,
the number of random trees (ntree) amounted to 500.

In this work, we compared two classification algorithms (SVM and RF), two different data sets
(430 original hyperspectral bands, 430 HS, and 30 Minimum Noise Fraction bands, 30 MNF), and five
different sample sizes per class in the training data set (30, 50, 100, 200, and 300 pixels). Due to the
unavailability of the larger continuous areas of invasive plants on our study area, we have limited the
analysis to 300 pixels. All combinations of the above parameters were tested, resulting in 20 different
classification scenarios.

Accuracy of the performed classifier training was assessed with the set of test data and the data
spatially separated from the training and test set (i.e., on pixels of the validation data set), which was
constant for all scenarios. The algorithms were compared, and the best combination of image data set
and classifier was determined based on validation performance. The following accuracy parameters
were calculated on the basis of the error matrix:
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• Overall accuracy—the ratio of the total number of correctly classified pixels to the total number of
reference pixels [45];

• Cohen’s Kappa—the similarity of the analyzed classification compared to the random classification
(a Kappa value of 0 means full similarity while 1 means no similarity) [46];

• Producer’s Accuracy (PA)—the ratio of correctly classified pixels of a given class to all pixels in
the validation data set for this class [45];

• User’s Accuracy (UA)—the ratio of pixels correctly classified in a given class to all pixels classified
in this category [45]; and

• F1 score sensitivity, measured using harmonic mean of precision (P), positive predictive value,
and recall (R) as in Equation (1) [47,48]:

F = 2PR/(P+R) (1)

Afterwards, the best models for each classifier and data set were selected on the basis of
the mean F1 scores for all classes (based on the validation data), and the images were classified.
The significance of statistical differences between the accuracy of the models was checked using the
Mann–Whitney–Wilcoxon test [49] (significance level = 0.05). The Mann–Whitney–Wilcoxon test is well
suited for testing differences between non-normally distributed populations [26,50]. Distributions of
achieved accuracy measures for all classification scenarios were visualized using box plots. A detailed
explanation of boxes used in box plots is shown in Figure 4.
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Moreover, classifier training was performed on nine classes, each with an identical number of
training samples to reduce any effect of unbalanced training data. After classifier training, background
classes were considered as one class with relation to plant classes. Such steps allowed us to properly
assess classification quality (which classes are confused with which) and helped us achieve the most
accurate results. In our work we assumed that confusion between background classes was acceptable,
while confusion between plant species and background classes or other plant species would be a
concern that would need to be addressed and reported. When classifying plant species, it is important
to deliver a suitable and representative sample of pixels that characterize objects other than object of
the study. Such classes can be oftentimes referred to as background classes. Since our study aimed to
investigate the influence of training data set size, it would be insufficient to perform classification of
four classes, that is, three plant species and one class with background objects. This mainly is due
to difficulties in randomly sampling background classes in such a way that, for example, 30 pixels
will represent them all. In fact, such an approach would almost guarantee that pixels for background
classes covering a relatively small area would not be included in the training data set with a sufficient
number of samples, which in turn would destroy any credibility of such work. To address this issue
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when creating the training data set, each background class (shadows, trees, other plants, soils, and
buildings) had the same number of training samples, equal to the number of samples used for each
plant species class. This is to ensure our background classes had similar representation to the plant
species classes during classifier training.

3. Results

3.1. Statistical Analysis of Investigated Classification Scenarios

The mean F1 score was calculated for all classes on two sets: the test set and the validation set.
The test set was dependent on the training set—the pixels in these sets were drawn from the same
polygons, so the number of pixels in the test set decreased with an increasing number of pixels in the
training set (Table 2). The high accuracy level obtained for this set is, therefore, not surprising, nor can
it be used to compare the classifiers.

In contrast, the validation set had a fixed number of observations (4835 pixels) and was spatially
independent of the other data sets. Regardless of the classifier used, higher mean F1 scores for all classes
based on the validation set were obtained for classifications performed on 30 MNF transformation
bands (0.854–0.918) compared to that of the 430 hyperspectral data bands (0.760–0.853).

Table 2. Classifier training parameters and their average F1 scores.

