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Abstract: The assessment of changes in forest coverage is crucial for managing protected forest areas,
particularly in the face of climate change. This study monitored forest cover dynamics in a 6535 ha
mountain area located in north-west Romania as part of the Apuseni Natural Park from 2003 to
2019. Two approaches were used: vectorization from orthophotos and Google Earth images (in 2003,
2005, 2009, 2012, 2014, 2016, 2017, and 2019) and satellite imagery (Landsat 5 TM, 7 ETM, and 8 OLI)
pre-processed to Surface Reflectance (SR) format from the same years. We employed four standard
classifiers: Support Vector Machine (SVM), Random Forest (RF), Maximum Likelihood Classification
(MLC), Spectral Angle Mapper (SAM), and three combined methods: Linear Spectral Unmixing (LSU)
with Natural Breaks (NB), Otsu Method (OM) and SVM, to extract and classify forest areas. Our
study had two objectives: (1) to accurately assess changes in forest cover over a 17-year period and
(2) to determine the most efficient methods for extracting and classifying forest areas. We validated
the results using performance metrics that quantify both thematic and spatial accuracy. Our results
indicate a 9% loss of forest cover in the study area, representing 577 ha with an average decrease ratio
of 33.9 ha/year−1. Of all the methods used, SVM produced the best results (with an average score of
88% for Overall Quality (OQ)), followed by RF (with a mean value of 86% for OQ).

Keywords: forest; GIS; remote sensing; support vector machine; random forest; linear spectral
unmixing; maximum likelihood classification; spectral angle mapper classification

1. Introduction

The importance of temperate forest ecosystems in the carbon cycle, as well as their aes-
thetic, social, and anti-erosion, or hydrological control functions, are well-established [1–3].
However, the long-term effects of climate change on these ecosystems, which have already
begun to affect their functionality in various ways [4,5], remain poorly understood. The
observed and predicted increases in temperature in temperate areas of Central and Eastern
Europe since 1950 [6] have led to changes in the phenology of temperate forests, with an
extension in the period of growth being positively appreciated for biomass production
and carbon sequestration rates based on several studies [4,5,7,8]. However, the increase
in periods with extreme temperatures, droughts [9], and heavy precipitation events has
also led to an increase in natural disturbances specific to European temperate forests, such
as windthrow, bark beetle infestation (Ips typographus (L.)), and root rot (Heterobasidium
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annosum, e.g.) [10]. Senf and Seidl [11] reported that of the 227 million hectares of forests
in Europe [12], 17% were disturbed between 1986 and 2016 due to natural and/or anthro-
pogenic causes. Similarly, Forzieri et al. [13] quantified the vulnerability of European forests
to fires, windthrows, and insect outbreaks and estimated that 33.4 billion tonnes of forest
biomass could be affected by these disturbances. The results of Wang et al.’s [3] analysis of
the effects of climate change, CO2 increase in the atmosphere, and nitrogen deposition on
aboveground net primary production in a temperate forest suggest that the total negative
effect induced by climate change will not be fully compensated by the total positive effect.

Remote sensing and GIS (geographic information system) techniques are widely used
in the scientific community to monitor and assess forest ecosystems quantitatively and
qualitatively [14,15]. These efforts include studying the spatial extension and alterations
of forest vegetation at global, regional, and local levels, with clear implications for bio-
diversity decline [16,17]. In recent decades, research in this area has diversified from
identifying and extracting forest vegetation classes [18–23] or tree species [24–29] to ana-
lyzing the spatial-temporal evolution of forested areas based on various ranges of satellite
images [30–42]. Many studies focus on comparative analyses of methods for extracting,
classifying, and quantifying vegetation, including forests, and some combined this with
time series imagery.

Huang et al. [43] tested Support Vector Machines (SVM), Maximum Likelihood Classi-
fication (MLC), Neural Network (ANN), and Decision Tree (DT) algorithms on a modified
Landsat TM (1985) image from eastern Maryland, USA, with six land coverage classes
(closed forest, open forest, woodland, non-forest land, land-water mix, and water). They
evaluated the classifiers’ performance based on thematic accuracy and highlighted SVM’s
results, depending on the kernel type used. Shafri et al. [44] tested MLC, Spectral Angle
Mapper (SAM), ANN, and DT to map Malaysian tropical forests using hyperspectral data
and highlighted MLC’s superior performance in conditions of maximum biotic heterogene-
ity. Otukei and Blaschke [45] used DT, SVM, and MLC to assess land cover changes using
two Landsat scenes (5 TM from 1986 and 7 ETM+ from 2001) in eastern Uganda and found
that all methods were effective with acceptable accuracy, with slight advantage for DT.

Comparative research in this field includes studying the behavior of different combi-
nations of entry data used in classifications, the behavior of classifiers with varying training
sample sizes, and the performance of combinations between classification methods. For ex-
ample, Forkuor et al. [46] used SVM, Random Forest (RF), and Stochastic Gradient Boosting
(SGB) to test different combinations of Landsat 8 OLI and Sentinel-2 images for land-use
and land-cover mapping in Burkina Faso. They found that using the two Red Edge bands
from Sentinel-2 improved land-use land-cover (LULC) mapping and SGB outperformed
SVM and RF in overall performance. Thanh Noi and Kappas [47] compared RF, k-Nearest
Neighbor (kNN), and SVM for six Land Use Land Cover (LULC) types, including forest,
using 14 different training sample sizes in the Red River Delta of Vietnam based on a
Sentinel-2 image. Their study emphasized the need to adjust parameters for the compared
classifiers and indicated SVM’s lower sensitivity to training sample sizes. Adugna et al. [48]
tested SVM and RF for regional land cover mapping in East Africa based on FY-3C scenes
with a resolution of 1 km. Nguyen et al. [49] used 446 Sentinel-2 images from 2017 and
2018 to map LULC, including tropical forest classes, in Dak Nong, Vietnam, using four
classification methods (Multinomial Logistic Regression—MLR, Improved kNN, RF, and
SVM) tested for four time sequences (wet season, dry season, the entire year 2017, and a
combination of wet-dry seasons). Ruggeri et al. [50] combined Linear Spectral Unmixing
(LSU) with Object-Based Image Analysis (OBIA) and Iterative Self-Organizing Data Analy-
sis Technique (ISODATA) with OBIA for land cover mapping in high mountain areas in
Colombia, using a classification scheme adapted from CORINE Land Cover (CLC), which
includes forest classes. Dabija et al. [51] used Random Forests and SVM on Sentinel-2 and
Landsat 8 OLI satellite images covering three regions from three European Union countries
to test CLC classes, including forest classes such as broad-leaved and coniferous forests.
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All of the studies presented aim to identify the classification methods with the highest
efficiency for the given entry data and intended purposes. Our study seeks to evaluate the
dynamics of forest cover in a 6535 ha mountainous area located in NW Romania over a
17-year period (2003–2019) using GIS techniques, as well as extraction and classification
methods for forest vegetation on multispectral scenes. Specifically, we employed LSU
combined with Natural Breaks (NB), Otsu Method (OM), and SVM, SAM, SVM, RF, and
MLC, respectively. Our primary objectives were to determine the exact loss/growth of
forest cover in the area during the given time period and to validate the best method
or methods for extracting/classifying forest cover from satellite data, using GIS data as
the reference basis. In other words, we aimed to identify which methods, applied to
medium-resolution satellite scenes, produced results closer to the GIS data obtained from
high-resolution images. To assess the accuracy of the results, we used two types of entry
data: continuous data and discrete data [52].

