Interannual Variability of Water Level in Two Largest Lakes of Europe
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
4. Results
4.1. Lake Ladoga
4.2. Lake Onega
4.3. Validation and Calibration of Altimetry Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kostianoy, A.G.; Zavialov, P.O.; Lebedev, S.A. What do we know about dead, dying and endangered lakes and seas? In Dying and Dead Seas. Climatic versus Anthropic Causes; Nihoul, J.C.J., Zavialov, P.O., Micklin, P.P., Eds.; NATO ARW/ASI Series; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2004; pp. 1–48. [Google Scholar]
- Kostianoy, A.G. Dead and Dying Seas. In Encyclopedia of Water Science; Taylor & Francis: Abingdon, UK, 2007; pp. 1–3. [Google Scholar] [CrossRef]
- Adrn, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; VanDonk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol. Oceanogr. 2009, 54, 2349–2358. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Birkett, C.; Reynolds, C.; Beckley, B.; Doorn, B. From research to operations: The USDA global reservoir and lake monitor. In Coastal Altimetry; Springer: Berlin/Heidelberg, Germany, 2011; pp. 19–50. [Google Scholar]
- Kostianoy, A.G. Seas: Dead and Dying. In Encyclopedia of Water Science, 2nd ed.; Taylor & Francis: Abingdon, UK, 2011; pp. 1029–1031. [Google Scholar] [CrossRef]
- Kostianoy, A.G. Inland seas and lakes: Central Asia case study. In Encyclopedia of Environmental Management; Jorgensen, S.E., Ed.; Taylor & Francis: New York, NY, USA, 2013; Volume II, pp. 1460–1467. [Google Scholar]
- Williamson, C.E.; Brentrup, J.A.; Zhang, J.; Renwick, W.H.; Hargreaves, B.R.; Knoll, L.B.; Overholt, E.P.; Rose, K.C. Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change. Limnol. Oceanogr. 2014, 59, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Crétaux, J.-F.; Biancamaria, S.; Arsen, A.; Bergé-Nguyen, M.; Becker, M. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin. Environ. Res. Lett. 2015, 10, 015002. [Google Scholar] [CrossRef] [Green Version]
- Sulistioadi, Y.B.; Tseng, K.-H.; Shum, C.K.; Hidayat, H.; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia. Hydrol. Earth Syst. Sci. 2015, 19, 341–359. [Google Scholar] [CrossRef] [Green Version]
- Kostianoy, A.G. Inland Seas and Lakes: Central Asia Case Study. In Environmental Management Handbook, Second Edition, Volume 4: Managing Water Resources and Hydrological Systems; Fath, B.D., Jorgensen, S.E., Eds.; Taylor and Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2020; pp. 337–348. [Google Scholar] [CrossRef]
- Tortini, R.; Noujdina, N.; Yeo, S.; Ricko, M.; Birkett, C.M.; Khandelwal, A.; Kumar, V.; Marlier, M.E.; Lettenmaier, D.P. Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018. Earth Syst. Sci. Data 2020, 12, 1141–1151. [Google Scholar] [CrossRef]
- Pham-Duc, B.; Sylvestre, F.; Papa, F.; Frappart, F.; Bouchez, C.; Crétaux, J.F. The Lake Chad hydrology under current climate change. Sci. Rep. 2020, 10, 5498. [Google Scholar] [CrossRef] [Green Version]
- GOSIC. 2021. Available online: https://www.ncdc.noaa.gov/gosic (accessed on 14 November 2021).
- GTN-L. 2021. Available online: https://community.wmo.int/governance/commission-membership/executive-council/executive-council-members/global-climate-observing-system-gcos/gcos-steering-committee/terrestrial-observation-panel-climate/global-terrestrial-network-lakes (accessed on 14 November 2021).
