
remote sensing  

Article

Landsat Analysis Ready Data for Global Land Cover
and Land Cover Change Mapping

Peter Potapov *, Matthew C. Hansen , Indrani Kommareddy, Anil Kommareddy,
Svetlana Turubanova, Amy Pickens, Bernard Adusei, Alexandra Tyukavina and Qing Ying

Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA;
mhansen@umd.edu (M.C.H.); indrani@umd.edu (I.K.); anilk@umd.edu (A.K.); sveta@umd.edu (S.T.);
ahudson2@umd.edu (A.P.); badusei@umd.edu (B.A.); atyukav@umd.edu (A.T.); quing@umd.edu (Q.Y.)
* Correspondence: potapov@umd.edu; Tel.: +1-301-405-3083

Received: 30 December 2019; Accepted: 26 January 2020; Published: 29 January 2020
����������
�������

Abstract: The multi-decadal Landsat data record is a unique tool for global land cover and land use
change analysis. However, the large volume of the Landsat image archive and inconsistent coverage
of clear-sky observations hamper land cover monitoring at large geographic extent. Here, we present
a consistently processed and temporally aggregated Landsat Analysis Ready Data produced by the
Global Land Analysis and Discovery team at the University of Maryland (GLAD ARD) suitable for
national to global empirical land cover mapping and change detection. The GLAD ARD represent
a 16-day time-series of tiled Landsat normalized surface reflectance from 1997 to present, updated
annually, and designed for land cover monitoring at global to local scales. A set of tools for
multi-temporal data processing and characterization using machine learning provided with GLAD
ARD serves as an end-to-end solution for Landsat-based natural resource assessment and monitoring.
The GLAD ARD data and tools have been implemented at the national, regional, and global extent for
water, forest, and crop mapping. The GLAD ARD data and tools are available at the GLAD website
for free access.

Keywords: Landsat; analysis ready data; surface reflectance; land surface phenology;
image compositing; multi-temporal metrics; land cover; land cover change; time-series analysis;
global analysis

1. Introduction

The joint National Aeronautics and Space Administration (NASA) and the United States Geological
Survey (USGS) Landsat program, which started in the early 1970s, provides the longest continuous
global archive of the satellite earth observation data. Since the launch of Landsat 4 (1982), satellite
data have been collected at the same spatial resolution (30m per pixel) and with similar spectral
bands, enabling a multi-decadal analysis of land cover and land use. All Landsat data have been
provided at no cost to users since 2008 [1]. Globally consistent Collection 1 data processing [2] includes
geometric and radiometric correction and observation quality assessment. The free and open data
policy and consistent imagery format promoted the use of Landsat data and increased the variety of data
applications [3]. Given the “time machine” capabilities of the Landsat archive, it is extensively used for
land cover and land use change assessment [4,5]. In recent decades, development of high-performance
computing and machine learning algorithms has allowed scaling up image characterization and change
detection approaches to global extent [6–9].

The methods for globally consistent, multi-temporal land cover characterization and change
detection were developed in the late 1990s–early 2000s using the low spatial resolution data
from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging
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Spectroradiometer (MODIS) [10–12]. The MODIS Land Science Team developed an extensive suite of
global land cover, vegetation structure and biophysical products that relied on consistently processed
imagery [13]. The MODIS data processing chain followed the framework set up by NASA’s Earth
Observing System Data and Information System (EOSDIS) for earth observation instruments [14].
MODIS images are consistently processed from source instrument data (Level 0) to geometrically and
radiometrically calibrated radiance (Level 1) and geophysical variables, such as surface reflectance and
temperature (Level 2). To ensure spatial and temporal consistency of the data inputs for multi-temporal
analysis, the data are further aggregated in time (into daily, 8- and 16-day composites), and in space
(using a global pixel grid and tile system) to the processing Level 3. Level 3 is the most popular data
format for regional and global land cover mapping and change detection applications as it allows
data analysis without the need for extensive pre-processing. Such a format is considered Analysis
Ready Data (ARD) as defined by the Committee on Earth Observation Satellites (CEOS): “satellite data
that have been processed to a minimum set of requirements and organized into a form that allows
immediate analysis with a minimum of additional user effort and interoperability both through time
and with other datasets” (http://ceos.org/ard/).

Landsat imagery is available globally as Level 1 data (geometrically corrected data processed to
sensor units) from the USGS Earth Resources Observation and Science Center (USGS EROS). The Level
2 (surface reflectance) data are available on request. The lack of Landsat Level 3 products requires
users to develop and implement custom solutions for spatial and temporal data aggregation. Several
initiatives are aimed to create a consistent ARD data products from the Landsat data archive, including
Web-enabled Landsat Data (WELD) [15], USGS Landsat ARD [16], and FORCE ARD [17]. However,
all of the cited products are available either at a limited geographic extent, limited time intervals,
or provided as tools, not as datasets. There are no globally consistent ARD data for multi-decadal land
cover and land use change analysis.

The Global Land Analysis and Discovery (GLAD) team at the University of Maryland has
developed and implemented an automated Landsat data processing system that generates globally
consistent analysis ready data (GLAD ARD) as inputs for land cover and land use mapping and
change analysis. The data processing algorithms were developed by Hansen et al. [18] and Potapov
et al. [19,20] and have been tested at the global extent for forest [6], water [21] and non-vegetated
surfaces mapping [22]. The GLAD ARD data were implemented as inputs for regional vegetation
structure mapping [19] and crop type detection [23]. The GLAD ARD represents 16-day time-series
of globally consistent, tiled Landsat normalized surface reflectance from 1997 to present, updated
annually, and suitable for operational land cover change applications. The data are provided
free of charge and are available through a dedicated application programming interface (API) at
https://glad.umd.edu/ard/home. In addition to the ARD dataset, the GLAD team has developed
and provided to users a set of tools for time-series data processing, analysis and machine-learning
characterization. Together, the global GLAD ARD dataset and ARD analysis and characterization
tools provide an end-to-end solution for national and regional users for no-cost Landsat-based natural
resource assessment and monitoring. Here, we present the GLAD ARD methodology and provide
a comprehensive description of the dataset properties.

2. The GLAD ARD Methodology

2.1. Landsat Image Processing

2.1.1. Image Selection

We employ the archive of Landsat TM, ETM+, and OLI/TIRS data collected from the year 1997 to
present available from the USGS EROS Data Center (https://earthexplorer.usgs.gov/). The Landsat
Collection 1 Level 1 data are organized into three categories (tiers): Tier 1, Tier 2, and Real-Time [2].
Only Tier 1 data meet the highest geometric and radiometric standards, hence only those data are
employed for ARD processing. We downloaded Tier 1 Landsat imagery for the 8352 World Reference
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System-2 (WRS) scenes which are located within ice-free land area. Small islands (where no Tier 1 data
exist) and the high Arctic and Antarctic regions are excluded from ARD processing.

The purpose of the ARD is to map land cover and land use during the growing season, hence images
affected by seasonal snow cover are excluded from processing. The seasonal snow cover was analyzed
using the MODIS/Terra Snow Cover Monthly L3 Global product (https://nsidc.org/data/MOD10CM/

versions/6) and Landsat imagery. We excluded all 16-day intervals (see Section 2.1.4) that feature
seasonal snow cover. The snow-free window duration (Figure 1A) ranges from 47 days (three 16-day
intervals) in the Arctic to the entire year (51% of all selected WRS path/rows).

Almost 3 million images (2,984,860) from 1 January 1997, to 31 October 2019, were selected
and processed to create the global ARD. The annual image count (Figure 2) reflects the number of
operational instruments, data acquisition strategy, and Landsat TM sensor issues precluding correct
image processing in the years 2001 and 2002 (see Section 2.1.3). Globally, dry tropical and subtropical
regions feature the highest frequency of observations (Figure 1B). Humid tropics (where permanent
cloud cover hampers image geolocation) and high latitude regions (where snow-free season is short)
feature low frequency of selected observations.

