Satellite Remote Sensing of Water Quality Variation in a Semi-Enclosed Bay (Yueqing Bay) under Strong Anthropogenic Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Satellite Remote Sensing Data
2.2.2. Field Measurement Data
2.3. Analytical Methods and Related Supplementary Data
2.3.1. Matching Satellite and Field Measurement Data
2.3.2. SVM Algorithm and Statistical Parameters of Model Assessment
2.3.3. Hydrodynamic Model for Yueqing Bay
2.3.4. Characterization of Intensity of Anthropogenic Activities in Cities along Yueqing Bay
3. Results
3.1. Algorithm Construction and Validation
3.2. Spatiotemporal Variations in Nutrient Concentrations in Yueqing Bay
3.2.1. Spatial Distribution of Nutrient Concentrations in Yueqing Bay
3.2.2. Seasonal Variations in Nutrient Concentrations in Yueqing Bay
3.2.3. Long Time-Series Variations in Nutrient Concentrations in Yueqing Bay
4. Discussion
4.1. Influences of Rivers, Hydrodynamics, and Biological Effects
4.2. Influences of Intensity of Anthropogenic Activities in River Basin
4.3. Influences of Urban Management in River Basin and Changes in Bay Governance Policy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Creel, L. Ripple Effects: Population and Coastal Regions; Population Reference Bureau: Washington, DC, USA, 2003. [Google Scholar]
- Liu, L.; Han, H. Research on countermeasures of coastal zone management. Mar. Dev. Manag. 2007, 6, 51–55. [Google Scholar]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worm, B.; Hilborn, R.; Baum, J.K.; Branch, T.A.; Collie, J.S.; Costello, C.; Fogarty, M.J.; Fulton, E.A.; Hutchings, J.A.; Jennings, S.; et al. Rebuilding global fisheries. Science 2009, 325, 578–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, T.; Wang, J.; Fang, Y.; Qin, Y.; Huang, L.; Chen, Y. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Sci. Total Environ. 2020, 708, 135153. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, K.; Okada, T. Tokyo Bay: Its environmental status—Past, present, and future. In The Environment in Asia Pacific Harbours; Springer: Berlin/Heidelberg, Germany, 2006; pp. 15–34. [Google Scholar] [CrossRef]
- Ribbe, J.; Wolff, J.-O.; Staneva, J.; Gräwe, U. Assessing water renewal time scales for marine environments from three-dimensional modelling: A case study for Hervey Bay, Australia. Environ. Modell. Softw. 2008, 23, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.D.; Prince, S.D. Effects of urban and non-urban land covers on nitrogen and phosphorus runoffs to Chesapeake Bay. Ecol. Indic. 2010, 10, 459–474. [Google Scholar] [CrossRef]
- Ministry of Ecology Environment of the People’s Republic of China. Bulletin on China’s Ecological Environment in 2020. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/ (accessed on 10 October 2021).
- Harding, L.W.; Gallegos, C.L.; Perry, E.S.; Miller, W.D.; Adolf, J.E.; Mallonee, M.E.; Paerl, H.W. Long-term trends of nutrients and phytoplankton in Chesapeake Bay. Estuar. Coasts 2016, 39, 664–681. [Google Scholar] [CrossRef]
- Kubo, A.; Hashihama, F.; Kanda, J.; Horimoto-Miyazaki, N.; Ishimaru, T. Long-term variability of nutrient and dissolved organic matter concentrations in Tokyo Bay between 1989 and 2015. Limnol. Oceanogr. 2019, 64, S209–S222. [Google Scholar] [CrossRef]
- Kubo, A.; Kanda, J. Coastal urbanization alters carbon cycling in Tokyo Bay. Sci. Rep. 2020, 10, 20413. [Google Scholar] [CrossRef]
- Cao, F.F.; Dai, K.; Tao, Q.R.; Fan, C.Y.; He, L.L. Marine pollution status of nearshore areas of Hangzhou Bay and its governance countermeasures. Environ. Sci. Technol. 2020, 43, 60–69. [Google Scholar] [CrossRef]