2. Materials and Methods
2.1. Study Area

The study area, Padis, , is located in the north of the Bihor massif in the Apuseni
Mountains, which are part of the Romanian Western Carpathians (Figure 1). This area
encompasses over 90% of one of the most complex and spectacular karst morphosystems
in Romania, including the closed basin Padis, -Cetăt,ile Ponorului, an endorheic area of
36 km2 with underground drainage that resembles a karst plateau situated at an altitude of
1250–1280 m [53], the Somes, ului Cald-Cetatea Rădesei gorge sector, and Galbenei gorges.
Padis, falls administratively under Bihor County, and ecological management is provided
by the Apuseni Natural Park, a protected area of national interest of category V IUCN,
established through Ministerial Order no. 7/1990 and reconfirmed by Law no. 5/2000.

Figure 1. Location of the study area: (a) in Romania; (b) in the Apuseni Mountains.

The dominant vegetation in the area consists of coniferous forests (Norway spruce—
Picea abies), broad-leaved forests (European beech—Fagus silvatica), and, to some extent,
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mixed forests (beech and spruce) [53,54]. Vegetation inversions occur frequently due to
microclimatic conditions, with spruce growing in deep karst depressions. Grasslands
(meadows) composed mainly of grass species also occupy significant areas within the
karst plateaus. In some places, intensive grazing and woodland exploitation have led to
a decrease in the density of herbaceous vegetation cover, resulting in decay. The Forest
CLC classes (2000–2018) [55] that cover the area include coniferous forest, broad-leaved
forest, and mixed forest. As a protected area, the anthropogenic activities that put pressure
on these natural components are related to wood exploitation, animal husbandry, and
intensive tourism during the spring-summer season.

2.2. Data Acquisition and Pre-Processing

For this study, we used two types of data, which we will generically refer to as Data
for GIS processing and Remote Sensing Data (Table 1). The selection of these data was
based on several criteria, such as cloud cover and the period of the year with the most
intense physiological activity of the forest, but the primary consideration was their temporal
correspondence (year). We identified eight data sets covering a 17-year period.

Table 1. The data sets used in the study.

Year Data for GIS Processing Remote Sensing Data

2003 Google Earth Landsat 7 ETM—27 May 2003
2005 Orthophoto Landsat 5 TM—18 July 2005
2009 Orthophoto Landsat 5 TM—26 May 2009
2011 Google Earth 2011, Orthophoto 2012 Landsat 5 TM—12 July 2011
2014 Google Earth Landsat 8 OLI—4 July 2014
2016 Orthophoto Landsat 8 OLI—26 August 2016
2017 Google Earth Landsat 8 OLI—14 September 2017
2019 Google Earth Landsat 8 OLI—19 August 2019

The first type of data comprised orthophotos with a 0.5 m resolution from the National
Agency for Cadastre and Land Registration (ANCPI) and Google Earth images (captured
with the Google Earth Pro application) which were used for digitizing forest polygons.
Prior to use, all Google Earth data underwent an image-to-image registration procedure [56]
based on the orthophoto from 2012 with the highest location precision (20 cm). The scale at
which they were taken from the application is 1: 2000. For 2011, the Google Earth image
was supplemented in the southern part with the 2012 orthophoto.

The Remote Sensing Data used in this study were the multispectral images from
Landsat 5 TM, 7 ETM, and 8 OLI obtained from the United States Geological Survey
(USGS) [57] as Level 1 Products and geometrically calibrated by the satellite data providers.
We mention that the Landsat 7 ETM scene does not have any data gaps, with it being
prior to 31 May 2003, when the Scan Line Corrector (SLC) failed. All data underwent
standard pre-processing operations in ENVI 5.3, including spatial subset, radiometric
calibration for the FLAASH module, and atmospheric correction. Radiometric calibration
for the FLAASH module involved the transfer of data from digital number (DN) format to
radiation values with a scale factor of 0.1. For the conversion of radiation values into Top
of Atmosphere Reflectance (ToA), we used the Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes (FLAASH) with a single scale factor of 1 for all bands, as well as the
mid-Latitude Summer Atmospheric Model, Tropospheric Aerosol Model, and Kaufman-
Tanre Aerosol Retrieval.

To reduce the shading effect on ToA and transition to Surface Reflectance (SR), we
used the Cosine Correction Method [58] in SAGA GIS, with a Digital Elevation Model
(DEM) with a 5 m resolution generated by ANCPI in the Laki2 project [59] from LiDAR
data.
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2.3. Methods

Figures 2 and 3 summarize the workflow for the methods used in this study. To
obtain the forested area from orthophotos and Google Earth images, which we refer
to as Forest_GIS (FGIS) in this study, we vectorized in ArcGIS 8.1 the land cover/use
classes (forest, pasture, bare rock, road, and built area) in the series of eight images used.
Subsequently, we extracted the vectorial layers related to the forest using a specific tool
(“Select”). We assumed a linear error of 1 m among the GIS data and 4 m between these
and the ones from the satellite scenes, respectively. After the overlay operations, errors
ranging from 16 ha to 18 ha resulted from the shifting to a unique system of data projection
(WGS_1984_UTM_Zone_34N), in addition to handling errors.
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For the extraction of forest cover from SR, we used four standard classifiers (SAM,
MLC, SVM, RF) and LSU.