- Frappart, F.; Calmant, S.; Cauhopé, M.; Seyler, F.; Cazenave, A. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens. Environ. 2006, 100, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Crétaux, J.-F.; Nielsen, K.; Frappart, F.; Papa, F.; Calmant, S.; Benveniste, J. Hydrological applications of satellite altimetry: Rivers, lakes, man-made reservoirs, inundated areas. In Satellite Altimetry over Oceans and Land Surfaces; Earth Observation of Global Changes; Stammer, D., Cazenave, A., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 459–504. [Google Scholar]
- Shu, S.; Liu, H.; Beck, R.A.; Frappart, F.; Korhonen, J.; Lan, M.; Xu, M.; Yang, B.; Huang, Y. Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records. Hydrol. Earth Syst. Sci. 2021, 25, 1643–1670. [Google Scholar] [CrossRef]
- Bergé-Nguyen, M.; Cretaux, J.F.; Calmant, S.; Fleury, S.; Satylkanov, R.; Chontoev, D.; Bonnefond, P. Mapping mean lake surface from satellite altimetry and GPS kinematic surveys. Adv. Sp. Res. 2021, 67, 985–1001. [Google Scholar] [CrossRef]
- Frappart, F.; Blarel, F.; Fayad, I.; Bergé-Nguyen, M.; Crétaux, J.-F.; Shu, S.; Schregenberger, J.; Baghdadi, N. Evaluation of the Performances of Radar and Lidar Altimetry Missions for Water Level Retrievals in Mountainous Environment: The Case of the Swiss Lakes. Remote Sens. 2021, 13, 2196. [Google Scholar] [CrossRef]
- Kostianaia, E.A.; Kostianoy, A.G.; Scheglov, M.A.; Karelov, A.I.; Vasileisky, A.S. Impact of regional climate change on the infrastructure and operability of railway transport. Transp. Telecommun. 2021, 22, 183–195. [Google Scholar] [CrossRef]
- World Experience in the Construction, Maintenance and Repair of Railway Infrastructure Facilities in Permafrost Conditions; Center for Scientific and Technical Information and Libraries: Moscow, Russia, 2017; pp. 126p. (In Russian)
- Serykh, I.V.; Kostianoy, A.G. Seasonal and interannual variability of the Barents Sea temperature. Ecol. Montenegrina 2019, 25, 1–13. [Google Scholar] [CrossRef]
- Serykh, I.V.; Kostianoy, A.G. About the climatic changes in the temperature of the Baltic Sea. Fundam. Appl. Hydrophys. 2019, 12, 5–12. (In Russian) [Google Scholar] [CrossRef]
- Serykh, I.V.; Tolstikov, A.V. On the Reasons for the Long-Term Variability of the Near-Surface Air Temperature over the White Sea; Moscow University Bulletin; Series 5: Geography; Moscow University: Moscow, Russia, 2020; Volume 4, pp. 83–95. (In Russian) [Google Scholar]
- Serykh, I.V.; Kostianoy, A.G.; Lebedev, S.A.; Kostianaia, E.A. On the transition of temperature regime of the White Sea Region to a new phase state. Fundam. Appl. Hydrophys. 2022. in press (In Russian) [Google Scholar]
- Andreev, A.P. Lake Ladoga; Part 1–2; Publishing House of Maritime Department in the Main Admiralty: St. Petersburg, Russia, 1875; Part I, 263p, Part II, 135p. (In Russian) [Google Scholar]
- Filatov, N.N. (Ed.) Ladoga Lake; Petrozavodsk, Karelian Research Center, Russian Academy of Sciences: Petrozavodsk, Russia, 2000; 490p. (In Russian) [Google Scholar]