Data Used
Algorithm

(Parameters)

Number of Pixels Mean for 100 Iterations

Training
Set per

Class/All

Testing
Set

Testing Set Validation Set (4835 pixels)

F1 for All
Classes

F1 for all
Classes

F1 for
3 Plant
Species

F1 for
Background

Classes
Kappa

430
hyperspectral

bands

RF
(mtry =140;
ntree = 500)

30/240 4612 0.847 0.784 0.789 0.856 0.759
50/400 4452 0.876 0.803 0.811 0.871 0.785

100/800 4052 0.905 0.823 0.831 0.866 0.808
200/1600 3252 0.931 0.843 0.851 0.869 0.832
300/2400 2452 0.935 0.853 0.859 0.869 0.842

SVM
(kernel = radial;

cost = 1000;
gamma = 0.1)

30/240 4612 0.843 0.760 0.803 0.807 0.737
50/400 4452 0.888 0.787 0.833 0.853 0.771

100/800 4052 0.935 0.817 0.867 0.820 0.808
200/1600 3252 0.964 0.840 0.893 0.827 0.833
300/2400 2452 0.972 0.852 0.907 0.826 0.847

30 MNF
bands

RF
(mtry = 13;
tree = 500)

30/240 4612 0.952 0.869 0.868 0.965 0.853
50/400 4452 0.974 0.893 0.890 0.952 0.888

100/800 4052 0.988 0.910 0.908 0.942 0.906
200/1600 3252 0.994 0.917 0.920 0.940 0.917
300/2400 2452 0.995 0.918 0.926 0.932 0.92

SVM
(kernel = radial;

cost = 1000;
gamma = 0.1)

30/240 4612 0.961 0.854 0.918 0.860 0.850
50/400 4452 0.980 0.871 0.933 0.850 0.874

100/800 4052 0.993 0.881 0.943 0.847 0.885
200/1600 3252 0.998 0.883 0.949 0.846 0.889
300/2400 2452 0.999 0.883 0.951 0.838 0.891

The accuracy level for both classifiers increased with the number of training pixels used for
classification (Figure 5). The distributions of the mean F1 score for all classes revealed that when the
number of training pixels increased, the interquartile range of the obtained accuracies decreased, so the
results obtained in 100 iterations were more stable. What is more, the use of a smaller number of
training pixels caused a greater decrease in the accuracy of classifications performed on the original
hyperspectral bands than in the case of classifications performed on the MNF transformation bands.
The most stable distributions and the highest F1 scores for all classes were obtained by the classifications
performed on a set of 30 MNF transformation bands and 300 training pixels (the median F1 for RF was
about 0.92, while the median F1 for SVM was about 0.88).
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Figure 5. Distributions of mean F1 scores for all classes calculated on the validation data set for SVM
and RF classifiers; both analyzed raster data sets and a different number of training pixels. Explanations
are presented in Figure 4.

In order to check if there are statistically significant differences in the F1 scores of all the
tested scenarios, the Mann–Whitney–Wilcoxon test was carried out at the significance level of 0.05
(Figure 6). There were statistically significant differences between most of the considered scenarios.
The SVM classifications on MNF bands using 200 and 300 pixels for classifier training were the only
exception. There were no statistically significant differences found for the RF classification performed
on 430 hyperspectral bands using 300 training pixels and the SVM classification on a very limited data
set consisting of 30 MNF bands and 30 training pixels.Remote Sens. 2018, 10, x FOR PEER REVIEW 11 of 23 
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Figure 6. Matrix of statistical significance between scenarios calculated on the basis of F1 accuracy for
all classes using the U Mann–Whitney–Wilcoxon test (red fields indicate significant differences between
populations at the 0.05 significance level). Names of scenarios contain an acronym of the classification
algorithm (RF or SVM), information about raster data (430 HS or 30 MNF), and size of the training data
set in pixels.
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An analysis of the distribution of F1 scores for individual classes of identified species (Figure 7)
makes it possible to draw conclusions about the best data sets and algorithms for classifying each class.Remote Sens. 2018, 10, x FOR PEER REVIEW 12 of 23 
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Figure 7. F1 score distribution for validation data set (a) 430 bands and (b) 30 MNF bands. The horizontal
axis of the charts indicates the number of pixels in the training set used to classify the given species
using RF or SVM classifiers. The vertical axis shows the accuracy of the scenarios.