The Tier 1 data delivered as precision and terrain corrected products (L1TP) with image-to-image
registration Root Mean Square Error (RMSE) of or below 12 meters [2]. Such high geolocation quality
is suitable for time-series analysis without further adjustments.
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2.1.2. Conversion to Radiometric Quantity

Due to the differences in spectral band configuration between Landsat sensors, only spectral
bands with matching wavelengths between TM, ETM+, and OLI/TIRS sensors are processed (Table 1).
For the thermal infrared data, we use the high-gain mode thermal band (band 62) of the ETM+ sensor
and 10.6–11.19 µm thermal band (band 10) of the TIRS sensor.

Landsat Collection 1 data contain radiation measurements for reflective visible/infrared bands
in the form of scaled reflectance (OLI) or radiance (TM/ETM+) recorded as integer digital numbers
(DNs) [2]. We convert the data into top-of-atmosphere (TOA) reflectance, scaled consistently across all
Landsat sensors. Spectral reflectance (value range from zero to one) is scaled from 1 to 40,000 and
recorded as a 16-bit unsigned integer value.

https://nsidc.org/data/MOD10CM/versions/6
https://nsidc.org/data/MOD10CM/versions/6
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For the TM and ETM+ data, we use the TOA conversion methods and coefficients from [24],
see Equation (1). For the ETM+ sensor, two sets of gain and bias factors are implemented corresponding
to high or low gain data quantization settings [24]. The correct coefficients are selected by checking the
per-band “GAIN” metadata parameter. In rare cases, the gain setting changed within the recorded
scene, which is indicated by the “GAIN_CHANGE” metadata parameter. For such scenes, we process
only the northern portion of the image and erase data for the rest of the image.

Table 1. Landsat spectral bands used for ARD processing and corresponding MODIS spectral bands.

Band Name

Wavelength, nm

Landsat 5 TM Landsat 7 ETM+
Landsat 8
OLI/TIRS MODIS

Blue 450–520 441–514 452–512 459–479

Green 520–600 519–601 533–590 545–565

Red 630–690 631–692 636–673 620–670

Near-Infrared (NIR) 760–900 772–898 851–879 841–876

Shortwave Infrared 1 (SWIR1) 1,550–1,750 1,547–1,749 1,566–1,651 1,628–1,652

Shortwave Infrared 2 (SWIR2) 2,080–2,350 2,064–2,345 2,107–2,294 2,105–2,155

Thermal 10,410–12,500 10,310–12,360 10,600–11,190 10,780–11,280

% = (π × d2
× (G × DN + B))/(ESUN × sin (sunelev × π/180)) × 40,000 (1)

%—scaled TOA reflectance; π—pi constant; d—Earth-Sun distance; G—gain factor; DN—original digital
number; B—bias factor; ESUN—mean exoatmospheric solar irradiance; sunelev—solar elevation angle.
Parameters d, G, B, and ESUN are taken from [24]. Parameter sunelev comes from the image metadata.

The OLI data are provided as TOA reflectance without solar zenith correction. We apply Equation
(2) to perform the correction for the incoming solar radiation angle.

% = (0.0002 × DN + 0.1)/(sin (sunelev × π/180)) × 40,000 (2)

%—scaled TOA reflectance; π—pi constant; DN—original digital number; sunelev—solar elevation
angle from the image metadata.

The thermal band is converted into brightness temperature and recorded in Kelvin × 100 to
preserve measurement precision (Equation (3)).

TB = K2/log(K1/(G × DN + B) + 1) × 100 (3)

TB—scaled brightness temperature; K1 and K2—calibration coefficients; G—gain factor; DN—original
digital number; B—bias factor. Parameters G, B, K1, and K2 are taken from [24] for TM/ETM+ sensors
and from the image metadata for the TIRS sensor.

2.1.3. Observation Quality Assessment

The per-pixel observation quality assessment is used to highlight observations with a high
probability of atmospheric contamination by clouds, haze, or cloud shadows. In addition, observation
quality assessment performs generic snow/ice and water mapping. Observation quality assessment
is based on the aggregation of the Landsat quality assessment band and GLAD quality assessment
model output.

The Landsat Collection 1 data include a Quality Assessment (QA) band based on the globally
consistent CFMask cloud and cloud shadow detection algorithm [25,26]. The QA band contains the
cirrus cloud (Landsat 8 only), clouds, cloud shadow, snow/ice, and radiometric saturation flags [27].



Remote Sens. 2020, 12, 426 5 of 24

The GLAD observation quality assessment model developed by our team represents a set of
regionally adapted decision tree ensembles [28] to map the likelihood of a pixel to represent cloud,
cloud shadow, heavy haze, and, for clear-sky observations, water or snow/ice. The decision tree models
were developed for global Landsat processing [6] and later improved at the regional level [19,29].
To improve the cloud and cloud shadow mapping, the models are created separately for TM, ETM+,
and OLI sensors. Each region (Africa, Australia, South and Central America, South and Southeast Asia,
boreal and temperate Eurasia and North America) has a separate set of sensor-specific models. To build
each set of models, we used from 100 to 200 Landsat image scenes which were classified into land, water,
clouds, cloud shadows, snow/ice, and haze by experts. Each model was derived from the training data
and applied to a random set of images within the corresponding region. We iterated the model by
adding new training data until the model performance was considered optimal. The GLAD observation
quality assessment models are applied to each image individually. The input data include Landsat
reflective and thermal bands, band ratios, 3 × 3 focal means of each band and ratio, and topography
variables that include elevation, slope, and aspect derived from the Shuttle Radar Topography Mission
Digital Elevation Model (SRTM DEM) from 60◦ North to 60◦ South and ASTER Global Digital Elevation
Model (GDEM) in polar regions. The model outputs represent likelihoods of assigning a pixel to the
cloud, shadow, haze, snow/ice, and water classes.

A comparison of the GLAD and CFMask cloud and cloud shadow detection results in Southeast
Asia (Table 2) suggests the importance of the model results aggregation. The algorithms have a high
agreement for cloud detection; however, they provide complementary information for mapping cloud
shadows. Since our primary goal was to reduce the presence of clouds and shadows in the time-series
data, we decided to merge the CFMask product with the GLAD algorithm output. From the CFMask
product, we use high-probability clouds, shadows, and snow/ice flags. From the GLAD model outputs,
we assign categories based on the likelihoods of thematic classes. This way, cloud, shadow, haze, water,
snow/ice, and land masks are created for each Landsat image.

Table 2. Cloud and shadow detection agreement between CFMask and GLAD observation quality
masks, evaluated using 200 randomly selected Landsat 8 and 7 images in Southeast Asia. The table
shows the percent of pixels within the final, aggregated, cloud and cloud shadow mask that are: (i)
detected by both algorithms, (ii) detected only by the GLAD algorithm, and (iii) detected only by the
CFmask algorithm.

Detected by Both
Algorithms

Detected Only by the
GLAD Algorithm

Detected Only by the
CFMask Algorithm

Clouds 85.9 10.1 3.9

Cloud shadows 41.8 26.0 32.3

The masks were subsequently aggregated into an integral observation Quality Flag (QF) that
highlights cloud/shadow contaminated observations, separates topographic shadows from likely cloud
shadows, and specifies the proximity to clouds and cloud shadows. To derive QF, we implement
buffering around cloud and shadow pixels, calculate the distance to clouds (along cloud shadow
projection), and calculate areas affected by topographic shadows using the DEM and sun position.
The list of criteria for output QFs is presented in Table 3 (values 1–14).