- Rumyantsev, V.A.; Drabkova, V.G. Ladoga Lake: Past, Present and Future; Publ. House “Nauka”: St. Petersburg, Russia, 2002; 327p. (In Russian) [Google Scholar]
- Rukhovets, L.; Filatov, N. (Eds.) Ladoga and Onego—Great European Lakes; Observations and Modelling; Springer: Berlin/Heidelberg, Germany; Praxis Publishing Ltd.: Chichester, UK, 2010; 315p. [Google Scholar]
- Rumyantsev, V.A.; Kondratyev, S.A. Ladoga; Publ. House of Institute of Limnology of Russian Academy of Sciences: St.-Petersburg, Russia, 2013; 568p. (In Russian) [Google Scholar]
- Bogdanov, V.I.; Kravchenkova, T.G.; Malova, T.I.; Marinich, M.A. Changes in the level of Lake Ladoga according to observations of 1859–2001 on Valaam. Doklady Akademii Nauk. 2002, 386, 672–675. (In Russian) [Google Scholar]
- Filatov, N.N.; Vyruchalkina, T.Y.; Diansky, N.A.; Nazarova, L.E.; Sinyukovich, V.N. Intracental variability of the level of the largest lakes in Russia. Doklady Akademii Nauk. 2016, 467, 589–593. (In Russian) [Google Scholar]
- Filatov, N.; Baklagin, V.; Efremova, T.; Nazarova, L.; Palshin, N. Climate change impacts on the watersheds of Lakes Onego and Ladoga from remote sensing and in situ data. Inland Waters 2019, 9, 130–141. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Shimaraev, M.N.; Buharizin, P.I.; Naumenko, M.A.; Cretaux, J.F.; Mognard, N.; Legresy, B.; Remy, F. Ice and Snow Cover of Continental Water Bodies from Simultaneous Radar Altimetry and Radiometry Observations. Surv. Geophys. 2008, 29, 271–295. [Google Scholar] [CrossRef]
- Cretaux, J.-F.; Jelinski, V.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.-C.; Nino, F.; Abarco Del Rio, R.; Cazenave, A.; et al. SOLS, a lake database to monitor in near real time water level storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Lebedev, S.A.; Troitskaya, Y.I.; Rybushkina, G.V.; Dobrovolsky, M.N. Satellite altimetry of large lakes of the Baltic Basin. In Proceedings of the 2014 IEEE/OES Baltic International Symposium (BALTIC), Tallinn, Estonia, 27–29 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Lebedev, S.A.; Troitskaya, Y.I.; Rybushkina, G.V.; Dobrovolsky, M.N. Interannual variability of the lake levels in northwest Russia based on satellite altimetry. In Complex Interfaces under Change: Sea—River—Groundwater—Lake, Proceedings of the HP2/HP3, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, 22–26 July 2013; IAHS Publ.: Oxfordshire, UK, 2015; pp. 91–97. [Google Scholar] [CrossRef] [Green Version]
- Karetnikov, S.G.; Naumenko, M.A.; Guzivatiy, V.V.; Shimaraev, M.N.; Kouraev, A.V. Concordance of interannual variability in ice regime of Baikal and lake Ladoga. Geogr. Nat. Resour. 2016, 37, 135–143. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Kostianaia, E.A.; Lebedev, S.A.; Serykh, I.V.; Prokofiev, Y.A. Interannual variability in the level of lakes in northwestern Russia. In Proceedings of the VI International Scientific and Practical Conference “Fundamental and Applied Aspects of Geology, Geophysics and Geoecology Using Modern Information Technologies”, Maykop State Technological University, Maykop, Russia, 17–21 May 2021; Part 1. pp. 158–167. (In Russian). [Google Scholar]