- Greening, H.; Janicki, A.; Sherwood, E.T.; Pribble, R.; Johansson, J.O.R. Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA. Estuar. Coastal Shelf Sci. 2014, 151, A1–A16. [Google Scholar] [CrossRef]
- Liu, M.; Bi, Y.P.; Gong, Y.J.; Xi, X.H.; Lei, L.Y. Integrated restoration of ecological environments in typical bays:in a case of Jinzhou Bay and Hulushan Bay in Liaoning Province. J. Dalian Ocean. Univ. 2014, 29, 272–275. [Google Scholar] [CrossRef]
- Hassett, B.; Palmer, M.; Bernhardt, E.; Smith, S.; Carr, J.; Hart, D. Restoring watersheds project by project: Trends in Chesapeake Bay tributary restoration. Front. Ecol. Environ. 2005, 3, 259–267. [Google Scholar] [CrossRef]
- Perry, W. Elements of South Florida’s Comprehensive Everglades Restoration Plan. Ecotoxicology 2004, 13, 185–193. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Brivio, P.; Giardino, C.; Zilioli, E. Determination of chlorophyll concentration changes in lake garda using an image-based radiative transfer code for Landsat TM images. Int. J. Remote Sens. 2001, 22, 487–502. [Google Scholar] [CrossRef]
- Brivio, P.A.; Giardino, C.; Zilioli, E. Validation of satellite data for quality assurance in lake monitoring applications. Sci. Total Environ. 2001, 268, 3–18. [Google Scholar] [CrossRef]
- Nelson, N.B.; Siegel, D.A. Chromophoric DOM in the open ocean. In Biogeochemistry of Marine Dissolved Organic Matter; Academic Press: San Diego, CA, USA, 2002; pp. 547–578. [Google Scholar]
- Somvanshi, S.; Kunwar, P.; Singh, N.B.; Shukla, S.P.; Pathak, V. Integrated remote sensing and GIS approach for water quality analysis of gomti river, Uttar Pradesh. Int. J. Environ. Sci. 2012, 3, 62–74. [Google Scholar]
- Ritchie, J.C.; Schiebe, F.R.; Mchenry, J.R. Remote sensing of suspended sediments in surface waters. Photogramm. Eng. Remote Sens. 1976, 42, 1539–1545. [Google Scholar]
- Mohd Hasmadi, I.; Norsaliza, U. Analysis of SPOT-5 data for mapping turbidity level of river klang, peninsular malaysia. Appl. Remote Sens. J. 2010, 1, 14–18. [Google Scholar]
- Lim, J.; Choi, M. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environ. Monit. Assess. 2015, 187, 384. [Google Scholar] [CrossRef] [PubMed]
- Alparslan, E.; Coskun, H.G.; Alganci, U. Water quality determination of Küçükçekmece Lake, Turkey by using multispectral satellite data. Sci. World J. 2009, 9, 1215–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahraiyni, T.H.; Schaale, M.; Fell, F.; Fischer, J.; Preusker, R.; Vatandoust, M.; Shouraki, B.S.; Tajrishy, M.; Khodaparast, H.; Tavakoli, A. Application of the active learning method for the estimation of geophysical variables in the caspian sea from satellite ocean colour observations. Int. J. Remote Sens. 2007, 28, 4677–4683. [Google Scholar] [CrossRef]
- Zhang, C.; Han, M.I.N. Mapping chlorophyll—A concentration in Laizhou Bay using Landsat 8 oli data. In Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 28 June–3 July 2015. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Busse, L.B.; Simpson, J.C.; Cooper, S.D. Relationships among nutrients, algae, and land use in urbanized southern California streams. Can. J. Fish. Aquat. Sci. 2006, 63, 2621–2638. [Google Scholar] [CrossRef]
- Uusitalo, R.; Yli-Halla, M.; Turtola, E. Suspended soil as a source of potentially bioavailable phosphorus in surface runoff waters from clay soils. Water Res. 2000, 34, 2477–2482. [Google Scholar] [CrossRef]