For the Landsat 5 TM sensor, we applied an additional observation quality check to remove sensor
errors. Specifically, we excluded observations which have incorrect (usually, abnormally low) radiance
measurements for selected bands. We assigned a “no data” flag to all pixels that have DN values for
visible and NIR bands below 7 (empirically derived threshold). For Landsat 5 data from the years
2001 and 2002, when most of the sensor anomalies were detected, an image was removed from ARD
processing if it contained more than 10,000 of such pixels.
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2.1.4. Reflectance Normalization

Reflectance normalization is a required step that allows extrapolation of the image characterization
models in time and space by ensuring spectral similarity of the same land-cover types. Normalization
addresses several factors that affect surface reflectance measurement from space, including scattering
and attenuation of radiation passing through the atmosphere, and surface anisotropy. We implemented
a relative normalization procedure [18–20] that is not computationally intensive and does not require
synchronously collected or historical data on atmospheric properties [30] and land-cover specific
anisotropy correction factors [31]. The normalized surface reflectance is not equal to surface reflectance
derived using atmospheric transfer models and a solution for the Bidirectional Reflectance Distribution
Function (BRDF). The GLAD ARD data was designed for land cover and land cover change mapping
and should not be used as a source dataset for the analysis of surface reflectance properties. The Landsat
image normalization consists of four steps: production of the normalization target dataset; selection of
pseudo-invariant objects; model parametrization; and model application.

Table 3. Per-pixel observation quality flag (QF).

QF Observation Quality QF Assignment Criteria

0 No Data

1 Land Clear-sky land observation.

2 Water Clear-sky water observation.

3 Cloud Cloud detected.

4 Cloud shadow
Shadow detected. The pixels located within the projection of a detected
cloud. Cloud projection defined using solar elevation and azimuth and

limited to 9 km distance from the cloud.

5 Topographic shadow
Shadow detected. The pixel located outside cloud projections and within
estimated topographic shadow (estimated using DEM and solar elevation

and azimuth).

6 Snow/Ice Snow or ice detected.

7 Haze Dense semi-transparent clouds/fog detected.

8 Cloud proximity

Aggregation (OR) of two rules:
(i) 1-pixel buffer around detected clouds.

(ii) Above-zero cloud likelihood (estimated by GLAD cloud detection
model) within 3-pixel buffer around detected clouds.

9 Shadow proximity
Shadow likelihood (estimated by GLAD shadow detection model) above
10% for pixels either (i) located within the projection of a detected cloud;

OR (ii) within 3 pixels of a detected cloud or cloud shadow.

10 Other shadows Shadow detected. The pixel located outside the projection of a detected
cloud and outside of estimated topographic shadow.

11 Additional cloud proximity
over land Clear-sky land pixels located closer than 7 pixels of detected clouds

12 Additional cloud proximity
over water Clear-sky water pixels located closer than 7 pixels of detected clouds

14 Additional shadow proximity
over land Clear-sky land pixels located closer than 7 pixels of detected cloud shadows

15 Same as code 1. Land Codes 15-17 are identical to codes 1, 11 and 14 except for the presence of
water in a given 16-day composite. These codes indicate that water was

detected in this 16-day interval, but was not used for compositing, because a
land observation was also present within the same 16 days. Such conditions

may occur within intermittent water bodies, wetlands, rice paddies, etc.
These codes are created to facilitate the analysis of water dynamics.

16 Same as code 11. Additional
cloud proximity over land

17 Same as code 14. Additional
shadow proximity over land



Remote Sens. 2020, 12, 426 7 of 24

(1) Normalization target

We derived the target surface reflectance data from twelve years (2000–2011) of MODIS/Terra
imagery. The MODIS 16-day surface reflectance data [32] for selected spectral bands (see Table 1)
were collected from the MOD44C product with a spatial resolution of 250m/pixel [33]. The MODIS
time-series analysis to produce a normalization target included three steps. First, we filtered out all
observations with atmospheric contamination and a high off-nadir angle using ancillary data included
in the MOD44C product. Second, we calculated the Normalized Difference Vegetation Index (NDVI)
for each observation and ranked all observation dates by the corresponding NDVI value. Third,
we calculated the average spectral reflectance for all observations with NDVI above the 75th percentile.
The resulting growing season average spectral reflectance was re-scaled to match the Landsat TOA
reflectance data (to the range from 1 to 40,000) and resampled to the Landsat spatial resolution. We did
not use the MODIS Nadir BRDF-Adjusted Reflectance (NBAR) product as a normalization target for
two reasons. First, the NBAR data are only available at 500 m/pixel spatial resolution. Second, no high
quality NBAR products were available when the GLAD ARD system was developed, and we decided
to keep the MOD44C-based normalization target for product consistency.

(2) Pseudo-Invariant Objects

The mask of pseudo-invariant objects is derived automatically and used to calibrate the per-scene
surface reflectance normalization model. The mask includes clear-sky land observations (pixels)
that represent the same land cover type and phenology stage in the Landsat image and MODIS
normalization target composite. Water and snow/ice observations are excluded from the mask due to
different properties of surface anisotropy. To select the pseudo-invariant pixels, we first exclude all
observations except clear-sky land using the scene QF. Second, we calculate the absolute difference
between Landsat and MODIS spectral reflectance for red and shortwave infrared bands. Only pixels
with differences below 0.1 reflectance value for both spectral bands qualify for the pseudo-invariant
mask. Bright objects (with red band reflectance above 0.5) are excluded from the mask. To avoid
reflectance normalization artifacts due to insufficient calibration data, Landsat images with less than
10,000 pseudo-invariant pixels are discarded from the processing chain.

(3) Model Parametrization

To parametrize the reflectance normalization model, we calculate the bias between Landsat TOA
reflectance and MODIS surface reflectance for each spectral band within the mask of pseudo-invariant
objects. We collect per-band median bias for each 10 km interval of distance from the Landsat ground
track. The set of median values is used to parametrize a per-band linear regression model using
least squares fitting method. For each image and each spectral band, we derive gain (G) and bias (B)
coefficients to predict the reflectance bias as a function of the distance from the ground track (Equation
(4)). For Landsat scenes with a small land fraction (less than 1/16 of the image), we calculate a mean
reflectance bias (coefficient G set to 0). Such conditions are usually found in coastal regions. For the
brightness temperature band, we calculate a single mean bias value for all pseudo-invariant target
pixels within the image.

∆% = G × d + B (4)

∆%—reflectance bias; G—gain factor; d—distance from the Landsat ground track; B—bias factor.

Figure 3 illustrates the reflectance normalization model calibration for a Landsat scene in the
Brazilian Amazon. Spectral reflectance correction using the bias adjustment is similar to the dark-object
subtraction method [22]. By using MODIS spectral data, we ensure automatic model applicability
for various geographic regions and land cover types. Reflectance bias modeling from the distance to
ground track (related to the off-nadir angle) allows us to implement both bias-adjustment and surface
anisotropy correction as a single, computationally simple, step.



Remote Sens. 2020, 12, 426 8 of 24
Remote Sens. 2020, 12, 426 8 of 22 

 

 
Figure 3. Example of calibration of the surface reflectance normalization model for the red spectral 
band of Landsat scene LC82240652019296LGN00. Median reflectance bias (scaled unitless, ρ × 40,000) 
was calculated between Landsat TOA reflectance and MODIS surface reflectance within the mask of 
pseudo-invariant objects for each of the 10,000 meters intervals of distance from the ground track. A 
linear regression model was used to model reflectance bias as a function of distance from the ground 
track. The model coefficients and R2 presented on the image. 