- Campos, I.O.; Mercier, F.; Maheu, C.; Cochonneau, G.; Kosuth, P.; Blitzkow, D.; Cazenave, A. Temporal variations of river basin waters from Topex/Poseidon satellite altimetry. Application to the Amazon basin. Earth Planet. Sci. 2001, 333, 633–643. [Google Scholar] [CrossRef]
- Birkett, C.M.; Mertes, L.A.K.; Dunne, T.; Costa, M.H.; Jasinski, M.J. Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry. J. Geophys. Res. 2002, 107, 8059. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Zakharova, E.A.; Samain, O.; Mognard, N.M.; Cazenave, A. Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens. Environ. 2004, 93, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Birkett, C.M.; Beckley, B. Investigating the performance of the Jason-2/OSTM radar altimeter over lakes and reservoirs. Mar. Geodesy 2010, 33, 204–238. [Google Scholar] [CrossRef]
- Lebedev, S.A.; Kostianoy, A.G. Satellite Altimetry of the Caspian Sea; Publ. House “Sea”: Moscow, Russia, 2005; 366p. (In Russian) [Google Scholar]
- Rybushkina, G.V.; Troitskaya, Y.I.; Soustova, I.A.; Balandina, G.N.; Lebedev, S.A.; Kostianoy, A.G. Satellite altimetry of inland water bodies. Tr. GOIN (Proc. Russ. State Oceanogr. Inst.) 2011, 213, 179–192. (In Russian) [Google Scholar]
- Troitskaya, Y.I.; Rybushkina, G.V.; Soustova, I.A.; Balandina, G.N.; Lebedev, S.A.; Kostianoy, A.G.; Panyutin, A.A.; Filina, L.V. Satellite altimetry of inland water bodies. Water Resour. 2012, 39, 184–199. [Google Scholar] [CrossRef]
- Troitskaya, Y.; Rybushkina, G.; Soustova, I.; Balandina, G.; Lebedev, S.; Kostianoy, A. Adaptive retracking of Jason-1 altimetry data for inland waters: The example of the Gorky Reservoir. Int. J. Remote Sens. 2012, 33, 7559–7578. [Google Scholar] [CrossRef]
- Troitskaya, Y.; Rybushkina, G.; Soustova, I.; Lebedev, S. Adaptive Retracking of Jason-1, 2 Satellite Altimetry Data for the Volga River Reservoirs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1603–1608. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Lebedev, S.A.; Kazmina, M.V.; Tsepelev VYu Varlashina, V.M.; Neschadimova, T.G. Satellite Monitoring of Transboundary Waters of Russia and Estonia; Publ. House “Signal”: Moscow, Russia, 2012; 16p, (In Russian and English). [Google Scholar]
- Liibusk, A.; Kall, T.; Rikka, S.; Uiboupin, R.; Suursaar, Ü.; Tseng, K.-H. Validation of Copernicus sea level altimetry products in the Baltic Sea and Estonian Lakes. Remote Sens. 2021, 12, 4062. [Google Scholar] [CrossRef]
- Berry, P.A.M.; Garlick, J.D.; Freeman, J.A.; Mathers, E.L. Global inland water monitoring from multimission altimetry. Geophys. Res. Lett. 2005, 32, L16401. [Google Scholar] [CrossRef]
- Calmant, S.; Seyler, F. Continental surface waters from satellite altimetry. C. R. Geosci. 2006, 338, 1113–1122. [Google Scholar] [CrossRef]