Linear Spectral Unmixing (LSU) and Spectral Angle Mapper (SAM) are physics-based
methods that share a procedural approach to some extent. They both rely on the extraction
of endmembers, which correspond to the spectral response of material components that
make up the pixels in an image [60]. However, the mathematical models used for extracting
information from these spectral signatures differ between the two methods. LSU is a
standard technique for processing multispectral and hyperspectral scenes, developed by
Adams et al. [61]. It allows for the extraction of material component fractions (abundances)
at the pixel level, viewed as endmembers. The model assumes that the spectral signatures
from each pixel level can be expressed as a linear combination of endmembers balanced
by their abundance [62]. SAM is a classification method developed by Kruse et al. [63]
that determines the spectral similarity between reference spectra (spectral signatures of
components viewed as endmembers) and the spectral response at the pixel level. The
model considers only the angular difference expressed in radians between two compared
spectra, treated as vectors in a space with n dimensions (given by the number of spectral
bands), rather than the length of the spectral vectors. As a result, it is expected to be less
sensitive to alterations in lighting conditions [64,65].

For both methods, we used the same set of endmembers, one for each year, identified
at the pixel level, and extracted the spectral signatures directly from the reflectance of the
year in question using the Pixel Purity Index algorithm [66,67]. We combined this with a
supervised assessment using orthophotos, Google Earth images, and fieldwork.

Each set of spectra in our study comprises two spectral signatures for the forest, two
for the grassland, one for the road and built areas (due to resolution limitations), and
sequentially, one for bare rock (not for all years). From 2009 onwards, we added another
spectral signature for recently clear-cut land. Field observations showed that the two spec-
tral signatures for the forest are primarily explained by the dominant species (coniferous
forest and broad-leaved forest) and the different lighting/exposure of forest areas. For
grassland, we distinguished between normal grassy surfaces and nearly degraded ones
based on the continuity of the grassy vegetal cover.

In the scientific literature, there are several procedures for interpreting and analyzing
fractions with forest vegetation or only with vegetation [68–74]. We selected two procedures
based on image segmentation according to threshold values (NB and OM) and one that
involves the use of a classifier (SVM).

In all three procedures, we worked with rasters resulting from the sum of fractions
with forest vegetation from each LSU (for each year) using the Band Math tool in ENVI.
Mathematically, this procedure is correct because if the LSU processing is done correctly,
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the overall sum of fractions at the pixel level cannot exceed 1 (the values are between 0 and
1 because we used the “unit sum constraint” conditioning).

NB, also known as Jenks Natural Breaks Method, is widely used in GIS software [75]
and remote sensing studies [76–78]. We used NB to obtain an initial separation of rasters
into two classes, after which we analyzed the threshold values (break values) and noticed a
small degree of variation between 0.56–0.64 (with five out of seven values close to 0.6). To
homogenize the procedure, we chose the threshold value of 0.6 to separate the two classes.
In other words, pixels with a proportion of trees exceeding or equal to 60% were classified
as forest. We reclassified each raster to transform it into an integer format and then into
a vector layer from which we extracted the forest polygons forming FUNMIX_NB for the
forthcoming analysis.

OM is a non-parametric and unsupervised method of automatic threshold selection
for image segmentation [79], widely described in the literature [80,81] and commonly used
in remote sensing [82–84]. We implemented it as Binary Thresholding in ArcGIS Pro [85] to
separate forest/non-forest classes on rasters with added-up forest abundances.

The use of a classifier on LSU derivatives is a frequent procedure [66,69,86] for estab-
lishing LULC or resolving some problems of classification/ambiguity at the pixel level [87].
We chose SVM, and the details of this method are presented below. The forest polygons
resulting from the conversion of new rasters derived through LSU with OM and LSU with
SVM, respectively, form the vector layers called FUNMIX_OM and FUNMIX_SVM in this study.

Regarding the processing of rasters resulting from SAM, we performed two Post Clas-
sification operations on each of them: Combine Classes for compatibility and comparison
with cu FGIS and Majority Analysis for spatial homogenization of the classes. Further-
more, we exported the SAM rasters in ArcGIS, converted them into vectorial formats, and
extracted forest polygons, which we refer to as Forest_SAM (FSAM) in this study.

Support Vector Machine (SVM) and Random Forest (RF) are two supervised classi-
fication methods, non-parametric, from the Machine Learning family, requiring training
samples acquired from the field or images with excellent resolution. Although similar
in terms of entry data requirements, SVM and RF differ fundamentally in terms of the
mathematical logic of class separation. SVM is based on the optimal margin method for
separable data, identifying a hyper-plane that separates the data, and the kernel method
for tracking them with a non-linear transformation to a higher dimensional space [88,89].
RF is based on plotting decision trees by using the Classification and Regression Trees
Algorithm (CART), decision trees that make independent predictions by training on ran-
domly extracted subsets from the entry data, and the final prediction is a result of combined
individual predictions. [90,91]. SVM is based on the principle of statistical learning theory,
conceptualized by Vapnik [92], and probably at present, alongside RF, is one of the most
used methods of classification of multi and hyperspectral data [93,94] because it can be
used with good results even when the territorial complexity is higher, and the information
providing a consistent training data is lower. We used SVM with the Radial Basis Func-
tion kernel type, and for RF, we selected 150 decision trees, bearing in mind the actual
recommendations [95].

Maximum Likelihood Classification (MLC) is a parametric classifier that uses the
Bayesian Decision Rule to calculate the probability of an element being a member of each
n class [96,97], and that requires, much like SVM and RF, training samples as entry data,
alongside multispectral images.

The training data set for each year was extracted using orthophotos and Google Earth
images (Table 2), representing approximately 27% of the 72,600 pixels covering the study
area. The same pixels were used for SVM, RF, and MLC for comparison purposes, and the
LULC classes were kept the same as for SAM and LSU, except for the clear-cut surfaces,
which were integrated with pastures.
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Table 2. Number of pixels for training data sets used in SVM, RF, and MLC.

Year Coniferous
Forest Broad-Leaved Forest Pasture

Pasture with
Sparse

Vegetation
Bare Rock Road and

Build
Total Number of

Pixels

2003 12306 3012 2673 548 21 27 18587
2005 14696 4509 2951 387 21 23 22587
2009 13750 3943 2827 399 21 23 20963
2011 12560 3092 2870 660 21 27 19230
2014 12562 3084 2883 663 21 27 19240
2016 12306 2947 2748 1035 21 27 19084
2017 12303 2940 2742 1035 21 27 19068
2019 11923 2883 2080 1120 21 24 18051

The SVM, RF, and MLC rasters underwent the same post-classification operations
as those from SAM, and the resulting vector layers with forest were named Forest_SVM
(FSVM), Forest_RF (FRF) and Forest_MLC (FMLC), respectively. We mention that all the
final data used in the comparative analysis for forested areas are also in vector format.
Extraction and overlay vectorial (intersect, symmetrical difference) techniques were then
applied in order to obtain the necessary data for the comparative analysis and evaluation
for the accuracy of the results.