- Kim, S.-I.; Kim, H.-C.; Hyun, C.-U. High resolution ocean color products estimation in Fjord of Svalbard, arctic sea using Landsat-8 oli. Korean J. Remote Sens. 2014, 30, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Allan, M.G.; Hamilton, D.P.; Hicks, B.J.; Brabyn, L. Landsat remote sensing of chlorophyll a concentrations in central north island lakes of new zealand. Int. J. Remote Sens. 2011, 32, 2037–2055. [Google Scholar] [CrossRef]
- He, W.; Chen, S.; Liu, X.; Chen, J. Water quality monitoring in a slightly-polluted inland water body through remote sensing—Case study of the Guanting Reservoir in Beijing, China. Front. Environ. Sci. Eng. China 2008, 2, 163–171. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Duan, H.; Barnes, B.B.; Ma, R. An EOF-based algorithm to estimate chlorophyll a concentrations in Taihu Lake from MODIS land-band measurements: Implications for near real-time applications and forecasting models. Remote Sens. 2014, 6, 10694–10715. [Google Scholar] [CrossRef] [Green Version]
- Li, J. Hydraulic Properties of Environment in the Yueqing Bay. Master’s Thesis, Zhejiang University, Hangzhou, China, 2010. [Google Scholar]
- Luo, F.; Liao, G.H.; Yang, C.H.; Xu, X.H. Study on the features of water exchange in Yueqingwan Bay. J. Mar. Sci. 2011, 29, 79–88. [Google Scholar] [CrossRef]
- China Bays Compiling Committee. Chinese Harbours and Embayments; Ocean Press: Beijing, China, 1993; Volume 6. [Google Scholar]
- Guo, Y.M.; Zhu, J.P.; Gu, J.; Bao, J.J.; He, Y.N.; Liu, Q. Interannual variations of nutrient contents in fishing waters of the Yueqing Bay in May and August during 2000–2014. Mod. Agric. Sci. Technol. 2015, 254–255. [Google Scholar] [CrossRef]
- Mu, J.B.; Wen-Ren, Y.Z.; Ying, C. Impact of Tidal Flat Reclamation on Water Exchange in the Yueqing Bay. In Proceedings of the 14th National Conference on Hydrodynamics and the 28th National Symposium on Hydrodynamics: Changchun, Jilin, China, 8–10 August 2017. [Google Scholar]
- Zhang, L.J. Environment and Resource Characteristics and Integrated Coastal Zone Management of the Yueqing Bay in Zhejiang Province. Resour. Sci. 2001, 22, 57–61. [Google Scholar] [CrossRef]
- Yu, M.J. Response of Landscape Pattern of the Yueqing Bay Coastal Zone to Human Disturbance; Zhejiang Normal University: Jinhua, China, 2020. [Google Scholar]
- Zhou, H. Zhejiang Islands; Higher Education Press: Beijing, China, 1998. [Google Scholar]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1414–1418. [Google Scholar]
- State Oceanic Administration (Now the Ministry of Natural Resources of The People’s Republic of China). Code of Practice for Marine Monitoring Technology; State Oceanic Administration: Beijing, China, 1991. [Google Scholar]
- Kupssinskü, L.S.; Guimaraes, T.T.; De Souza, E.M.; Zanotta, D.C.; Veronez, M.R.; Gonzaga, L., Jr.; Mauad, F.F. A method for chlorophyll-a and suspended solids prediction through remote sensing and machine learning. Sensors 2020, 20, 2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods. Environ. Pollut. 2021, 286, 117489. [Google Scholar] [CrossRef] [PubMed]
- Wagle, N.; Acharya, T.D.; Lee, D.H. A comprehensive review on application of machine learning algorithms for water quality parameter estimation using remote sensing data. Sens. Mater. 2020, 32, 3879–3892. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A Practical Guide to Support Vector Classification. 2003. Available online: https://www.ee.columbia.edu/~sfchang/course/svia/papers/svm-practical-guide.pdf (accessed on 10 October 2021).