- Cretaux, J.-F.; Calmant, S.; Abarca del Rio, R.; Kouraev, A.; Berge-Nguyen, M.; Maisongrande, P. Lakes studies from satellite altimetry. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 509–534. [Google Scholar] [CrossRef]
- International Altimetry Team (358 Co-Authors). Altimetry for the Future: Building on 25 Years of Progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.L.; Rodríguez-Gonzálvez, P.; Molina, M.C.; González-Aguilera, D.; Espejo, F. Geomatic methods at the service of water resource smodelling. J. Hydrol. 2014, 509, 105–162. [Google Scholar] [CrossRef]
- García-López, S.; Ruiz-Ortiz, V.; Muñoz-Pérez, J.J. Time-lapse photography for monitoring reservoir leakages (Montejaque dam, Andalusia, southern Spain). Hydrol. Res. 2018, 49, 281–290. [Google Scholar] [CrossRef]
- Filatov, N.N. (Ed.) Climate of Karelia: Variability and Impact on Water Bodies and Catchments; Karelian Research Center, Russian Academy of Sciences: Petrozavodsk, Russia, 2004; 224p. (In Russian) [Google Scholar]
- Filatov, N.; Johannessen, O.M.; Pozdnyakov, D.; Bobylev, L.P.; Pettersson, L. White Sea: Its Marine Environment and Ecosystem Dynamics Influenced by Global Change; Springer-Praxis: Chichester, UK, 2005; 530p. [Google Scholar]
- Filatov, N.N.; Terzhevik, A.Y. (Eds.) The White Sea and Its Catchment Area under the Influence of Climatic and Anthropogenic Factors; Institute of Northern Water Problems, Karelian Research Center, Russian Academy of Sciences: Petrozavodsk, Russia, 2007; 349p. (In Russian) [Google Scholar]
- Nazarova, L.E. Variability of mean long-term values of air temperature in Karelia. Izv. Russ. Geogr. Soc. 2014, 46, 27–33. (In Russian) [Google Scholar]
- Nazarova, L.E. Climate of the Republic of Karelia (Russia): Air temperature, variability and changes. Geopolit. Ecogeodyn. Reg. 2014, 10, 746–749. (In Russian) [Google Scholar]
- Tronin, A.A.; Gorny, V.I.; Kiselev, A.V.; Kritsuk, S.G.; Latypov, I.S. Satellite mapping of the thermal response of northern European ecosystems to climate change. In Proceedings of the All-Russian Scientific Conference with International Participation “Ecology and Space” to the Centenary of Academician of the Russian Academy of Sciences K.Ya. Kondratyev, St. Petersburg, Russia, 25–26 May 2020; pp. 72–78. (In Russian). [Google Scholar]
- Efremova, T.V.; Pal’shin, N.I. Influence of climate change on the thermal and ice regime of the lakes of Karelia according to the data of instrumental observations. In Ecological Problems of Northern Regions and Ways to Solve Them, Proceedings of the VI All-Russian Scientific Conference with International Participation Devoted to 120 Years Anniversary of G.M. Kreps and 110 Years An-niversary of O.I. Semenov-Tyan-Shanskiy, Apatity, Russia, 10–14 October 2016; Institute of North Industrial Ecology Problems of the North of the Kola Science Center of the Russian Academy of Sciences: Apatity, Russia, 2016; pp. 189–193. (In Russian) [Google Scholar]