Average global calibration parameters presented in Table 4 illustrate the general properties of 
spectral reflectance correction during the normalization process. The bias coefficient (B) is the highest 
for the visible bands which are most affected by Rayleigh scattering, hence Landsat TOA reflectance 
is higher compared to MODIS surface reflectance. The bias coefficient decreases with wavelength 
increase and is negative for shortwave bands affected by radiation attenuation. The gain coefficient 
(G) has a small positive value, which reflects the generic features of land surface anisotropy that 
affects observations from a narrow field of view, AM overpass satellite system, such as Landsat. The 
gain and bias coefficients have pronounced geographic variation (Figure 4). The bias coefficient, 
especially for visible bands, has high average values in moist climates and low values in dry climates, 
especially over deserts. The surface anisotropy correction mostly affects observations over tall 
vegetation, such as tropical and temperate forests. 

Table 4. Average global coefficients and their standard deviations (SD) for surface reflectance 
normalization model. The model predicts spectral reflectance bias (scaled unitless, ρ × 40,000) as a 
function of distance from the ground track (meters) within the Landsat scene. 

Landsat spectral band 
Coefficient G (gain) Coefficient B (bias) 

mean SD mean  SD 
Blue 0.002 0.003 2849 615 

Green 0.002 0.003 1075 513 
Red 0.002 0.003 675 674 
NIR 0.003 0.005 415 1022 

SWIR1 0.003 0.005 -652 937 
SWIR2 0.002 0.005 −677 1187 

 
Figure 4. Geographic variation of the surface reflectance normalization coefficients. (A) – Red band 
coefficient B (bias). (B) – NIR band coefficient G (gain). Surface reflectance value is scaled unitless, ρ 
× 40,000. 

  

Figure 3. Example of calibration of the surface reflectance normalization model for the red spectral
band of Landsat scene LC82240652019296LGN00. Median reflectance bias (scaled unitless, % × 40,000)
was calculated between Landsat TOA reflectance and MODIS surface reflectance within the mask of
pseudo-invariant objects for each of the 10,000 meters intervals of distance from the ground track.
A linear regression model was used to model reflectance bias as a function of distance from the ground
track. The model coefficients and R2 presented on the image.

Average global calibration parameters presented in Table 4 illustrate the general properties of
spectral reflectance correction during the normalization process. The bias coefficient (B) is the highest
for the visible bands which are most affected by Rayleigh scattering, hence Landsat TOA reflectance
is higher compared to MODIS surface reflectance. The bias coefficient decreases with wavelength
increase and is negative for shortwave bands affected by radiation attenuation. The gain coefficient (G)
has a small positive value, which reflects the generic features of land surface anisotropy that affects
observations from a narrow field of view, AM overpass satellite system, such as Landsat. The gain and
bias coefficients have pronounced geographic variation (Figure 4). The bias coefficient, especially for
visible bands, has high average values in moist climates and low values in dry climates, especially over
deserts. The surface anisotropy correction mostly affects observations over tall vegetation, such as
tropical and temperate forests.

Table 4. Average global coefficients and their standard deviations (SD) for surface reflectance
normalization model. The model predicts spectral reflectance bias (scaled unitless, % × 40,000) as
a function of distance from the ground track (meters) within the Landsat scene.

Landsat Spectral Band
Coefficient G (Gain) Coefficient B (Bias)

Mean SD Mean SD

Blue 0.002 0.003 2849 615

Green 0.002 0.003 1075 513

Red 0.002 0.003 675 674

NIR 0.003 0.005 415 1022

SWIR1 0.003 0.005 −652 937

SWIR2 0.002 0.005 −677 1187

Remote Sens. 2020, 12, 426 8 of 22 

 

 
Figure 3. Example of calibration of the surface reflectance normalization model for the red spectral 
band of Landsat scene LC82240652019296LGN00. Median reflectance bias (scaled unitless, ρ × 40,000) 
was calculated between Landsat TOA reflectance and MODIS surface reflectance within the mask of 
pseudo-invariant objects for each of the 10,000 meters intervals of distance from the ground track. A 
linear regression model was used to model reflectance bias as a function of distance from the ground 
track. The model coefficients and R2 presented on the image. 

Average global calibration parameters presented in Table 4 illustrate the general properties of 
spectral reflectance correction during the normalization process. The bias coefficient (B) is the highest 
for the visible bands which are most affected by Rayleigh scattering, hence Landsat TOA reflectance 
is higher compared to MODIS surface reflectance. The bias coefficient decreases with wavelength 
increase and is negative for shortwave bands affected by radiation attenuation. The gain coefficient 
(G) has a small positive value, which reflects the generic features of land surface anisotropy that 
affects observations from a narrow field of view, AM overpass satellite system, such as Landsat. The 
gain and bias coefficients have pronounced geographic variation (Figure 4). The bias coefficient, 
especially for visible bands, has high average values in moist climates and low values in dry climates, 
especially over deserts. The surface anisotropy correction mostly affects observations over tall 
vegetation, such as tropical and temperate forests. 

Table 4. Average global coefficients and their standard deviations (SD) for surface reflectance 
normalization model. The model predicts spectral reflectance bias (scaled unitless, ρ × 40,000) as a 
function of distance from the ground track (meters) within the Landsat scene. 

Landsat spectral band 
Coefficient G (gain) Coefficient B (bias) 

mean SD mean  SD 
Blue 0.002 0.003 2849 615 

Green 0.002 0.003 1075 513 
Red 0.002 0.003 675 674 
NIR 0.003 0.005 415 1022 

SWIR1 0.003 0.005 -652 937 
SWIR2 0.002 0.005 −677 1187 

 
Figure 4. Geographic variation of the surface reflectance normalization coefficients. (A) – Red band 
coefficient B (bias). (B) – NIR band coefficient G (gain). Surface reflectance value is scaled unitless, ρ 
× 40,000. 

  

Figure 4. Geographic variation of the surface reflectance normalization coefficients. (A)—Red band
coefficient B (bias). (B)—NIR band coefficient G (gain). Surface reflectance value is scaled unitless,
% × 40,000.



Remote Sens. 2020, 12, 426 9 of 24

(4) Model Application

After the gain and bias coefficients are derived for each spectral band, we apply the resulting
models to the entire Landsat image. The normalized surface reflectance is calculated per-pixel using
Equation (5). To apply the model, we use the raster layer of distances from the ground track (in meters)
that is calculated for each WRS from the Landsat orbital parameters.

%NORM = %TOA
− (G × d + B) (5)

%NORM—normalized surface reflectance; %TOA—TOA reflectance; G—gain factor; d—distance from the
Landsat ground track; B—bias factor.

GLAD ARD normalized surface reflectance is highly correlated to the MODIS surface reflectance
data used for normalization model parametrization (Figure 5). To illustrate the GLAD ARD product
properties, we compared the normalized surface reflectance of red, NIR, and SWIR (1.6 µm) spectral
bands with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance
(NBAR) data (MCD43A4). The MODIS NBAR data are collected daily from Terra and Aqua MODIS
imagery at 500 m spatial resolution (https://lpdaac.usgs.gov/products/mcd43a4v006/). The MODIS
data were resampled to the Landsat spatial resolution. For comparison, we have randomly selected
2,000 points within the conterminous United States. For each point, we extracted Landsat ARD spectral
data and corresponding 16-day clear-sky averages of daily MCD43A4 product for June-August 2018.
In total, we collected data for 6,099 samples that contain clear-sky land observations for both Landsat
and MODIS. Spectral reflectance for a visible (red) and SWIR bands of Landsat and MODIS shows
a close relationship (Figure 6A,C). NIR band comparison reveal differences between Landsat and
MODIS data, with the ARD product consistently underestimating surface reflectance compared to
MODIS (Figure 6B). The mean spectral reflectance difference between Landsat ARD and MODIS NBAR
data is −0.006 for the red band (95% Confidence Interval ±0.0008), −0.043 for NIR band (CI ±0.0012),
and −0.020 for SWIR band (CI ±0.0012). The differences between MODIS-based and Landsat-based
surface reflectance measurements are partially due to the different spatial resolution of the datasets.
We suggest that the strong correspondence between MODIS NBAR and normalized Landsat surface
reflectance at a large geographic extent confirms the utility of the GLAD ARD product for land cover
classification. However, the data users should be aware of the difference between MODIS NBAR
and GLAD ARD surface reflectance products that may preclude applications that rely on the precise
estimation of surface reflectance.

https://lpdaac.usgs.gov/products/mcd43a4v006/


Remote Sens. 2020, 12, 426 10 of 24

Remote Sens. 2020, 12, 426 9 of 22 

 

(4) Model Application 

After the gain and bias coefficients are derived for each spectral band, we apply the resulting 
models to the entire Landsat image. The normalized surface reflectance is calculated per-pixel using 
Equation (5). To apply the model, we use the raster layer of distances from the ground track (in 
meters) that is calculated for each WRS from the Landsat orbital parameters. 