The Solidago spp. class identified well with all classifiers and raster data sets (the F1 score was
above 0.95). The accuracy levels increased with an increasing number of training pixels, whereas the
differences in accuracy levels resulting from the change in the size of the training sets were small.
However, slightly higher mean F1 scores were recorded for the Random Forest classifier. Solidago are
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marked by their very characteristic yellow color and spectral properties, which distinguished them
from other classes in the imaging, and additionally tend to form large, uniform fields, so the almost
perfect identification of this species was not surprising.

In the case of the Rubus spp. class, the best identification results were obtained for the SVM
classification on 30 MNF bands using 300 training pixels (F1 = 0.97), but application of the same
classifier with the number of training pixels reduced to 100 resulted in a similar accuracy level. Good
results were also obtained for the RF classification on the same raster data set and 300 training pixels
(F1 = 0.95). The F1 scores obtained on 430 hyperspectral data bands were lower (F1 RF from 0.7 to 0.76,
and F1 SVM from 0.71 to 0.84).

Calamagrostis epigejos was a more difficult plant species to identify. However, high F1 scores of
around 0.91 were obtained using the SVM algorithm, 30 MNF transformation bands, and sets of 200
and 300 training pixels. A similar accuracy level was also obtained for the SVM classification and
300 training pixels on 430 hyperspectral bands (F1 = 0.9). The Random Forest classification resulted in
lower accuracy levels for this species, with F1 scores between 0.7 and 0.82 on the hyperspectral data
set, and between 0.76 and 0.83 on the MNF transformation bands. The accuracy increased with the
growth of the number of training pixels.

Considering the mean accuracy level for three species identified in the research area, it can
be concluded that the best spatial distribution was obtained using the SVM algorithm and 200 or
300 training pixels (F1 = 0.95). For the other classes distinguished in the image (i.e., plant background,
forests, buildings, bare soil, and shadows), the best F1 scores (from 0.93 to 0.96) were obtained
with the RF algorithm. However, in terms of accuracy for all the classes together, the best accuracy
(Kappa = 0.92, F1 for all classes = 0.92) was obtained for the RF classifier, 30 MNF bands, and sets of
200 and 300 training pixels.

To sum up, the SVM algorithm and the data set consisting of 30 MNF bands and 300 training
pixels proved to be the best for identifying the Calamagrostis and Rubus classes. In the case of Solidago
and background classes, better results were obtained with the Random Forest classifier. However,
goldenrod classified well (mean F1> 0.95) on both sets of raster data and with a different numbers of
training pixels. On the other hand, in the case of background classes, the best results were obtained for
30 MNF bands and 200 training pixels. This may indicate that the Random Forest method works better
for the classification of spectrally uniform, large forms of land use, which differ significantly from their
surroundings, while the SVM method is better for identifying plant species that are more spectrally
different and similar to the background classes.

3.2. Best Model Plant Species Identification Accuracy

A set of data consisting of 30 MNF bands and 300 training pixels was selected on the basis of
the analysis of statistical accuracy to develop images showing spatial distributions of the analyzed
species in the research area. Figure 8 presents distributions of the producer and user accuracies for
100 iterations of classifications performed on a selected set of data using both classifiers.

For the Rubus spp. class, the RF classifier yielded a lower median user’s accuracy than that of
SVM by three percentage points, while the differences in the producer’s accuracy levels between
the classifiers were small. Both the producer’s and user’s accuracies for Solidago spp. were very
high (close to 100%), a slight underestimation was detected only in the case of the SVM classification
(producer’s accuracy about 93%). In contrast, the Calamagrostis epigejos class achieved the lowest
median producer and user accuracies of all classes. The SVM classifier achieved higher producer and
user accuracy levels for C. epigejos (PA = 96%, UA = 87%) than the RF classifier (PA = 88%, UA = 78%).