- Efremova, T.V.; Pal’shin, N.I.; Belashev, B.Z. Water temperature of different types of lakes in Karelia under conditions of climate change (according to the data of instrumental measurements in 1953–2011). Water Resour. 2016, 43, 228–238. (In Russian) [Google Scholar] [CrossRef]
- Romanenko, F.A.; Shilovtseva, O.A. Geomorphological Processes in the Mountains of the Kola Peninsula and Climate Change; Vestnik Moscow University, Series 5 Geography; Moscow University: Moscow, Russia, 2016; Volume 6, pp. 78–86. (In Russian) [Google Scholar]
- Nazarova, L.E. Modern climatic conditions of the White Sea catchment area. Izv. Russ. Geogr. Soc. 2017, 149, 16–24. (In Russian) [Google Scholar]
- Filatov, N.N.; Nazarova, L.E.; Druzhinin, P.V. Influence of climatic and anthropogenic factors on the state of the “White Sea—Catchment” system. Trans. Karelian Res. Cent. Russ. Acad. Sci. 2019, 9, 30–50. (In Russian) [Google Scholar]
- Kondratyev, S.A.; Nazarova, L.E.; Shmakova, M.V.; Bovykin, I.V. Assessment of Runoff Changes in the Drainage Basin of Lake Onega as a Result of Possible Changes in Climatic Parameters (According to Mathematical Modeling); Institute of Limnology RAS, Institute of Water Problems of the North, Karelian Research Center, Russian Academy of Sciences: St. Petersburg, Russia, 2007; 30p. (In Russian) [Google Scholar]
- Yakubovich, A.N.; Yakubovich, I.A. Forecasting the impact of climatic changes on the functionality of the transport infrastructure of the permafrost zone in Russia. Intellect. Innov. Investig. 2019, 1, 104–110. (In Russian) [Google Scholar]
- Ricker, N. Further developments in the wavelet theory of seismogram structure. Bull. Seismol. Soc. Am. 1943, 33, 197–228. [Google Scholar] [CrossRef]
- Ricker, N. Wavelet functions and their polynomials. Geophysics 1944, 9, 314–323. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Astaf’eva, N.M. Wavelet analysis: Basic theory and some applications. Physics-Uspekhi 1996, 39, 1085–1108. [Google Scholar] [CrossRef]
- Mallat, S. Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2009; 824p. [Google Scholar] [CrossRef]
- Galaganov, O.N.; Gorshkov, V.L.; Guseva, T.V.; Rosenberg, N.K.; Perederin, V.P.; Scherbakova, N.V. Recent crustal motion of Ladoga-Onega Region revealed from satellite and ground measurements. Curr. Probl. Remote Sens. Earth Space 2011, 8, 130–136. (In Russian) [Google Scholar]
Parameter | Ladoga (Russia) | Onega (Russia) | Vänern (Sweden) | Saimaa (Finland) | Peipus (Estonia, Russia) |
---|---|---|---|---|---|
Watershed area (km2) | 276,000 | 66,284 | 46,800 | 61,054 | 47,800 |
Max length (km) | 219 | 245 | 140 | 190 | 152 |
Max width (km) | 138 | 91.6 | 65 | 85 | 47 |
Surface of the area (km2) | 17,870 | 9720 | 5650 | 4380 | 3555 |
Average depth (m) | 5 | 30 | 27 | 17 | 7.1 |
Max depth (m) | 230 | 127 | 106 | 82 | 15.3 |
Volume (km3) | 838 | 285 | 153 | 36 | 25 |
Lake | Satellite | Track Number |
---|---|---|
Database for Hydrological Time Series of Inland Waters (DAHITI) | ||
Ladoga | TOPEX/Poseidon, Jason-1/2/3 | 066, 187 |
Onega | TOPEX/Poseidon, Jason-1/2/3 | 009, 218 |
Global Reservoirs and Lakes Monitor (G-REALM) | ||