- Chen, C.; Liu, H.; Beardsley, R.C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.C.; Cowles, G. Finite volume coastal ocean. Oceanography 2006, 19, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bai, Y.; He, X.; Tao, B.; Li, T.; Chen, X.; Wang, T.; Gong, F. Estimating particulate organic carbon flux in a highly dynamic estuary using satellite data and numerical modeling. Remote Sens. Environ. 2021, 252, 112116. [Google Scholar] [CrossRef]
- Liu, D.; Bai, Y.; He, X.; Chen, C.-T.A.; Huang, T.-H.; Pan, D.; Chen, X.; Wang, D.; Zhang, L. Changes in riverine organic carbon input to the ocean from mainland China over the past 60 years. Environ. Int. 2020, 134, 105258. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.N.; Gao, X.L. A novel method for identifying the boundary of urban built-up areas with POI data. Acta Geogr. Sin. 2016, 71, 928–939. [Google Scholar] [CrossRef]
- Chi, J.; Jiao, L.M.; Dong, T.; Gu, Y.Y.; Ma, Y.L. Quantitative Identification and Visualization of Urban Functional Area Based on POI Data. J. Geomat. 2016, 41, 68–73. [Google Scholar] [CrossRef]
- Yu, B.C.; Liu, Y.X.; Chen, G. Urban Spatial Structure of Port City in South China Sea Based on Spatial Coupling between Nighttime Light Data and POI. J. Geo.-Inf. Sci. 2018, 20, 854–861. [Google Scholar] [CrossRef]
- Yu, W.H.; Ai, T.H.; Liu, P.C.; He, Y.K. Network Kernel Density Estimation for the Analysis of Facility POI Hotspots. Acta Geod. Cartogr. Sin. 2015, 44, 1378–1383. [Google Scholar] [CrossRef]
- Yu, W.H.; Ai, T.H. The Visualization and Analysis of POI Features under Network Space Supported by Kernel Density Estimation. Acta Geod. Cartogr. Sin. 2015, 44, 82–90. [Google Scholar] [CrossRef]
- Wang, Y.; He, H. Spatial Data Analysis Methods; Science Press: Beijing, China, 2007; pp. 66–69. ISBN 978-7-03-018966-0. [Google Scholar]
- Yu, W.H.; Ai, T.H.; Yang, M.; Liu, J.P. Detecting “Hot Spots” of Facility POIs Based on Kernel Density Estimation and Spatial Autocorrelation Technique. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 221–227. [Google Scholar] [CrossRef]
- Zaneveld, J.; Ronald, V. Bulletin of the American Meteorological Society; American Meteorological Society: Boston, MA, USA, 1995; pp. 60–63. Available online: http://www.jstor.org/stable/26231610 (accessed on 10 October 2021).
- Brodie, J.; Schroeder, T.; Rohde, K.; Faithful, J.; Masters, B.; Dekker, A.; Brando, V.; Maughan, M. Dispersal of suspended sediments and nutrients in the Great Barrier Reef lagoon during river-discharge events: Conclusions from satellite remote sensing and concurrent flood-plume sampling. Mar. Freshwater Res. 2010, 61, 651–664. [Google Scholar] [CrossRef]
- Huang, C.; Guo, Y.; Yang, H.; Li, Y.; Zou, J.; Zhang, M.; Lyu, H.; Zhu, A.; Huang, T. Using remote sensing to track variation in phosphorus and its interaction with chlorophyll-a and suspended sediment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4171–4180. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, D.; Liu, D.; Song, L.; Ji, D.; Hui, E. Nutrient estimation by HJ-1 satellite imagery of Xiangxi bay, Three Gorges Reservoir, China. Environ. Earth Sci. 2016, 75, 633. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, J.; Pan, D.; Tao, B.; Zhu, Q. A regional remote sensing algorithm for total suspended matter in the East China Sea. Remote Sens. Environ. 2012, 124, 819–831. [Google Scholar] [CrossRef]
- Gurlin, D.; Gitelson, A.A.; Moses, W.J. Remote estimation of chlorophyll-a concentration in turbid productive waters—Return to a simple two-band NIR-red model? Remote Sens. Environ. 2011, 115, 3479–3490. [Google Scholar] [CrossRef]