The resulting images for both classification methods prepared for the best mean F1 scores for all
iteration classes are presented and compared below (Figure 9). The correctness of species identification
was also assessed on the basis of the confusion matrix (Tables 3 and 4).
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Table 3. Confusion matrix of the SVM classification with 30-MNF bands and the 300 pixel training set
(Kappa coefficient = 0.89, OA= 91.21%).

Class C. epigejos Rubus spp. Solidago spp. Shadows Trees Other Plants Soils Buildings Total UA (%)

C. epigejos 454 0 0 0 0 21 66 0 541 83.92
Rubus spp. 0 406 0 0 0 0 0 0 406 100.00

Solidago spp. 0 0 781 0 0 0 0 0 781 100.00
Shadows 0 0 0 415 0 0 0 5 420 98.81

Trees 0 6 0 0 344 2 0 0 352 97.73
Other plants 18 14 0 0 11 1375 44 0 1462 94.05

Soils 3 3 56 0 12 0 309 87 470 65.74
Buildings 9 2 3 3 60 0 0 326 403 80.89

Total 484 431 840 418 427 1398 419 418 4835
PA (%) 93.80 94.20 92.98 99.28 80.56 98.35 73.75 77.99

Table 4. Confusion matrix of the RF classification with 30 MNF bands and the 300 pixel training set
(Kappa coefficient = 0.92, OA = 93.23%.).

Class C. epigejos Rubus spp. Solidago spp. Shadows Trees Other Plants Soils Buildings Total UA (%)

C. epigejos 437 0 0 0 0 33 84 0 554 78.88
Rubus spp. 0 394 0 0 2 0 23 0 419 94.03

Solidago spp. 0 0 833 0 0 0 0 0 833 100.00
Shadows 0 0 0 418 0 0 0 10 428 97.66

Trees 0 2 1 0 414 5 0 0 422 98.10
Other plants 23 35 6 0 11 1360 31 27 1493 91.09

Soils 24 0 0 0 0 0 278 5 307 90.55
Buildings 0 0 0 0 0 0 3 376 379 99.21

Total 484 431 840 418 427 1398 419 418 4835
PA (%) 90.29 91.42 99.17 100.00 96.96 97.28 66.35 89.95

Rubus spp. was identified near forest borders and buildings, and its spatial distribution for the
SVM method reflected reality more accurately than the result of using the RF method (Figure 9).
There was a slight overestimation of this species in the case of the RF method, especially in places
with trees and bushes near buildings (Table 4). The Calamagrostis epigejos and Solidago spp. classes can
be found in the open spaces of non-agricultural meadows. The spatial distribution of Solidago in the
image resulting from the use of the RF method reflected reality almost perfectly, and in the case of the
SVM method, the underestimation of this species applied mainly to uncut meadows in the south of the
area. On the other hand, the Calamagrostis epigejos class was slightly overestimated in the results of
both classifications, especially in places with dry or mowed meadows. The SVM classification image
presents the spatial distribution of this species in the research area with greater precision (Table 3),
and its estimations were more accurate, especially in places with bare soils, which have a similar
spectral response.

4. Discussion

The effects of the raster data set and the number of training pixels on the classification accuracy
of three invasive or expansive plant species were tested in this paper using the Random Forest and
Support Vector Machine methods. The method we used to divide the patterns into three sets—the
training set, the test set, and the spatially independent validation set—allows for reliable assessment
of the classification accuracy. Balanced training sets of 30, 50, 100, 200, and 300 pixels per class were
tested in this paper. The test set was strongly spatially correlated with the training set, which led to
inflated accuracy results; therefore, it was used only for the initial accuracy assessment. However,
surprisingly accurate measures (PA, UA, F1) calculated on the test data set increased, despite the
decrease in the number of patterns in the test set. This highlights the importance of using spatially
separate data set for proper accuracy assessments. A constant set of validation pixels that remained
both unchanged between iterations and was spatially separate from training data allowed us to reliably
assess the accuracy of classification. Spatial separation of the data sets used to assess classification
results and train classifiers allowed us to avoid artificial inflation due to spatial correlation between
pixels belonging to the same reference polygon. Such a method allows for more objective comparisons
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of classification algorithms and data sets, while delivering more trustworthy accuracy metrics. The very
act of creating training and test or validation data sets introduces human or random bias into any
comparison. In order to decrease such bias of our method, training and validation data sets were
created multiple times. Such approaches were already used multiple times in the past [24,51,52] and
are proven to be more reliable when it comes to classifier comparison. The accuracy of any machine
learning procedure is directly related to the quality of samples used for training and validation of a
given classifier. In order to decrease the impact of human or random bias in creating the data sets,
training and validation data sets were created multiple times. Repeated sampling of pixels for the
reference sets and assessing classification accuracy minimized the impact of pixel selection for training
on the classification accuracy and allowed an objective assessment of the impact of the tested data sets
on the effectiveness of species identification [26,52,53].