ρNORM=ρTOA-(G × d + B) (5) 

ρNORM – normalized surface reflectance; ρTOA – TOA reflectance; G – gain factor; d – distance 
from the Landsat ground track; B – bias factor. 

 
Figure 5. Global SWIR-NIR-Red composites of (A) MODIS surface reflectance used as a normalization 
target and (B) Landsat annual average normalized surface reflectance for the year 2018. The average 
reflectance is calculated from all clear-sky observations with band reflectance value between the 25th 
and 75th percentile. Observations affected by seasonal snow cover are excluded. 

GLAD ARD normalized surface reflectance is highly correlated to the MODIS surface reflectance 
data used for normalization model parametrization (Figure 5). To illustrate the GLAD ARD product 
properties, we compared the normalized surface reflectance of red, NIR, and SWIR (1.6 μm) spectral 
bands with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted 
Reflectance (NBAR) data (MCD43A4). The MODIS NBAR data are collected daily from Terra and 
Aqua MODIS imagery at 500 m spatial resolution (https://lpdaac.usgs.gov/products/mcd43a4v006/). 
The MODIS data were resampled to the Landsat spatial resolution. For comparison, we have 
randomly selected 2,000 points within the conterminous United States. For each point, we extracted 
Landsat ARD spectral data and corresponding 16-day clear-sky averages of daily MCD43A4 product 
for June-August 2018. In total, we collected data for 6,099 samples that contain clear-sky land 
observations for both Landsat and MODIS. Spectral reflectance for a visible (red) and SWIR bands of 
Landsat and MODIS shows a close relationship (Figure 6A,C). NIR band comparison reveal 
differences between Landsat and MODIS data, with the ARD product consistently underestimating 

Figure 5. Global SWIR-NIR-Red composites of (A) MODIS surface reflectance used as a normalization
target and (B) Landsat annual average normalized surface reflectance for the year 2018. The average
reflectance is calculated from all clear-sky observations with band reflectance value between the 25th
and 75th percentile. Observations affected by seasonal snow cover are excluded.

Remote Sens. 2020, 12, 426 10 of 22 

 

surface reflectance compared to MODIS (Figure 6B). The mean spectral reflectance difference 
between Landsat ARD and MODIS NBAR data is −0.006 for the red band (95% Confidence Interval 
±0.0008), −0.043 for NIR band (CI ±0.0012), and −0.020 for SWIR band (CI ±0.0012). The differences 
between MODIS-based and Landsat-based surface reflectance measurements are partially due to the 
different spatial resolution of the datasets. We suggest that the strong correspondence between 
MODIS NBAR and normalized Landsat surface reflectance at a large geographic extent confirms the 
utility of the GLAD ARD product for land cover classification. However, the data users should be 
aware of the difference between MODIS NBAR and GLAD ARD surface reflectance products that 
may preclude applications that rely on the precise estimation of surface reflectance.   

 
Figure 6. Comparison of MODIS NBAR surface reflectance (MCD43A4 Version 6) and Landsat GLAD 
ARD normalized surface reflectance products for randomly selected clear-sky land observations for 
June–August 2018 within the conterminous United States (N = 6,099). Spectral bands: (A) – red, (B) – 
NIR, (C) – SWIR (1.6 μm). 

2.2. Temporal Integration and Tiling 

The final step of the GLAD ARD processing is a temporal aggregation of individual Landsat 
images into 16-day composites. The compositing interval was selected corresponding to the Landsat 
orbital cycle and the MODIS Level 3 data products [34]. The use of a 16-day interval reduces the 
requirements for data download, storage, and processing compared to daily data aggregation used 
by the USGS ARD [16] with negligible reduction of usable data, especially outside the USA. The 
ranges of dates for each interval (Table 5) correspond to the MODIS 16-day dataset [33]. The last 
interval consists of 13 days (14 days for a leap year). Using a compositing system that is tied to the 
calendar year simplifies annual data processing and seasonal reflectance comparison. 

Table 5. Start and end days of the year (DOY) for the GLAD ARD 16-day composite intervals. 

Interval ID DOY start DOY end 
1 1 16 
2 17 32 
3 33 48 
4 49 64 
5 65 80 
6 81 96 
7 97 112 
8 113 128 
9 129 144 

10 145 160 
11 161 176 
12 177 192 
13 193 208 

Figure 6. Comparison of MODIS NBAR surface reflectance (MCD43A4 Version 6) and Landsat GLAD
ARD normalized surface reflectance products for randomly selected clear-sky land observations for
June–August 2018 within the conterminous United States (N = 6,099). Spectral bands: (A)—red,
(B)—NIR, (C)—SWIR (1.6 µm).

2.2. Temporal Integration and Tiling

The final step of the GLAD ARD processing is a temporal aggregation of individual Landsat
images into 16-day composites. The compositing interval was selected corresponding to the Landsat
orbital cycle and the MODIS Level 3 data products [34]. The use of a 16-day interval reduces the
requirements for data download, storage, and processing compared to daily data aggregation used by
the USGS ARD [16] with negligible reduction of usable data, especially outside the USA. The ranges
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of dates for each interval (Table 5) correspond to the MODIS 16-day dataset [33]. The last interval
consists of 13 days (14 days for a leap year). Using a compositing system that is tied to the calendar
year simplifies annual data processing and seasonal reflectance comparison.

Table 5. Start and end days of the year (DOY) for the GLAD ARD 16-day composite intervals.

Interval ID DOY Start DOY End

1 1 16

2 17 32

3 33 48

4 49 64

5 65 80

6 81 96

7 97 112

8 113 128

9 129 144

10 145 160

11 161 176

12 177 192

13 193 208

14 209 224

15 225 240

16 241 256

17 257 272

18 273 288

19 289 304

20 305 320

21 321 336

22 337 352

23 353 365 (366)

The 16-day composites are stored in geographic coordinates and organized in the form of 1
× 1 degree tiles (see Section 3). To create a 16-day composite, we first select all images within the
date range that overlap a selected 1 × 1 degree tile. All selected images are projected to geographic
coordinates using the nearest neighbor resampling method to preserve reflectance values. If more than
one image overlaps the composite area, we analyze the QF layers of these images. For each pixel with
overlapping images, we select the best observations following this sequence of QF (best to worst):
1-14-11-2-12-6-5-10-9-8-7-4-3 (see QF codes in Table 3). The observation with the best QF is selected.
If several observations with the same QF are selected, the per-band mean reflectance value is retained
in the composite. The output composite includes six reflective bands, a brightness temperature and
a QF band. The QF band value is preserved from the image and modified for values 1, 11, and 14 to
record the presence of water in the time-series (see Table 3, QF values 15–17). Effectively, the output
16-day composites represent observation(s) with the highest quality. This does not mean, however,
that 16-day data represent a spatially complete clear-sky coverage. No-data gaps are retained in the
composites (marked with QF equal zero), and cloud/shadow contaminated observations are retained if
no clear-sky observations are available within the corresponding time interval.
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3. GLAD ARD Structure

3.1. Global Tile System

The GLAD ARD tile system was developed to simplify global data handling. The geographic
coordinates using the World Geodetic System (WGS84) were selected as the most universal way
of sharing global data. The coordinate system is defined by EPSG Geodetic Parameter Dataset as
EPSG:4326 (https://spatialreference.org/ref/epsg/wgs-84/), or using PROJ standard (http://proj.org) as
+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs. The nearest neighbor resampling may be used
to re-project the geographic data into the original Universal Transverse Mercator (UTM) Landsat pixel
grid without distortion, assuming that the output UTM zone is the same as for the source Collection 1
Landsat imagery.