2.4. Accuracy Assessment

In this study, we conducted an assessment of both thematic accuracy [98] and spatial
accuracy [99] in line with our intended objectives.

For the assessment of thematic accuracy, we worked with two versions of Producer’s
Accuracy and User’s Accuracy, which we refer to as PA1/UA1 and PA2/UA2, respec-
tively, to avoid confusion. Both versions have the same significance: Producer’s Accuracy
indicates the probability of a reference sample being correctly classified, and User’s Ac-
curacy indicates the probability that a sample classified represents that category on the
ground [100]. The differences arise from the type of data used for validation samples. We
used training samples at the pixel level for PA1/UA1, with a Stratified Random sampling
scheme and 200 samples on each raster in a forest/non-forest format, in accordance with
current recommendations [101,102].

We introduced PA2/UA2, which was developed by Zhan et al. [103] for assessing the
accuracy of geospatial objects, to match our aim of conducting comparative assessments
between FGIS and FUNMIX_NB, FUNMIX_OM, FUNMIX_SVM, FSVM, FRF, and FMLC.

PA2 =
|C∩ R|

R
(1)

UA2 =
|C∩ R|

C
(2)

where C represents the area of the classified object (in our case, the forest area from
classification), R represents the area of the reference object (in our study, the forest area
from digitization—FGIS), and |C∩ R| represents the area of the intersection between C and
R.

For spatial accuracy assessment, we used Overall Quality (OQ) [99,103]:

OQ =
|C∩ R|

|¬C∩ R|+ |C∩ ¬R|+ |C∩ R| (3)

where |¬C∩ R| represents the area of R that is not covered by C, and |C∩ ¬R| represents
the area of C that is not covered by R.
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3. Results
3.1. Monitoring Forest Area with GIS Data

We analyzed the dynamics of forest cover in the study area using data obtained
through digitization (FGIS). These data are presented spatially in Figure 4 and quantitatively
in Table 3, indicating a decrease in the forest area of 577 hectares from 2003 to 2019, resulting
in an average rate of decrease of 33.9 hectares per year for the forest area. In terms of
percentage, we observed a reduction in the degree of forestation from 77% to approximately
68% for the analyzed territory over just 17 years.
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Table 3. The forest areas derived from vectorization (FGIS) are expressed in hectares (ha) and as
percentages.

Year Total Area (ha) FGIS (ha) Percent FGIS (%)

2003 6535.81 5037.16 77.07
2005 5028.74 76.94
2009 4911.17 75.14
2011 4705.92 72.00
2014 4627.28 70.80
2016 4616.95 70.64
2017 4558.50 69.75
2019 6535.81 4459.80 68.24

Two aspects need to be addressed here. Firstly, the value of 577 hectares should be
understood as a net quantitative loss, as there are areas where the forest has extended
into the territory due to natural regeneration during the 17 years analyzed. Symmetrical
Difference operations performed on the vector layers reveal a spatial increase of 164 hectares
and a decrease of 741 hectares.

Secondly, regarding the average rate, there were no significant negative alterations
(decrease) or positive ones between 2003 and 2005, and the time frame was too short
for any increase phenomenon to be (noticeable) considerable. From 2005 to 2009, there
was a moderate decrease in the forest by 117 hectares, with an average decrease rate of
23.4 hectares per year for five years. However, from 2009 to 2011, there was a dramatic
decrease of 205.25 hectares, with an average rate for the three years of 68.41 hectares per
year, as shown in the diagram in Figure 5.
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The rate of decrease in forest cover during the last three years (2017–2019) is consistent
with the average rate observed over the 17 years analyzed.

3.2. Comparative Analysis

The comparative analysis of the methods used, from the perspective of the results
achieved (FGIS, FUNMIX_NB, FUNMIX_OM, FUNMIX_SVM, FSAM, FSVM, FMLC, FRF), focuses on
three key aspects: the quantitative correspondence of absolute values (i.e., the value in
hectares obtained from each layer) of forest cover, the thematic accuracy (i.e., how well the
forest area is extracted), and the spatial accuracy of classifications.
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To assess the quantitative correspondence of absolute values, we analyzed the forest
areas of FUNMIX_NB, FUNMIX_OM, FUNMIX_SVM, FSAM, FSVM, FMLC, and FRF (as shown in
Table 4) in relation to disparities compared to FGIS (as shown in Table 5), which were
categorized as positive (overestimation) or negative (underestimation) and summed up to
obtain terms for comparison. This type of analysis is known as “non-site-specific analysis”
in the literature [101].

Table 4. The absolute forest areas were obtained using these methods: FUNMIX_NB, FUNMIX_OM,
FUNMIX_SVM, FSAM, FSVM, FMLC, FRF, and FGIS.

Year FGIS (ha) FUNMIX_NB
(ha)

FUNMIX_OM
(ha)

FUNMIX_SVM
(ha) FSAM (ha) FSVM (ha) FMLC (ha) FRF (ha) Masked Pixels

(ha)

2003 5037.16 5099.94 5202.99 5144.49 4441.05 4992.84 4309.65 4752.27 0
2005 5028.74 5139.09 5010.84 5211.00 4931.28 4897.71 4518.72 4784.49 0
2009 4911.17 4972.05 4929.39 4889.43 4223.70 4996.89 4266.18 4483.17 57.15
2011 4705.92 4961.61 4970.70 4697.82 4707.27 4805.82 3934.71 4555.17 134.28
2014 4627.28 4590.81 4480.47 4425.03 3987.27 4795.11 3847.41 4470.03 191.61
2016 4616.95 4528.26 4945.05 4665.78 3989.97 4836.96 4422.06 4587.75 57.97
2017 4558.50 4526.37 5187.69 5045.40 4555.89 4829.31 4521.87 4541.49 0
2019 4459.80 4506.93 4275.99 4445.01 4449.87 4640.49 4449.33 4345.50 0

Table 5. The difference between FGIS and FUNMIX_NB, FUNMIX_OM, FUNMIX_SVM, FSAM, FSVM, FMLC,
FRF.