- Gilerson, A.A.; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knaeps, E.; Ruddick, K.G.; Doxaran, D.; Dogliotti, A.I.; Nechad, B.; Raymaekers, D.; Sterckx, S. A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters. Remote Sens. Environ. 2015, 168, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Zeng, J.N.; Pan, J.M.; Liang, C.J.; Chen, Q.Z. Comprehensive Investigation Report on the Ecological Environment of Key Harbors in Zhejiang Province; China Ocean Press: Beijing, China, 2011; pp. 114–118. [Google Scholar]
- Lee, J. Numerical Simulation of DIN&DIP Distribution in Yueqing Bay and Their Response to Important Coastal Engineerings. Master’s Thesis, Zhejiang University, Hangzhou, China, 2005. [Google Scholar]
- Wang, C.; Guo, X.F.; Fang, J.; Li, Q.S. Characteristics of seasonal spatial expansion of Fujian and Zhejiang Coastal Current and their bay effects. J. Appl. Oceanogr. 2018, 37, 1–8. [Google Scholar] [CrossRef]
- Shi, X.Y.; Li, H.S.; Wang, H.; Wang, L.S.; Zhang, C.S. Preliminary discussion about hydrochemical properties of Taiwan Warm Current in summer and their influences on harmful algal bloom-prevalent zones in East China Sea. Oceanol. Limnol. Sin. 2013, 44, 1208–1215. [Google Scholar] [CrossRef]
- Ji, X.M.; Zhang, Y.Z.; Zhu, D.K. Study on Marine Environment and Recent Coastal Evolution of Yueqing Bay, Zhejiang Province, China. Mar. Sci. Bull. 2006, 25, 44–53. [Google Scholar] [CrossRef]
- Qin, B.; Hu, W.; Gao, G.; Luo, L.; Zhang, J. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chin. Sci. Bull. 2004, 49, 54–64. [Google Scholar] [CrossRef]
- Wang, P.P. Effects of Sediment Resuspension in the Yangtze River Estuary and Neighboring Sea Areas on Nutrients in Waters; Ocean University of China: Qingdao, China, 2015. [Google Scholar]
- Peng, X.; Qiu, J.B.; Chen, S.B.; Xie, Q.L.; Li, S.L.; Huang, X.L. The study on the vulnerability of the ecosystem in Yueqing Bay. J. Mar. Sci. 2009, 27, 111–118. [Google Scholar] [CrossRef]
- Gao, S.Q.; Lu, Y.; Zeng, J.N.; Yao, L.K.; Gao, D.W. Characteristics of the Aquatic Environment and Causative Analysis of Eutrophication in Yueqing Bay. Mar. Sci. Bull. 2005, 24, 25–32. [Google Scholar] [CrossRef]
- Wenling Municipal People’s Government. Statistical Bulletin. Available online: http://www.wl.gov.cn/col/col1402302/index.html (accessed on 10 October 2021).
- Yuhuan Municipal People’s Government. Statistical Bulletin. Available online: http://www.yuhuan.gov.cn/col/col1229302012/index.html (accessed on 10 October 2021).
- Yueqing Municipal People’s Government. Statistical Bulletin. Available online: http://www.yueqing.gov.cn/col/col1229248995/index.html (accessed on 10 October 2021).
- Liu, H.Z.; Shan, B.Q.; Zhang, W.Q.; Shen, Y.Y.; Shi, Z.D. Exploration of Successful Water Pollution Control Strategy in a Province with Serious Water Pollution—Achievement of Water Co-governance in Zhejiang Province and Suggestions of Future Promotion. Environ. Prot. Sci. 2015, 3, 47–52. [Google Scholar] [CrossRef]
- Chen, X.X.; Yu, X.X.; Huang-Ye, Q.H. Yueqing City to forge modern spatial planning pattern of national land by “integrating multiple plans”. Zhejiang Land Resour. 2020, 201, 30–32. [Google Scholar] [CrossRef]
- Chu, X.D. Yuhuan to construct practice innovation bases on islands while cherishing the idea “Lucid waters and lush mountains are invaluable assets”. Zhejiang Econ. 2021, 688, 72–73. [Google Scholar] [CrossRef]
- GB 3097-1997; Quality Criteria for Seawater. Ministry of Ecology and Environment: Beijing, China, 1997.