The spatial resolution of the ARD dataset is 0.00025 degree per pixel, which corresponds to 27.83 m
per pixel on the Equator. The pixel size is a compromise between the need to preserve the original
Landsat data pixel size (30 m/pixel) and to avoid using a repeating decimal number for pixel size
(which may cause problems with georeference precision).

The ARD product is stored in 1 × 1 geographic degrees tiles. The tile format facilitates data
handling and the parallelization of data processing. The exact 1 × 1 degree tile format, however, is not
optimal for contextual analysis when neighboring pixels are located on different tiles. We implemented
a partial solution to this issue by creating a tile system with a 2-pixel overlap. The actual ARD tile size
is 4004 × 4004 pixels, an extent of 1.0005 by 1.0005 degrees. The 2-pixel buffer allows implementing
contextual analyses using 3 × 3 and 5 × 5 kernels without the need to read data from multiple tiles at
a time.

Tile names are derived from the tile center, and refer to the integer value of degrees. E.g., the name
of a tile with center 17.5E and 52.5N is 017E_52N. The ARD product is only generated for tiles that
include ice-free land area and where Landsat Tier 1 data exist (Figure 7). The tile names are used for
folder structure only. The tile system can be downloaded from https://glad.umd.edu/ard/home in ESRI
Shapefile format.
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Figure 7. GLAD ARD tile system. (A)—global extent of processed data (tiles shown in blue),
1997–2019; (B)—example of tile extents and names. The tile system can be downloaded from
https://glad.umd.edu/ard/home in ESRI Shapefile format.

3.2. 16-Day Composite Data

Each data granule contains observations collected during a single 16-day interval. There are 23
intervals per year (see Table 5 for interval dates). Each interval has a unique numeric identification,
starting from the first interval of the year 1980. This identification is used as a file name, while the
tile name is used to identify data folders (Section 3.1). Equation (6) shows how to obtain the interval
identification number for a selected year and season.

ID = (Year − 1980) × 23 + Interval (6)

https://spatialreference.org/ref/epsg/wgs-84/
http://proj.org
https://glad.umd.edu/ard/home
https://glad.umd.edu/ard/home
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ID—interval identification number (file name), Year—selected year (1980 and later), Interval—selected
annual 16-day interval (1–23).

The 16-day data for a tile are stored as 8-band, 16-bit unsigned, LZW-compressed GeoTIFF
files. The list of image bands is provided in Table 6 (see Table 1 for Landsat band abbreviations and
wavelengths). The image band 8 consists of an observation quality flag (QF) that reflects the quality
of observation used to create the composite. The QF (Table 3) is inherited from the Landsat image
which is selected for the 16-day composite. QF values 1, 2 and 15 indicate clear-sky observations. QF
values 11–14 and 16–17 are considered clear-sky data with an indication of cloud/shadow proximity.
QF values 5 and 6 indicate seasonal data quality issues (topographic shadows and snow cover).
These observations may be removed from data processing if the number of clear-sky observations
is sufficient. QF values 3, 4, and 7–10 are considered contaminated by clouds and shadows and are
usually excluded from data processing.

Table 6. 16-day composite image layers.

Image Band Image Data Units, Data Format

1 Blue band

Normalized surface reflectance scaled to the
range from 1 to 40,000, UInt16

2 Green band

3 Red band

4 NIR band

5 SWIR1 band

6 SWIR2 band

7 Normalized brightness temperature K × 100, UInt16

8 Observation quality flag (QF) QF code, UInt16

4. Multi-Temporal Metrics

Despite the global radiometric consistency of the 16-day GLAD ARD product, direct application
of this dataset as input to a land cover characterization model is hampered by the irregular frequency
of clear-sky observation. The availability of clear-sky observations is a function of the Landsat orbital
constellation, data acquisition strategy, and cloud cover. As a result, annual 16-day time-series for
the same area may have dramatically different numbers of clear-sky observations between seasons
and years [19]. While 16-day time-series data contain sufficient information to identify land cover
types and land cover dynamics (Figure 8), the inconsistency of observation frequency may not allow
calibration of a regional mapping model using solely ARD as source data.

The multi-temporal metrics method is a time-series data transformation that improves spatial and
temporal consistency, simplifies phenological analysis, and facilitates land cover mapping and change
detection at large geographic extents. The metrics approach helps to overcome the inconsistency
of clear-sky data availability that is typical for sensors with low observation frequency, such as
Landsat. The metrics method was developed in the mid-1980s to extract phenological features from
the AVHRR-based NDVI time-series [35,36]. At the same time, the idea of using vegetation index
time-series to extract spectral reflectance corresponding to a certain phenological stage was proposed
by Holben [37]. Later, both approaches were merged by researchers from the Laboratory for Global
Remote Sensing Studies at the University of Maryland [38]. In their work, metrics were calculated by
extracting spectral information for specific phenological stages defined by the NDVI annual dynamics.
The multi-temporal metrics were widely used for forest monitoring at continental and global scales
using MODIS [39] and Landsat data [6,19,20,40].
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Figure 8. Examples of NDVI temporal profiles extracted from the 2010–2018 GLAD ARD clear-sky
land observation time-series. Land cover types: (A)—Evergreen humid tropical forest, Democratic
Republic of the Congo (Longitude: 25.63254, Latitude: 0.42928); (B)—Desert, Niger (11.37659, 18.22881);
(C)—Rainfed agriculture, Brazil (−46.00316, −11.71092). Land cover change dynamics: (D)—Boreal
forest harvesting, Canada (−80.50295, 47.79808); (E)—Shifting cultivation, Myanmar (95.52212, 26.13662);
(F)—Pine plantation management, USA (−88.61679, 32.29155).

ARD-based multi-temporal metrics represent a set of statistics extracted from a 16-day observation
time-series. The metric types and statistical algorithms may vary depending on the mapping objective.
Here, we present algorithms for the two most common objectives: annual land cover mapping and
detection of land cover changes between two consecutive years. To benefit these objectives, we use
GLAD ARD data to create two independent sets of multi-temporal metrics: annual phenological
metrics and annual change detection metrics. The metric processing tools and supervised classification
tools that allow metrics characterization are available at https://glad.umd.edu/ard/home.

4.1. Annual Phenological Metrics

The annual phenological metrics serve as source data for land cover, land use, and vegetation
structure mapping models. Metrics represent a set of statistics extracted from the normalized surface
reflectance time-series within a corresponding calendar year (January 1–December 31). However,
limited and inconsistent data availability in regions with a short snow-free season or frequent cloud
cover may preclude consistent phenology characterization by annual observation time-series. To fill
long gaps in observation time-series we use the data from the three previous years. Optionally,
the gap-filling algorithm can be disabled to create metrics solely from data collected during the
corresponding year. The process of phenological metrics processing includes two stages: (1) selecting
clear-sky observations and filling gaps in the observation time-series; and (2) extracting reflectance
distribution statistics from the time-series of selected observations.