Ladoga | TOPEX/Poseidon, Jason-1/2/3 | 066 |
Onega | TOPEX/Poseidon, Jason-1/2/3 | 218 |
HYDROWEB | ||
Ladoga | Topex/Poseidon | 009, 066, 187, 244 |
Jason-1 | 009, 066, 187 | |
Jason-2/3 | 009, 066, 187 | |
GFO-1 | 016, 139, 225, 332, 418 | |
ENVISAT | 272, 358, 369, 455, 730, 816, 902, 913, 999 | |
SARAL | 272, 358, 455, 730, 816, 902, 913, 999 | |
Sentinel-3A | 100, 111, 214, 328, 756, 767 | |
Onega | Topex/Poseidon | 009, 218 |
Jason-1/2/3 | 009, 040, 187, 218 | |
GFO-1 | 016, 081, 102, 483 | |
ENVISAT | 100, 186, 197, 558, 644, 655 | |
SARAL | 100, 197, 558, 644, 655 | |
Sentinel-3A | 442, 556, 567, 670, 681 |
Lake | Water Level Gauge Station | “Zero” Level of the Gauge Station, m ASL * | Latitude N | Longitude E |
---|---|---|---|---|
Ladoga | Petrokrepost | 0.0 | 59.95 | 31.03 |
Novaya Sviritsa | 0.0 | 60.47 | 32.9 | |
Syas’skye Ryadki | 0.0 | 60.15 | 32.5 | |
Onega | Voznesenye | 31.8 | 61.36 | 35.35 |
Petrozavodsk | 31.8 | 61.73 | 34.33 | |
Kondopoga | 31.8 | 62.61 | 34.43 |
Lake | Meteostation (WMO N) | Elevation, m ASL | Latitude N | Longitude E |
---|---|---|---|---|
Ladoga | Sortavala (N 22802) | +19.0 | 61.72 | 30.72 |
Onega | Petrozavodsk (N22820) | +110.0 | 61.82 | 34.27 |
Vytegra (N 22837) | +56.0 | 61.02 | 36.45 |
Parameter | DAHITI | G-REALM | HYDROWEB | Average |
---|---|---|---|---|
Number of measurements | 1810 | 1073 | 1536 | 1473 |
Mean lake level (m ASL) | 4.81 | 4.55 | 4.62 | 4.64 |
Standard deviation (m) | 0.21 | 0.19 | 0.19 | 0.21 |
Minimum (m ASL) | 3.01 | 2.99 | 3.46 | 3.07 |
Maximum (m ASL) | 6.18 | 5.70 | 5.74 | 5.79 |
Amplitude (m) | 3.15 | 2.71 | 2.28 | 2.73 |
Linear trend (cm/year) | +1.17 | +0.81 | +0.27 | +0.75 |
Parameter | DAHITI | G-REALM | HYDROWEB | Average |
---|---|---|---|---|
Number of measurements | 1160 | 1031 | 1250 | 1147 |
Mean lake level (m ASL) | 33.50 | 33.35 | 33.58 | 33.44 |
Standard deviation (m) | 0.06 | 0.07 | 0.05 | 0.08 |
Minimum (m ASL) | 32.52 | 32.08 | 32.73 | 32.11 |
Maximum (m ASL) | 34.10 | 33.95 | 34.22 | 34.07 |
Amplitude (m) | 1.58 | 1.87 | 1.49 | 1.96 |
Linear trend (cm/year) | +0.41 | +0.62 | −0.27 | +0.47 |
Water Level Gauge Station | Parameter | DAHITI | G-REALM | HYDROWEB |
---|---|---|---|---|
Petrokrepost | Correlation coefficient, R | 0.966 | 0.976 | 0.971 |
Arithmetical mean, AM (m) | 4.40 | 4.41 | 4.47 | |
Standard deviation, SD (m) | 0.44 | 0.43 | 0.41 | |
Coefficients in a linear regression equation (y = ax + b), where Y is water level (m) derived from altimetry data and X is water level (m) derived from in-situ gauge stations. | a = +1.103 b = −0.97 | a = +1.135 b = −0.80 | a = +1.138 b = −0.79 | |
Coefficient of determination, R2 | 0.933 | 0.953 | 0.942 | |
Nash–Sutcliffe model efficiency coefficient (NSE) | 0.933 | 0.953 | 0.942 | |
Percent bias (PBIAS) | 0.47% | 0.32% | 0.36% | |
Syas’skye Ryadki | R | 0.978 | 0.984 | 0.929 |
AM (m) | 4.62 | 4.62 | 4.69 | |
SD (m) | 0.37 | 0.36 | 0.38 | |
Coefficients in a linear regression | a = +0.938 b = +0.08 | a = +0.969 b = +0.21 | a = +1.009 b = +0.04 | |