Year
Difference

FGIS_FUNMIX_NB
(ha)

Difference
FGIS_FUNMIX_OM

(ha)

Difference
FGIS_FUNMIX_SVM

(ha)

Difference
FGIS_FSAM

(ha)

Difference
FGIS_FSVM

(ha)

Difference
FGIS_FMLC

(ha)

Difference
FGIS_FRF

(ha)

2003 62.78 165.83 107.33 −596.11 −44.32 −727.51 −284.89
2005 110.35 −17.90 182.26 −97.46 −131.03 −510.02 −244.25
2009 60.88 18.22 −21.74 −687.47 85.72 −644.99 −428
2011 255.69 264.78 −8.10 1.35 99.90 −771.21 −150.75
2014 −36.47 −146.81 −202.25 −640.01 167.83 −779.87 −157.25
2016 −88.69 328.10 48.83 −626.98 220.01 −194.89 −29.20
2017 −32.13 629.19 486.90 −2.61 270.81 −36.63 −17.01
2019 47.13 −183.81 −14.79 −9.93 180.69 −10.47 −114.30

Sum (–)
Difference −157.29 −348.52 −246.89 −2660.58 −175.35 −3675.6 −1425.66

Sum (+)
Difference +536.82 +1406.12 +825.32 +1.35 +1024.94 0 0

Sum Total
Difference 694.11 1754.64 1072.21 2661.93 1200.29 3675.60 1425.66

As shown in Figure 6, the smallest deviations were observed for FUNMIX_NB and
FUNMIX_SVM, followed by FSVM, while the largest deviations were observed for FMLC and
FSAM. For FUNMIX_NB, there were five situations of overestimation (one of which was
insignificant at +47 hectares) and three years of negative deviations (two of which were
significant). The average value of total deviations (694.11 hectares) for the eight years for
FUNMIX_NB was 86.76 hectares. For all the forest area forms derived from LSU, there was a
prevalence of positive deviations, with an additional 1406 hectares for FUNMIX_OM.

In the case of FSVM, there was a clear tendency of overestimation, with positive
deviations observed in six out of the eight years for which we have data. The average value
of total deviations (1200.29 hectares) for the eight years for FSVM was 150 hectares. For FRF,
the deviations are only negative, with an average of 170 hectares.
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Figure 6. The distribution of the positive and negative deviations for FUNMIX_NB, FUNMIX_OM,
FUNMIX_SVM, FSAM, FSVM, FMLC, and FRF compared to FGIS.

These data provided a partial comparison of the values obtained through the methods
used in this study, as they do not provide information on the quality of classifications or
the spatial correspondence of forest areas.

To assess thematic accuracy, we used two versions of Producer’s Accuracy and User’s
Accuracy (PA/UA), which offer multiple possibilities for comparison. These include
comparative assessments of thematic accuracy for the methods used, indirect assessments
(through comparison) of accuracy for FGIS, and comparative analyses between the two
versions of calculation for PA and UA. Table 6 lists the values for PA1 and PA2.

Table 6. The values expressed in percentages for PA1 (Producer’s Accuracy based on discrete data)
and PA2 (Producer’s Accuracy based on area). LSU_OM—Linear Spectral Unmixing with Otsu
Method; LSU_NB—Linear Spectral Unmixing with Natural Breaks; LSU_SVM—Linear Spectral
Unmixing with SVM.

Year LSU_OM LSU_NB LSU_SVM SAM SVM MLC RF

PA1
(%)

PA2
(%)

PA1
(%)

PA2
(%)

PA1
(%)

PA2
(%)

PA1
(%)

PA2
(%)

PA1
(%)

PA2
(%)

PA1
(%)

PA2
(%)

PA1
(%)

PA2
(%)

2003 96 93 93 92 95 93 80 82 90 94 83 84 90 91
2005 93 93 96 94 96 95 83 85 93 93 87 87 93 92
2009 93 91 93 92 93 91 80 77 90 94 82 84 96 86
2011 96 94 95 94 94 91 92 87 96 94 86 81 92 91
2014 88 88 88 88 88 87 74 73 97 94 81 79 94 90
2016 97 95 91 91 94 93 85 79 94 95 88 90 95 91
2017 98 98 94 90 97 96 92 91 93 96 92 92 94 91
2019 96 90 98 93 99 92 97 90 96 95 98 92 93 91

Average 95 93 94 92 95 92 86 83 94 94 87 86 93 90

As individual values, PA ranges from 99% (PA1 for LSU_SVM in 2019) to 73% (PA2
for SAM in 2014), with an average of 90.8%. Only five PA values out of 112 are in the
acceptable accuracy class (70–79%) [104], while the others belong to the high accuracy class
(80–89%, 25 values) and very high accuracy class (over 90%, 82 values). Comparing PA1
and PA2, the difference between the pair values is generally not significant, with 80% of
cases ranging between 1–3% in favor of PA1 (with only 11 situations out of 56 obtaining
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higher scores for PA2). LSU_OM and LSU_SVM (95%) have the best score for PA1 as the
mean value for the entire time frame, while SVM has the best result (94%) for PA2. SVM
also stands out for its consistently high values on both series of results (94% for PA1 and
PA2).

Statistics for UA (Table 7) show a net prevalence of values belonging to the very high
accuracy class and high accuracy class, with two maximum values of 99% obtained by
MLC for the UA1 version and a minimum of 84% for SAM in the UA2 version. Comparing
UA1 and UA2, the proportion of the difference between the pair values that range between
1–3% is only 69%, with UA2 exceeding UA1 in only three cases out of 56. The MLC and RF
classifiers have the best scores for UA1 and UA2, followed by SVM and LSU_NB based on
mean values for both UA1 and UA2.

Table 7. The values expressed in percentages for UA1 (User’s Accuracy based on discrete data) and
UA2 (User’s Accuracy based on area).

Year LSU_OM LSU_NB LSU_SVM SAM SVM MLC RF

UA2
(%)

UA1
(%)

UA2
(%)

UA1
(%)

UA2
(%)

UA1
(%)

UA2
(%)

UA2
(%)

UA1
(%)

UA2
(%)

UA1
(%)

UA2
(%)

UA1
(%)

UA2
(%)

2003 95 90 96 93 96 92 95 92 98 95 99 98 98 97
2005 94 93 93 92 93 92 86 87 96 96 97 97 97 96
2009 94 91 94 91 94 91 90 90 93 92 98 96 99 96
2011 94 89 94 89 95 91 91 87 96 92 97 97 98 94
2014 95 91 95 88 94 91 87 84 95 91 99 95 95 93
2016 92 89 95 93 93 92 90 92 92 91 93 94 97 92
2017 90 86 94 91 92 87 93 91 94 90 96 93 98 92
2019 97 94 95 92 95 92 95 90 93 91 93 93 99 93

Average 94 90 95 91 94 91 91 89 95 92 97 95 97 94

Overall Quality (OQ) for single-class assessment [99,103] quantifies spatial accuracy
by considering both the degree of overlap and non-overlap (as shown in Equation (3)).