The analyses showed that, regardless of the selected classifier, a higher F1 score for all classes was
obtained for classifications performed on 30 MNF transformation bands (0.854–0.918) than those on
430 hyperspectral data bands (0.760–0.853). The reduction in the number of input layers to several dozen
of the most informative bands is recommended for the Random Forest and Support Vector Machine
algorithms, as it allows one to obtain higher accuracy levels and significantly shortens the classification
time [51,54–56]. During the classification of herbaceous vegetation in the Hortobágy National Park
(Eastern Hungary), a higher overall accuracy level was obtained for nine MNF transformation
bands (SVM = 82.06%, RF = 79.14%) than for 128 original bands of AISA Eagle (SVM = 72.85%,
RF = 72.89%) [27]. Similarly, when identifying tree species based on AISA Eagle data using the SVM
algorithm, classification of the MNF-transformed data resulted in an increase of about 30% in the
classification agreement compared to the classification performed on the original bands [57]. The first
30 MNF transformation bands were used, for example, to identify four invasive or expansive species in
central Poland, obtaining high F1 scores of identification: about 0.80 for Filipendula ulmaria and Molinia
caerulea, about 0.79 for Phragmites australis, and about 0.73 for Solidago gigantean [58].

The increase in the number of pixels used to train the F1 score classification for the three species
analyzed in this article resulted in an increase of these values, but also a simultaneous decrease in
their distribution width, which indicates stabilization of the results. Our observations indicate that
the preferred number of training patterns is at least 300 pixels per class, regardless of the classifier
used. In the case of 30 MNF and the SVM algorithm, 300 was the optimal value because there were
no statistically significant differences between training data sets containing 200 and 300 pixels per
class (Figure 6). Due to the unavailability of the larger continuous areas of invasive plants on our
research area, we have limited the analysis to 300 pixels, and therefore we were unable to assess
impact of larger number of pixels per class in training data set on achieved classification results.
A similar trend was noticed by testing different sets of training pixels (from 10 to 30 pixels) and raster
data for the classification of 20 herbaceous species in Eastern Hungary by means of the SVM and
RF algorithms [27]. Moreover, the highest overall accuracy (SVM: 82.06%; RF: 79.14%) was obtained
using the largest of the tested sets of patterns (30 training pixels). The overall classification accuracy
decreased with a decreasing number of training pixels (lower by about 2 percentage points for the
set of 10 training pixels).

After a detailed analysis, it can be concluded that the Support Vector Machine algorithm was more
resistant to smaller numbers of training patterns and allowed to obtain a higher mean F1 score for three
plant species (F1 SVM = 0.95) compared to the Random Forest algorithm (F1 RF = 0.92) on the best
data set (30 MNF, 300 training pixels). Lower mean F1 scores for background classes (F1 SVM = 0.82,
F1 RF = 0.91) were noted in the SVM result image, but classification errors occurred mainly between
different background classes and not between the background and plant species.

Visual interpretation of the result images and statistical accuracy analyses indicated that both
classifiers detected the plant species of this study in the research area with a very high level of accuracy.
Correct identification of species was also confirmed by additional field verifications carried out after
the analyses. High classification accuracy levels obtained for the analyzed scenarios may also be due to
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the optimal time in which the imaging was obtained [26,59]. The analyzed species are in their flowering
and fruiting phases at the turn of August and September, which makes them more distinctive thanks
to their characteristic colors of inflorescences, fruits, and leaves (Table 5).