First, we compile a gap-filled time-series of annual observations with the lowest atmospheric
contamination (Figure 9). The per-pixel criterion for 16-day data selection is defined based on the
distribution of QFs within the four years of data. If clear-sky land or water observations are present in
the time-series data, only those are used for subsequent analysis. If no such observations are found,
the software changes the observation quality threshold for data inclusion, first allowing observations
with proximity to clouds and shadows, and then allowing all available observations. To create
an annual gap-filled observation time-series for metric extraction, we first analyze the duration of the
gaps between existing 16-day clear-sky observations of the corresponding year (Year i). If a gap exceeds
two months (four 16-day intervals), we search for the clear-sky observations in the previous years

https://glad.umd.edu/ard/home
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within the gap date range, starting with Year i-1 and until the Year i-3. When clear-sky observations are
found, they are added to the gap-filled time-series data, and the gap analysis is performed again until
all gaps longer than two months are filled or no available data are found within the four-year interval.
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After compilation of the annual gap-filled observation time-series, we compute selected 
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reflectance values for each pixel (Equation (8)).  

NRAB = (ρA-ρB)/(ρA+ρB) ×10,000+10,000 (7) 

Figure 9. Schematic representation of the gap-filling algorithm for phenological metrics. Year i stands for
the corresponding year, and Years i-1–i-3 for preceding years. Black squares are clear-sky observations
and gray squares are 16-day intervals with no data. The blue squares in the gap-filled time-series are
clear-sky observations filled from the Years i-1–i-3 (highlighted by blue outlines) within the data gaps
exceeding 2 months (four 16-day intervals).

After compilation of the annual gap-filled observation time-series, we compute selected normalized
band ratios, or indices, for each selected observation using Equation (7). A spectral variability vegetation
index (SVVI, [41]) is also calculated using the standard deviation of spectral reflectance values for each
pixel (Equation (8)).

NRAB = (%A
− %B)/(%A + %B) × 10,000 + 10,000 (7)

NRAB—Normalized ratio between bands A and B; %A, %B—normalized surface reflectance of bands A
and B.

SVVI = σ (%Blue, %Green, %Red, %NIR, %SWIR1, %SWIR2) − σ(%NIR, %SWIR1, %SWIR2) + 10,000 (8)

SVVI—Spectral variability vegetation index; σ—standard deviation; %Blue, etc.—normalized
surface reflectance.

Multi-temporal metrics are generated from the time-series using two observation date ranking
approaches (Figure 10). First, we rank all observations by each spectral band reflectance or index
value individually. From obtained ranks, we select the highest/lowest, second to the highest/lowest,
and median reflectance values. Also, we calculate averages for all observations between selected ranks
(see Figure 10 for the list of average values). Second, we rank observation dates by corresponding
values of (i) NDVI, (ii) SVVI, and (iii) brightness temperature. From these observation date ranks,
we extract values corresponding to the highest/lowest, and second to highest/lowest ranks for each
of the reflective bands, and calculate average reflectance values between selected ranks. In addition
to spectral metrics, the software produces a set of auxiliary layers including the number of clear-sky
16-day composites, observation quality, and water presence per pixel.



Remote Sens. 2020, 12, 426 16 of 24

Remote Sens. 2020, 12, 426 15 of 22 

 

NRAB – Normalized ratio between bands A and B; ρA, ρB – normalized surface reflectance of 
bands A and B.  

SVVI=σ(ρBlue, ρGreen, ρRed, ρNIR, ρSWIR1, ρSWIR2)-σ(ρNIR, ρSWIR1, ρSWIR2)+10,000 (8) 

SVVI – Spectral variability vegetation index; σ – standard deviation; ρBlue, etc. – normalized 
surface reflectance. 

Multi-temporal metrics are generated from the time-series using two observation date ranking 
approaches (Figure 10). First, we rank all observations by each spectral band reflectance or index 
value individually. From obtained ranks, we select the highest/lowest, second to the highest/lowest, 
and median reflectance values. Also, we calculate averages for all observations between selected 
ranks (see Figure 10 for the list of average values). Second, we rank observation dates by 
corresponding values of (i) NDVI, (ii) SVVI, and (iii) brightness temperature. From these observation 
date ranks, we extract values corresponding to the highest/lowest, and second to highest/lowest ranks 
for each of the reflective bands, and calculate average reflectance values between selected ranks. In 
addition to spectral metrics, the software produces a set of auxiliary layers including the number of 
clear-sky 16-day composites, observation quality, and water presence per pixel. 

 
Figure 10. Phenological metric types and naming convention (metric names shown in square 
brackets). The first set of metrics represents statistics calculated from 16-day observation time-series 
ranked by the spectral reflectance or index value. The ranking performed independently for each 
spectral band or index. The second set of metrics represents statistics calculated from 16-day 
observation time-series ranked by the value of corresponding variable (NDVI, SVVI, and brightness 
temperature). Q1, Q2, and Q3 stand for 1st, 2nd, and 3rd quartiles. * Amplitudes are calculated in 
memory during classification model application and are not written to the disk. 

Figure 10. Phenological metric types and naming convention (metric names shown in square brackets).
The first set of metrics represents statistics calculated from 16-day observation time-series ranked
by the spectral reflectance or index value. The ranking performed independently for each spectral
band or index. The second set of metrics represents statistics calculated from 16-day observation
time-series ranked by the value of corresponding variable (NDVI, SVVI, and brightness temperature).
Q1, Q2, and Q3 stand for 1st, 2nd, and 3rd quartiles. * Amplitudes are calculated in memory during
classification model application and are not written to the disk.

The metrics are stored as single-band 16-bit unsigned GeoTIFF files using the same tile system as
the ARD (see Section 3.1). The metrics set for each tile is stored in a separate folder. The metric naming
convention is the following (see Figure 10 for bands, indices and statistics names):

YYYY_B_S_C.tif
YYYY—Corresponding year.
B—Spectral band or index.
S—Statistic extracted from the observation time-series.
C—Corresponding band or index used for observation ranking (only for metrics extracted from ranks

defined by a corresponding value).
Example:
2018_blue_max_RN.tif—The metric represents the value of the normalized surface reflectance of the

Landsat blue band for the 16-day interval that has the highest red/NIR normalized ratio (also known as NDVI)
value during the year 2018.

Not all of the metrics are recorded to disk. Specifically, the amplitude metrics are calculated in
memory during the classification procedure. To include spatial context to image classification, the focal
mean for each of the metric using 3 × 3 kernel is calculated during the classification routine.
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The large number of multi-temporal metrics (816 metrics in the phenological metrics set described
above) is warranted by the large variety of land cover classes that may be mapped using these data.
Different metrics and their combination highlight specific features of the surface reflectance and land
surface phenology that are required for mapping different land cover types. The simple interquartile
reflectance average (average of all values between 1st and 3rd quartiles, each spectral band ranked
independently by its value) may serve as a generic clear-sky image composite for a specific year
(Figure 11A). If the observations are ranked by the corresponding NDVI value, and the average is
calculated from the top ranks, the composite will represent surface reflectance during the peak of the
growing season (Figure 11B). Metrics extracted from the NDVI and brightness temperature ranks are
required for agriculture mapping [23,42,43]. The spectral reflectance amplitudes highlight the land
surface phenology and simplify identification of evergreen trees, permanent water features, and crop
rotation characterization (Figure 11C). Using normalized ratios and their phenology facilitates mapping
of different land cover types and simplifies visual assessment (Figure 11D).
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Figure 11. Example of image composites of different 2018 annual phenological metrics for
Mekong Delta, Vietnam. (A) SWIR1-NIR-Red Q1-Q3 interquartile average reflectance composite,
observations for each band ranked individually by their reflectance value; (B) NIR-SWIR1-SWIR2
Q3-max average reflectance composite, observations ranked by the NDVI value; (C) SWIR1-NIR-Red
reflectance amplitude (difference between annual minimum and maximum) composite; (D) Red/NIR
(NDVI)—Green/Red—NIR/SWIR2 second-to-maximum normalized ratios values, observations ranked
individually by each ratio value.
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4.2. Annual Change Detection Metrics

The annual change detection metrics are designed to facilitate land cover change mapping between
the corresponding and previous years while reducing false change detections due to reflectance
fluctuations and inconsistent clear-sky observations availability. Change detection metrics describes
the surface reflectance within the corresponding and preceding years, spectral reflectance differences
between these years, and surface reflectance trend within the time-series. The process of change
detection metrics construction includes three stages: (1) selecting clear-sky observations; (2) constructing
data time-series, and (3) extracting reflectance and reflectance change distribution statistics from
the time-series.