The results for OQ, presented numerically in Table 8 and graphically in Figure 7,
exceed the critical value of 50%, which is the lower threshold for validation and use in
assessing spatial accuracy [99]. The best score for each value separately was recorded
by LSU_NB in 2005 (94%), while the lowest OQ was recorded by SAM in 2014 (65%).
Statistically, the range of 80–90% (45 values out of 56, or 80% of the results) has the highest
frequency in the series of results for OQ.

Table 8. The values expressed in percentages for Overall Quality (OQ).

Year OQ_LSU_OM
(%)

OQ_LSU_NB
(%)

OQ_LSU_SVM
(%)

OQ_SAM
(%)

OQ_SVM
(%)

OQ_MLC
(%)

OQ_RF
(%)

2003 85 85 85 77 90 83 89
2005 87 94 88 76 90 85 89
2009 83 84 83 71 87 81 83
2011 84 84 84 77 87 79 85
2014 81 80 80 65 87 77 85
2016 85 85 85 74 87 85 84
2017 84 82 84 83 87 86 84
2019 84 85 85 82 87 86 85

Average 84 85 84 76 88 83 86
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Based on the average series of values, SVM has the best spatial accuracy with an 88%
OQ, followed by RF with 86%. If we exclude SAM, which has a lower OQ with an average
of 76%, all the other methods consistently obtained scores above 80%.

The main problem that this study aims to address is identifying the best method for
extracting a forest area that corresponds to the actual situation on site. Table 9 provides a
ranking of the methods used based on the results assessed through performance metrics.
By using a simple arithmetic average of values without weighting criteria importance
(equivalent to performance indices), we can obtain an average ranking position that trans-
lates easily into an Overall Ranking (OR) for the methods used. Comparing the positions
in this OR with those in OQ, it is noticeable that the situation is identical, which further
emphasizes the importance of OQ as a measure of spatial accuracy.

Table 9. The ranking positions and Overall Ranking for LSU_OM, LSU_NB, LSU_SVM, SAM, SVM,
MLC, and RF in relation to performance metrics.

Method
Ranking
from PA1

Ranking
from PA2

Ranking
from UA1

Ranking
from UA2

Ranking
from OQ

The Average
of Ranking
Positions

Overall
Ranking

LSU_OM 1 2 3 5 4 3 4
LSU_NB 2 3 2 4 3 2.8 3

LSU_SVM 1 3 3 4 4 3 4
SAM 5 6 4 6 6 5.4 6
SVM 2 1 2 3 1 1.8 1
MLC 4 5 1 1 5 3.2 5

RF 3 4 1 2 2 2.4 2

SVM stands out not only for its first two positions in PA2 and OQ but also for its
consistently high positions in all the accuracy assessments presented. In contrast, SAM
records the lowest positions in the hierarchies listed in Table 9.

It is worth noting that although the differences between the scores obtained by the
methods used are small, only a 1% difference actually corresponds to a difference of
40–50 hectares (depending on the year). RF occupies the second position, with the best
results for UA1 and two second positions at UA2 and OQ. Much like SVM, it stands out
for consistently high results regarding OQ. LSU_NB closely follows RF (with a difference
of only 0.6 in the average ranking positions) but does not register any first place for the
performance indicators used. Although LSU_SVM has the best score for PA1 (along with
LSU_OM), it is outperformed by SVM and LSU_NB for other performance measures.
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LSU_OM has very good results for PA, but it overestimates the forest area, which explains
its fourth and fifth-place rankings in OQ and UA2, respectively. It is important to note
that none of the LSU combinations were able to accurately assess the situation in 2014,
which had a cloud cover of 2.93%, not even when combined with a non-parametric method
like SVM. The effects of the masked pixels in 2014 are best seen in the scores for PA
(Table 6) and OQ (Table 8). Only SVM and RF maintained their high percentage for all
performance indicators in that year, which can be explained by the way these classifiers
work (as discussed in Section 2.3). There is no sensible explanation for the behavior of
LSU_SVM in 2014. However, both LSU_SVM and SVM were able to identify the sudden
decrease in forest area between 2009 and 2011, while other versions of LSU and SAM were
not able to capture it. The explanation for this can be found in the metadata of the images
used in the study. The multispectral Landsat 5 image used was from July 2011, while the
Google Earth image was from October 2011, which suggests that the land clearing may not
have been captured by the Landsat image. Unfortunately, the study does not have data to
precisely show the period of logging.

One interesting finding in this study is the rather unusual situation observed with
MLC, which occupies the first position at UA, regardless of the version, with very high
scores, but weaker results at PA, OQ, and QC. This suggests that MLC is very effective
at classifying pixels identified as part of a particular class (in this case, the forest), but it
struggles with omission errors.

An important aspect of any comparative study regards highlighting the behavior of
the used classifiers when the entry data are changing. Accordingly, a small experiment was
conducted using a Sentinel 2 MSI-Level 2A (SR) satellite scene from July 2019, obtained
from the Copernicus Scientific Hub [105]. Four spectral bands with a resolution of 10 m
(Blue, Red, Green, and Near-Infrared) and six with a resolution of 20 m (Red-edge 1,
Red-edge 2, Red-edge, NIR narrow, and two SWIR bands) were extracted from the scene.
The bands with a resolution of 20 m were resampled to 10 m, and then all 10 bands were
combined to create two multi-band files: one having only Sentinel bands, and the other, in
which were combined the spectral bands from Landsat 8 image (2019, resampled to 10 m)
used in this study with the three red-edge bands dedicated to vegetation in Sentinel. These
files were then used with the SVM and RF classifiers, which offered the best results in this
study. The resulting classified images (those presented in Figure 8 are derived from the first
multi-band file—Sentinel 10 m) were processed and evaluated for accuracy according to
the methodology used. If we compare the accuracy indices values obtained on these 2 data
sets (Table 10) with the performance indices average values registered by SVM and RF
on the classified images from Landsat scenes, we observe that RF obtains scores up to 6%
higher than the average indices (at PA1), while SVM has moderate increases or stagnates.
This aspect would indicate a higher potential for RF, even if it obtains second place in our
hierarchy.

Table 10. The performance metrics values obtained by SVM and RF for multi-band file classification.