The classification accuracy of the Solidago spp. species was very high (F1> 0.95) for both classifiers
and the raster data. This is not surprising because this plant’s yellow inflorescences form homogeneous
fields, which are easy to distinguish from other objects in images, and it would probably be even
possible to use photointerpretation for this task. The Solidago gigantea species was identified in central
Poland using 30 MNF transformation bands (a mosaic of hyperspectral data from the same HySpex
sensors) and the Random Forest method; a lower F1 score for the species, about 0.73, and a slightly
higher F1 score for the background, about 0.94, were obtained [58]. Solidago spp. has also been classified
with high accuracy (F1 about 0.83, UA = 0.71, PA = 1.0) on the Hungarian–Slovak cross-border site
using 15 MNF bands (a mosaic of hyperspectral data from AISA Eagle II) and the maximum likelihood
method [61]. High identification accuracy of one of the goldenrod species, Solidago altissima (F1 score
of about 0.86, UA = 0.94, PA = 0.80), was also obtained during the research conducted in Watarase
wetlands in Japan with the help of only 3 MNF transformation bands (a mosaic of hyperspectral data
from AISA Eagle) and generalized linear models [19].

Table 5. Comparison of acquired results with references.

Plant Species Sensor Raster Data Algorithm UA (%) PA (%) F1 (%) Reference

Calamagrostis epigejos
HySpex 430 HS

RF 77 87 82
Present
paper

SVM 89 92 90

HySpex 30 MNF
RF 79 90 83

SVM 84 94 91

Calamagrostis epigejos HySpex
30 MNF +
42 discrete

LiDAR data
RF 88 63 73 [26]

Calamagrostis villosa APEX 30 MNF SVM 51 68 [60]

Solidago spp.
HySpex 430 HS

RF 99 99 99
Present
paper

SVM 97 98 97

HySpex 30 MNF
RF 100 99 99

SVM 100 93 96
Solidago gigantea HySpex 30 MNF RF 73 [58]

Solidago spp. AISA
Eagle

15 MNF Maximum
Likelihood 71 100 [61]

129 HS
Spectral
Angle

Mapper
61 69

Solidago altissima AISA
Eagle 3 MNF

Generalized
Linear
Models

94 80 [19]

Rubus spp. HySpex
430 HS

RF 70 83 76
Present
paper

SVM 79 90 84

30 MNF
RF 94 92 95

SVM 100 94 97

Rubus fruticosus sp. agg. HyMap

20 HS
MTMF 81 92

[32]

MF 61 53
SAM 71 58

128 HS
MTMF 90 77

MF 49 35
SAM 75 45

Rubus spp. was classified in the research area with F1 scores ranging from 0.70 to 0.97, with
the highest accuracy obtained for the Support Vector Machine method and 30 MNF transformation
bands. High accuracy (OA = 87.8% and Kappa = 0.75) was also obtained during the detection of Rubus
armeniacus in open areas in Surrey, BC, Canada, by means of a combination of CASI hyperspectral
imagery with LiDAR data and the Random Forest algorithm [62]. Similarly, when identifying Rubus
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fruticosus sp. agg. in the Kosciuszko National Park in Australia, a F1 score of about 0.83 was obtained
for blackberry using 23 bands of a mosaic of hyperspectral data from HyMap after MNF transformation
and the Mixture-Tuned Matched Filter (MTMF) algorithm [32]. On the other hand, research on the
identification of Rubus cuneifolius species in the eastern parts of South Africa using the SVM algorithm
and multispectral data led to results that were much lower in accuracy: the F1 scores for the Landsat
data varied from 0.33 to 0.48, while the scores for the Sentinel-2 data were between 0.34 and 0.58, which
confirms that hyperspectral data allow for much more accurate detection of blackberries [63].