R2 | 0.957 | 0.967 | 0.863 | |
NSE | 0.957 | 0.967 | 0.863 | |
PBIAS | 0.20% | 0.15% | 0.71% | |
Novaya Sviritsa | R | 0.927 | 0.924 | 0.919 |
AM (m) | 4.80 | 4.81 | 4.87 | |
SD (m) | 0.36 | 0.35 | 0.36 | |
Coefficients in a linear regression | a = +0.907 b = +0.41 | a = +0.950 b = +0.47 | a = +0.957 b = +0.46 | |
R2 | 0.860 | 0.853 | 0.844 | |
NSE | 0.8560 | 0.853 | 0.844 | |
PBIAS | 0.65% | 0.69% | 0.71% |
Water Level Gauge Station | Parameter | DAHITI | G-REALM | HYDROWEB |
---|---|---|---|---|
Kondopoga | R | 0.893 | 0.924 | 0.907 |
AM (m) | 33.22 | 33.18 | 33.21 | |
SD (m) | 0.18 | 0.2 | 0.18 | |
Coefficients in a linear regression | a = +0.778 | a = +0.856 | a = +0.845 | |
b = +7.15 | b = +4.63 | b = +4.83 | ||
R2 | 0.797 | 0.855 | 0.822 | |
NSE | 0.797 | 0.855 | 0.822 | |
PBIAS | 0.03% | 0.03% | 0.02% | |
Petrozavodsk | R | 0.896 | 0.928 | 0.917 |
AM (m) | 33.22 | 33.19 | 33.22 | |
SD (m) | 0.18 | 0.19 | 0.18 | |
Coefficients in a linear regression | a = +0.776 | a = +0.850 | a = +0.844 | |
b = +7.22 | b = +4.82 | b = +4.89 | ||
R2 | 0.804 | 0.862 | 0.841 | |
NSE | 0.804 | 0.862 | 0.841 | |
PBIAS | 0.03% | 0.02% | 0.02% | |
Voznesenye | R | 0.895 | 0.937 | 0.906 |
AM (m) | 33.23 | 33.21 | 33.24 | |
SD (m) | 0.18 | 0.2 | 0.18 | |
Coefficients in a linear regression | a = +0.806 | a = +0.892 | a = +0.859 | |
b = +6.24 | b = +3.46 | b = +4.40 | ||
R2 | 0.8 | 0.877 | 0.821 | |
NSE | 0.8 | 0.877 | 0.821 | |
PBIAS | 0.03% | 0.02% | 0.03% |
WMO Meteostation Number | Station | Lake | Time Period | Y = aX + b | Coefficient of Determination, R2 | |
---|---|---|---|---|---|---|
a | b | |||||
Air Temperature Trend (°C/year) | ||||||
22802 | Sortavala | Ladoga | 1945–2019 | +0.029 | −54.47 | 0.0046 |
22820 | Petrozavodsk | Onega | 1949–2019 | +0.030 | −57.41 | 0.0042 |
22837 | Vytegra | Onega | 1945–2019 | +0.031 | −57.72 | 0.0044 |
Sum of Precipitation Trend (mm/month/year) | ||||||
22802 | Sortavala | Ladoga | 1966–2019 | +0.227 | −399.40 | 0.0119 |
22820 | Petrozavodsk | Onega | 1966–2019 | +0.086 | −122.79 | 0.0020 |
22837 | Vytegra | Onega | 1966–2019 | +0.114 | −170.54 | 0.0030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostianoy, A.G.; Lebedev, S.A.; Kostianaia, E.A.; Prokofiev, Y.A. Interannual Variability of Water Level in Two Largest Lakes of Europe. Remote Sens. 2022, 14, 659. https://doi.org/10.3390/rs14030659
Kostianoy AG, Lebedev SA, Kostianaia EA, Prokofiev YA. Interannual Variability of Water Level in Two Largest Lakes of Europe. Remote Sensing. 2022; 14(3):659. https://doi.org/10.3390/rs14030659
Chicago/Turabian StyleKostianoy, Andrey G., Sergey A. Lebedev, Evgeniia A. Kostianaia, and Yaan A. Prokofiev. 2022. "Interannual Variability of Water Level in Two Largest Lakes of Europe" Remote Sensing 14, no. 3: 659. https://doi.org/10.3390/rs14030659
APA StyleKostianoy, A. G., Lebedev, S. A., Kostianaia, E. A., & Prokofiev, Y. A. (2022). Interannual Variability of Water Level in Two Largest Lakes of Europe. Remote Sensing, 14(3), 659. https://doi.org/10.3390/rs14030659