SVM RF

Multi-band file PA1
(%)

PA2
(%)

UA1
(%)

UA2
(%)

OQ
(%)

PA1
(%)

PA2
(%)

UA1
(%)

UA2
(%)

OQ
(%)

Sentinel, 2019 95 93 99 93 87 98 94 98 93 87
Landsat 8 plus

Sentinel Red-edge bands, 2019 93 92 99 93 86 99 92 99 93 86
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4. Discussion

One of the guidelines of this study follows the use of some performance indices to
express the spatial accuracy of the results obtained. If we had not used performance
measures for assessing spatial accuracy and instead relied solely on continuous data for
thematic accuracy, such as removing PA2, UA2, and OQ, then RF would occupy fourth
position in terms of performance, and LSU_OM would be in first position, along with SVM,
followed by LSU_SVM. However, if we had used Overall Accuracy (OA), then RF would
have been considered the best performer (with a mean value of 93% for OA), and SVM
would only occupy the third position. We did not use OA in this study because previous
research [99,103,105,106] has shown that OA takes into account those pixels that are not
part of the class of concern (in this case, the forest). Therefore, for a single-class assessment,
it is advisable to use PA and UA.

Regarding the occurrence and spatial distribution of errors that appear in the classifi-
cation procedures carried out, it can be observed that irrespective of their type (omission
and commission) and the classification method used (which can affect the extent of er-
rors), as illustrated in Figure 9, errors are predominantly localized in marginal forest strips
that transition to pastures, recently deforested areas, and regions with sparse arboreal
vegetation.

As a secondary aspect of our analysis, we address the issue of interpreting LULC
classes from the CORINE 2018 database [55], specifically the Transitional woodland-shrub
class (code 324). Some polygons within this class represent recent clear-cut areas where the
forest has completely disappeared, at least in the territory we studied (Figure 10). Although
we did not incorporate the CORINE Land Cover data in our comparative analysis due
to the mismatch between the scales (1:100,000) used in the dataset, which covers almost
a continental-size territory and cannot represent polygons under 25 km2 [107], and the
finer resolution (0.5 m) of our digitized data, it is crucial to highlight that for adjacent
years, the differences between the CLC and FGIS datasets are noteworthy. For instance,
the differences in CLC and FGIS datasets for forest cover in 2000 and 2006 are negligible
(175 ha underestimation in 2000 and 40 ha overestimation in 2006). However, for CLC 2016
and 2018, compared to FGIS 2016 and 2017, the differences are more significant (231 ha
overestimation for 2016 and 326 ha overestimation for 2018, both values with a positive
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sign), despite the superior quality of satellite data (Landsat 8 OLI and Sentinel 2) used by
CLC. The discrepancies in our study area can be attributed to the interpretation of CLC
classes and the fragmentation of areas with dense forest.
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Upon comparing our results with those obtained from high-resolution data sets,
Dominant Leaf Type and Forest Type, available online at land.copernicus.eu [108], we
observed even greater differences, particularly in overestimating the forest extent for the
latter. The data indicated that the forest extent was 5290.24 ha in 2012 and 4953.7 ha in
2018. Additionally, considerable discrepancies were found when comparing our results
with the sets of global data Forest extent—2000 and Forest extent—2020 [37], produced by
the GLAD Landsat Analysis Ready Data team [36], which are also accessible online [109].
According to our processed data for Padis, , the forest extent was 5706 ha in 2000 and 5407
ha in 2020.

We wish to clarify the causes of the significant decrease in forest area in Padis, . Based
on our research and observations, we assert that these causes are multifaceted. Natural
factors, such as severe storms [110–112], causing windthrows (the latest one occurred on
17 September 2017), as mentioned in the PNA environmental reports [113–118], and pests,
such as the European spruce bark beetle (Ips typographus) [119,120], have contributed to this
decline. Furthermore, the damaged wood provides an opportunity for exploitation, even
in protected areas, as allowed by Romanian laws. However, the amount of wood harvested
exceeds the amount naturally damaged, resulting in legal loggings being transformed into
illegal ones. Such illegal activities are well documented in the literature [121,122].

How do our findings fit into the context of similar studies that focus on the comparative
evaluation of the methods employed? Taking into account the studies cited in Section 1,
alongside additional ones, we can place this study in the “group” that obtained better
results for SVM and RF. This assertion is because the accuracy scores of important classifiers
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in other studies vary [94]. However, it can be challenging to make quantitative comparisons
between the results due to the different performance metrics used [123–126].

For SVM, we mention several studies with better results, including Pal and
Mather [127], Rokni Deilmai et al. [128], Abe et al. [66], Maxwell et al. [129], Thanh Noi
and Kappas [47], Hasan et al. [130], Nguyen et al. [49], Zagajewski et al. [29], and Dabija
et al. [51]. The latter [51] obtained the best scores for SVM with Radial Basis Function
compared to RF for the CLC classes. For classes 311 (deciduous forests) and 313 (mixed
forests), the overall accuracy ranges between 63–98% and 75–83%, respectively. For class
324 (Transitional woodland-shrub), the overall accuracy ranges from a minimum of 56% to
a maximum of 82%.

Among the comparative studies in which RF has the best results or obtains similar
results to SVM, we mention those carried out by Adugna et al. [48], Rodriguez-Galiano
et al. [131], Christovam et al. [132], Tomala et al. [133], Bayrakdar et al. [134], and Avci
et al. [135]. The scores obtained for RF by Forkuor et al. [46] are also remarkable, which
surpass 90% OA, even if they are slightly outrun by SGB.

For the Unmixing approach, Lu et al. [20] used LSU with the threshold method to
classify vegetation from the Amazon basin and compared the results with MLC, resulting
in an extra 7.4% OA for LSU. Taureau et al. [73] used LSU and NDVI in a comparative
study of the mangrove forest canopy obtained from hemispherical photographs and found
an excellent correlation for LSU (R2—0.95). Ruggeri et al. [50] found the best results for
the LSU-OBIA combination, with a User’s Accuracy of 88%. However, Medina Machín
et al. [86] obtained weaker results for the LSU with SVM (81.4% OA) version in a study
for the classification of vegetation in a coastal-dune ecosystem, despite using various
combinations of spectral bands, vegetation indices, textural parameters, and fractional
abundances from LSU.

Regarding our results from MLC and SAM, they align with the line of research that
employs these methods. Sohn et al. [136] used a version of SAM in a study on deforestation
and forest recovery stages in Yucatan, which yielded results exceeding 70% UA. Shafri
et al. [44] obtained 85.56% OA for MLC and only 48.83% OA for SAM. Li et al. [137] evalu-
ated various spectral combinations from Landsat TM, vegetation indices, and classification
methods, including MLC, concluding that MLC and OBIA offered the best results.

5. Conclusions

This study analyzes changes in forest cover in a protected area by integrating remote
sensing processing results with GIS to assess accuracy, which is the most sensitive aspect
of this approach. The complementary nature of remote sensing and GIS provides real
support for monitoring forest areas in protected areas, given the easy access to satellite
data, continuous method improvements, and minimal financial costs and time resources.