Identification of Calamagrostis epigejos resulted in F1 scores between 0.70 and 0.91, depending
on the algorithm and data set used. As before, the best data set for wood small-reed classification
turned out to be the SVM algorithm and MNF-transformed bands (F1 scores from 0.86 to 0.91), while
the RF method resulted in F1 scores between 0.76 and 0.83, depending on the number of pixels used
for training. By carrying out C. epigejos classifications at various growth stages, it was confirmed
that flowering time (around September) facilitated correct identification of wood small-reed [26].
In addition, the use of the Random Forest method and MNF transformation bands on the HySpex
hyperspectral data led to an F1 score of 0.72, which is an accuracy level close to the one obtained
for wood small-reed in our research. Lower accuracy was obtained (producer accuracy 68%, and
user accuracy 51%) in the classification of plant communities representing the Calamagrostis villosa
species when the APEX data and the SVM method were used [60]. However, an average PA of about
82% and UA of about 75% were obtained for wood small-reed grasses during the classification of
high-mountain vegetation communities using 40 MNF transformation bands of the DAIS 7915 data
and neural networks [64]. This was similar to the results obtained in our work on 30 MNF bands with
the RF algorithm (PA of about 88%, UA of about 78%) and was lower than the results for SVM (PA of
about 96%, UA of about 87%).

5. Conclusions

The above-presented research concerning identification of three species of invasive or expansive
plants using the Random Forest and Support Vector Machine classification methods, as well as various
sets of input data, has led to the following conclusions:

• The accuracy assessment method presented in the paper allows us to confirm that all analyzed
species can be identified in heterogenous habitats (achieved classification results F1 oscillated
around 0.90). The species created a unique set of spectral properties, which are recognizable
by the SVM and RF classifiers, and separating training and validation sets at the level of the
reference polygons, and not at the level of individual pixels, is justified. This allows one to
avoid overestimating the accuracy of the results due to spatial correlation of pixels from the same
reference polygon. We have shown a clear need to divide classes into training and validation at
the polygon level in order to minimize spatial correlation between samples and in order to achieve
unbiased and accurate classification metrics. A spatially separate and unchanging validation set
can be used to improve the quality of the obtained accuracy scores and compare the results more
objectively. Unfortunately, this type of approach makes it more difficult to use iterative methods
of assessing accuracy or significantly reduces the number of observations in a data set that can be
used for classifier training. What is more, the principles of a constant and unchanging validation
set are not optimal, which may negatively affect the quality of the resulting post-classification
images. A set of 30 MNF bands allows for more accurate identification of the analyzed invasive
and expansive plant species than that of the 430 original spectral bands of the HySpex image.

• Increase of number of pixels per class in training data set has a greater effect on achieved accuracy
measures in the case of 430 spectral bands data set (difference in medians between 30 and 300 pixel
data sets around 8 percentage points (p.p.) in the case of RF and 9 p.p. in the case of SVM
algorithm) then in the case of 30 MNF bands data set (median difference between 30 and 300 pixel
data set: 5 p. p. for RF and 3 p.p for SVM, Figure 7).
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• Three hundred pixels per class is the preferred number of samples in the training set for
classification of the analyzed plant species with the help of the SVM and RF methods. Fewer
pixels result in a significant decrease in classification accuracy and less stable results. In our
case, we managed to find the optimal number of pixels in training data sets per class only in the
case of the SVM classifier applied to MNF data. Figure 6 shows that there was no significant
statistical difference between tests performed on MNF bands with 200 and 300 pixel samples per
class. Hence, 200 pixels per class in the training data set for 30 MNF bands and the SVM classifier
is optimal.

• Both the Support Vector Machine method and the Random Forest method allowed us to obtain very
accurate images of the distribution of analyzed species in the research area. However, the SVM
classifier worked better for the classification of blackberry and wood small-reed (i.e., for classes
that are not uniform and do not differ spectrally from their surroundings). On the other hand, the
Random Forest algorithm allows one to obtain a higher accuracy for homogeneous classes that
stand out spectrally (i.e., goldenrod and background classes). Still, the SVM image was found to be
more reliable, despite its relatively lower accuracy for the background classes. Most classification
errors occurred between background classes rather than individual species.
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