- Xiong, H.X.; Dai, M.X.; Peng, S.T.; Hu, J.B. Enlightenments of Tokyo bay revitalization action plan (2003~2012) in Janpan to Bohai bay in China. J. Waterw. Harb. 2020, 41, 119–124. [Google Scholar] [CrossRef]
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 1 | 1 | 1 | 6 | |||
2 | 1 | 1 | 1 | 3 | |||||
3 | 1 | 1 | 1 | 3 | |||||
4 | 2 | 1 | 1 | 1 | 5 | ||||
5 | 1 | 1 | 1 | 3 | |||||
6 | 1 | 1 | 1 | 1 | 4 | ||||
7 | 1 | 2 | 2 | 2 | 1 | 8 | |||
8 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 9 | |
9 | 1 | 1 | 1 | 1 | 1 | 5 | |||
10 | 1 | 2 | 1 | 1 | 5 | ||||
11 | 1 | 1 | 1 | 1 | 4 | ||||
12 | 2 | 1 | 2 | 1 | 2 | 8 | |||
Total | 10 | 5 | 10 | 8 | 8 | 8 | 9 | 5 | 63 |
Parameter | Season | Min | Max | Mean |
---|---|---|---|---|
DIN | Spring | 0.5119 | 0.6635 | 0.6189 |
Summer | 0.2106 | 0.4601 | 0.3940 | |
Autumn | 0.4453 | 0.6128 | 0.5648 | |
Winter | 0.5603 | 0.6872 | 0.6396 | |
PO4-P | Spring | 0.0374 | 0.0507 | 0.0439 |
Summer | 0.0158 | 0.0503 | 0.0414 | |
Autumn | 0.0403 | 0.0562 | 0.0508 | |
Winter | 0.0386 | 0.0482 | 0.0444 |
Parameter | Time Interval | Region | Slope | Intercept | R2 | P | t |
---|---|---|---|---|---|---|---|
East Stream of bay head | 4.30 × 10−4 | −17.4851 | 0.3058 | 0.0325 | 2.3929 | ||
2013–2015 | West Stream of bay head | 4.30 × 10−4 | −17.3174 | 0.3248 | 0.0266 | 2.5006 | |
Southwest Shoal | 3.50 × 10−4 | −14.2267 | 0.4779 | 0.0285 | 2.4626 | ||
Yueqing Bay | 3.20 × 10−4 | −12.97 | 0.3486 | 0.0262 | 2.5342 | ||
DIN | East Stream of bay head | −1.30 × 10−5 | 1.1009 | 0.0044 | 0.6505 | −0.456 | |
West Stream of bay head | −4.80 × 10−5 | 2.5658 | 0.072 | 0.0623 | −1.9094 | ||
2015–2020 | Southwest Shoal | −6.40 × 10−5 | 3.2988 | 0.0984 | 0.0282 | −2.265 | |
Yueqing Bay | −4.00 × 10−5 | 2.18 | 0.0556 | 0.1233 | −1.573 | ||
East Stream of bay head | 1.98 × 10−5 | −0.7802 | 0.0925 | 0.2704 | 1.1511 | ||
2013–2015 | West Stream of bay head | 2.03 × 10−5 | −0.804 | 0.1003 | 0.25 | 1.2042 | |
Southwest Shoal | 7.91 × 10−6 | −0.2834 | 0.0326 | 0.5198 | 0.6616 | ||
PO4-P | Yueqing Bay | 6.20 × 10−6 | −0.2111 | 0.0824 | 0.3196 | 1.0383 | |
East Stream of bay head | −1.50 × 10−6 | 0.1055 | 0.0118 | 0.4579 | −0.7485 | ||
2015–2020 | West Stream of bay head | −1.70 × 10−6 | 0.1154 | 0.0177 | 0.362 | −0.9205 | |
Southwest Shoal | −2.90 × 10−6 | 0.1663 | 0.0273 | 0.2566 | −1.1484 | ||
Yueqing Bay | −2.00 × 10−7 | 0.0545 | 0.0004 | 0.8906 | −0.1383 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Bai, Y.; Zhang, Z.; He, X.; Wang, Z.; Zhang, S.; Dai, Q. Satellite Remote Sensing of Water Quality Variation in a Semi-Enclosed Bay (Yueqing Bay) under Strong Anthropogenic Impact. Remote Sens. 2022, 14, 550. https://doi.org/10.3390/rs14030550
Zhu B, Bai Y, Zhang Z, He X, Wang Z, Zhang S, Dai Q. Satellite Remote Sensing of Water Quality Variation in a Semi-Enclosed Bay (Yueqing Bay) under Strong Anthropogenic Impact. Remote Sensing. 2022; 14(3):550. https://doi.org/10.3390/rs14030550
Chicago/Turabian StyleZhu, Bozhong, Yan Bai, Zhao Zhang, Xianqiang He, Zhihong Wang, Shugang Zhang, and Qian Dai. 2022. "Satellite Remote Sensing of Water Quality Variation in a Semi-Enclosed Bay (Yueqing Bay) under Strong Anthropogenic Impact" Remote Sensing 14, no. 3: 550. https://doi.org/10.3390/rs14030550
APA StyleZhu, B., Bai, Y., Zhang, Z., He, X., Wang, Z., Zhang, S., & Dai, Q. (2022). Satellite Remote Sensing of Water Quality Variation in a Semi-Enclosed Bay (Yueqing Bay) under Strong Anthropogenic Impact. Remote Sensing, 14(3), 550. https://doi.org/10.3390/rs14030550