To ensure the best methods of work and quality assessment, it is crucial to select
appropriate measures. Therefore, we advocate for the widespread use of spatial accuracy
indices, particularly in situations where the use of performance metrics alone at the pixel
level may lead to incorrect interpretations, as we hypothetically presented.

Regarding our study area, which is integrated into PNA, no other studies monitor
territorial forest cover changes, regardless of the CLC database. CLC is only tested for
thematic accuracy [107]. Our study reveals that the forest area decreased continuously in
two time sequences (2005–2014, 2016–2019) within the analyzed time frame of 17 years
(2003–2019), resulting in a net loss of 577 ha, which equates to a 9% decrease in forestation.

Of all the methods used, SVM and RF estimate this situation the best. SVM stands
out by a consistent behavior, slightly better than RF, as demonstrated by the obtained
performance scores and by the fact that it highlights the reduction in forested areas more
effectively. RF responds better to changes in entry data, indicating that its performance can
be improved.
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119. Fora, C.G.; Banu, C.M.; Chisăliţă, I.; Moatăr, M.M.; Oltean, I. Parasitoids and Parasitoids and Predators of Ips typographus (L.)
in Unmanaged and Managed Spruce Forests in Natural Park Apuseni, Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42,
270–274. [CrossRef]

120. Fora, C.G.; Balog, A. The Effects of the Management Strategies on Spruce Bark Beetles Populations (Ips typographus and Pityogenes
chalcographus), in Apuseni Natural Park, Romania. Forests 2021, 12, 760. [CrossRef]

121. Knorn, J.; Kuemmerle, T.; Radeloff, V.C.; Szabo, A.; Mindrescu, M.; Keeton, W.S.; Abrudan, I.; Griffiths, P.; Gancz, V.; Hostert, P.
Forest restitution and protected area effectiveness in post-socialist Romania. Biol. Conserv. 2012, 146, 204–212. [CrossRef]

122. Albulescu, A.-C.; Manton, M.; Larion, D.; Angelstam, P. The Winding Road towards Sustainable Forest Management in Romania,
1989–2022: A Case Study of Post-Communist Social–Ecological Transition. Land 2022, 11, 1198. [CrossRef]

123. Plokhikh, R.; Shokparova, D.; Fodor, G.; Berghauer, S.; Tóth, A.; Suymukhanov, U.; Zhakupova, A.; Varga, I.; Zhu, K.; Dávid,
L.D. Towards Sustainable Pasture Agrolandscapes: A Landscape-Ecological-Indicative Approach to Environmental Audits and
Impact Assessments. Sustainability 2023, 15, 6913. [CrossRef]

124. Rau, A.; Koibakova, Y.; Nurlan, B.; Nabiollina, M.; Kurmanbek, Z.; Issakov, Y.; Zhu, K.; Dávid, L.D. Increase in Productivity of
Chestnut Soils on Irrigated Lands of Northern and Central Kazakhstan. Land 2023, 12, 672. [CrossRef]

125. Zhu, K.; Cheng, Y.; Zang, W.; Zhou, Q.; El Archi, Y.; Mousazadeh, H.; Kabil, M.; Csobán, K.; Dávid, L.D. Multiscenario Simulation
of Land-Use Change in Hubei Province, China Based on the Markov-FLUS Model. Land 2023, 12, 744. [CrossRef]

https://doi.org/10.1016/j.jag.2013.11.009
https://doi.org/10.1071/WF01031
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1080/15481603.2021.2009232
https://doi.org/10.1080/01431160500057764
https://doi.org/10.1016/j.jag.2013.01.003
https://scihub.copernicus.eu/dhus/#/home
https://doi.org/10.1007/s40808-016-0108-8
https://land.copernicus.eu/pan-european/high-resolution-layers
https://land.copernicus.eu/pan-european/high-resolution-layers
https://glad.umd.edu/dataset/GLCLUC2020
https://doi.org/10.21163/GT_2018.132.04
https://doi.org/10.1029/2020JD033929
https://doi.org/10.3389/fenvs.2022.926430
https://parcapuseni.ro/images/situatii_financiare/Raport_de_activitate_2018_APN_Apuseni.pdf
https://parcapuseni.ro/images/situatii_financiare/Raport_de_activitate_2018_APN_Apuseni.pdf
https://doi.org/10.2478/jaes-2020-0005
http://herp-or.uv.ro/nwjz/
https://doi.org/10.15835/nbha4219430
https://doi.org/10.3390/f12060760
https://doi.org/10.1016/j.biocon.2011.12.020
https://doi.org/10.3390/land11081198
https://doi.org/10.3390/su15086913
https://doi.org/10.3390/land12030672
https://doi.org/10.3390/land12040744


Remote Sens. 2023, 15, 3168 24 of 24

126. Cheng, Y.; Zhu, K.; Zhou, Q.; El Archi, Y.; Kabil, M.; Remenyik, B.; Dávid, L.D. Tourism Ecological Efficiency and Sustainable
Development in the Hanjiang River Basin: A Super-Efficiency Slacks-Based Measure Model Study. Sustainability 2023, 15, 6159.
[CrossRef]

127. Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011.
[CrossRef]

128. Deilmai, B.R.; Bin Ahmad, B.; Zabihi, H. Comparison of two Classification methods (MLC and SVM) to extract land use and land
cover in Johor Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012052. [CrossRef]

129. Maxwell, A.; Warner, T.; Strager, M.; Conley, J.; Sharp, A. Assessing machine-learning algorithms and image- and lidar-derived
variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [CrossRef]

130. Hasan, H.; Shafri, H.Z.; Habshi, M. A Comparison Between Support Vector Machine (SVM) and Convolutional Neural Network
(CNN) Models For Hyperspectral Image Classification. IOP Conf. Ser. Earth Environ. Sci. 2019, 357, 012035. [CrossRef]

131. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a
random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]

132. Christovam, L.; Pessoa, G.G.; Shimabukuro, M.H.; Galo, M.L.B.T. Land use and land cover classification using hyperspectral
imagery: Evaluating the performance of spectral angle mapper, support vector machine and random forest. ISPRS—Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1841–1847. [CrossRef]

133. Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Comparison of Support Vector Machine and Random Forest Algorithms for Invasive
and Expansive Species Classification Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 516. [CrossRef]

134. Bayrakdar, H.Y.; Kavlak, M.; Yılmazel, B.; Çabuk, A. Assessing the performance of machine learning algorithms in Google Earth
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