To build a set of change detection metrics, we utilize four years of data (one corresponding and three
preceding), and select observations with the best available quality. The metric set can be generated with
less than four years of data, but at least two consecutive years of data are required. Only observations
with the lowest atmospheric contamination are used for metrics extraction. The per-pixel criterion for
16-day data selection is defined automatically based on the distribution of observation quality flags
within the four years of data, similar to the phenological metrics algorithm. All other observations are
discarded from further processing.

To facilitate extraction of the change detection data, we construct four different data time-series
(time-series C, P, I, and D, see Figure 12). Time-series C comprised from the clear-sky observations
of the corresponding year (Year i). To create a historical baseline for change detection (time-series
P), we collect an average reflectance from the three preceding years (Year i-1–Year i-3) only for those
16-day intervals that have clear-sky observations in the time-series C. If no observations are found for
a certain 16-day interval in historic data, we use clear-sky data from the closest observation before/after
the missing 16-day composite interval. For each observation of time-series C and P, in addition to
normalized reflectance, we calculate normalized ratios from selected bands (Equation (7)). Time-series
P and C are further aggregated into a single, 46-interval, time-series to calculate trend analysis metrics
(time-series I). Finally, the per-16-day interval difference for all spectral band and index values between
time-series P and C comprise the time-series D.
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Figure 12. Schematic representation of the time-series data compilation for the change detection metrics.
Green and black squares represent 16-day intervals with clear-sky observations, gray squares—16-day
intervals with no clear-sky observations. C stands for the corresponding year time-series (Year i); P for
preceding year time-series (average of Years i-1, i-2, and i-3, selected observations highlighted in blue).
Time-series I is compiled from time-series P and C. D stands for difference between 16-day observations
of C and P time-series (intervals with difference values highlighted in red).
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To extract statistics, we use three different approaches (Figure 13):

• For the time-series C and P, we extract two independent sets of metrics that reflect annual
phenology. Observations in each time-series are ranked by (a) spectral band or index value,
and (b) corresponding NDVI and brightness temperature values. Similar to phenological metrics,
we record selected ranks and average between ranks for each spectral variable.

• The time-series I is used to analyze unidirectional trend of spectral reflectance within a two-years
interval. We use least squares method to fit linear regression model that predicts spectral reflectance
or index value from the observation date (date range is from 1 to 46) for clear-sky observations.
We record the slope of linear regression as a metric value. In addition, we calculate and record
standard deviation of spectral variable within the time-series I.

• The time-series D consists of per-16-day interval spectral reflectance or index differences. We rank
difference values, and extract a set of statistics (selected ranks and averages) from these ranking.
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YYYY_B_T_S_C.tif
Where:
YYYY—corresponding year.
B—Spectral band or index.
T—Time-series from which the statistics were extracted. Index [c] represents the corresponding year

(time-series C), [p] stands for the preceding year (time-series P) and [dif] stands for a time-series of per-16-day
interval differences (time-series D). Slope of linear regression and standard deviation metrics, which are calculated
from the entire time-series, do not have this name section.

S—Extracted statistic.
C—Corresponding band or index used for ranking (only for metrics extracted from ranks defined by

a corresponding value).
Example:
2018_blue_c_max_RN.tif—The metric represents the value of the normalized surface reflectance of the

Landsat blue band for the 16-day interval that has the highest red/NIR normalized ratio (also known as NDVI)
value during the year 2018.

The high variability of metrics allows using the generic change detection metric set for the
wide spectrum of land cover monitoring applications. Annual metrics for the corresponding and
preceding years (Figure 14A,B) are compared by calculating differences during change detection model
parametrization to indicate land cover change. The inter-annual spectral reflectance difference can be
visualized by combining the same statistics extracted from different years (Figure 14C). Metrics that
represent the slope of linear regression, and statistics extracted from per-16-day differences (Figure 14D)
provide important information on land cover change [19,20,29].
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Figure 14. Composites of selected 2018 annual change detection metrics for Northern Laos (centered at
101.5950, 20.5473). (A)—SWIR1-NIR-Red Q1-Q3 interquartile average band reflectance composite for
previous year (compiled from 2015–2017 data); (B)—SWIR1-NIR-Red Q1-Q3 interquartile average band
reflectance composite for the year 2018; (C)—Interquartile average SWIR1 band reflectance difference
between corresponding and previous years (red: corresponding year; blue, green—previous year);
(D)—Composite of metrics based on per-16-day difference (red: maximum SWIR2 band difference;
green and blue: average NIR/SWIR2 normalized ratio difference).

Annual change detection metrics serve the operational update of the global forest cover change
product that is developed by the GLAD team for Global Forest Watch initiative (www.globalforestwatch.
org). The data users should be aware that while using four years of data to create a change detection
metrics set improves the classification quality, the metric set is sensitive to changes that happened not
only between the corresponding and preceding years, but also between the corresponding year and the
years i-2 and i-3. The “last annual observation” metric may be used to exclude changes that happened

www.globalforestwatch.org
www.globalforestwatch.org
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earlier. Alternatively, a change detection algorithm can be applied annually to eliminate redundant
change detections.

5. Known Issues and Limitations

The GLAD team is constantly updating the ARD product to ensure data completeness and quality.
Here, we list known issues that users should consider when using the product. Some of these issues
will be addressed in future revisions of the GLAD ARD.

• The current version of the GLAD ARD product is not suitable for real-time land cover monitoring.
The ARD product rely on Tier 1 data which currently features up to 26 days processing delay by
USGS (https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1). A 16-day interval
data are processed only after all daily data are available as Tier 1. Thus, the ARD update usually
features a 1-month delay.

• Landsat 5 images for 2001–2002 were filtered for possible sensor artifacts during ARD processing.
However, after examining images recently processed to Collection 1 standard we suggested that
some of these artifacts were removed by the data provider. A re-processing of the year 2001 and
2002 ARD will be scheduled to include corrected L5 data.

• Images crossing the 180◦ meridian were not processed due to technical difficulties. This issue was
not addressed yet due to low demand for the data in these regions. The images will be processed
and the corresponding 16-day composites will be updated later.

• Due to low sun azimuth and similarity between snow cover and clouds during winter season
in temperate and boreal climates, the GLAD Landsat ARD algorithm is not suitable for winter
time image processing above 30N and below 45S Latitude. We are not processing images during
times affected by seasonal snow cover so the resulting 16-day intervals have no data. Some
of the images (and resulting 16-day composites) may still include snow-covered observations.
We suggest further filtering such observations using the “snow/ice” observation quality flag or by
removing certain 16-day intervals from data processing.

• The surface reflectance normalization is not equal to a physically-based atmospheric and surface
anisotropy correction. While the comparison of ARD data with MODIS-based surface reflectance
and successful ARD applications for global land cover mapping suggest that the product has
sufficient quality for intended use, the ARD data may not be suitable for precise analysis of land
surface reflectance.

• Users should be aware that the image normalization method is not designed to deal with specular
reflectance and thus introduces bias over the water surfaces. We do not recommend using the
ARD product for water quality assessment or any other hydrology applications beyond surface
water extent mapping.
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