Study and Prediction of Surface Deformation Characteristics of Different Vegetation Types in the Permafrost Zone of Linzhi, Tibet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Principle of PS-InSAR
2.4. Principle of SBAS-InSAR
2.5. Principles of Statistics–Time Series Prediction Models
2.5.1. Holt′s Exponential Smoothing Model
2.5.2. The Holt–Winters Smoothing Model
2.5.3. ARIMA Model
2.6. Performance Indicators
3. Results and Analysis
3.1. Cross-Validation of Monitoring Results
3.2. Analysis of Surface Deformation Monitoring Results
3.3. Results of Surface Deformation under Different Vegetation Types
3.4. Correlation between Permafrost Deformation and Normalized Vegetation Index
3.5. Comparative Analysis of Machine Learning Prediction Models
4. Discussion
4.1. Correlation Analysis of Vegetation Type and Surface Deformation
4.2. Spatial Distribution of Surface Deformation Predictions
4.3. Research Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adhikari, K.; Owens, P.R.; Libohova, Z.; Miller, D.M.; Wills, S.A.; Nemecek, J. Assessing Soil Organic Carbon Stock of Wisconsin, USA and Its Fate under Future Land Use and Climate Change. Sci. Total Environ. 2019, 667, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, G.; Fang, H.; Han, Y. Climate Change Impacts on the Topography and Ecological Environment of the Wetlands in the Middle Reaches of the Yarlung Zangbo-Brahmaputra River. J. Hydrol. 2020, 590, 125419. [Google Scholar] [CrossRef]
- Ma, F.; Chen, J.; Chen, J.; Wang, T.; Yan, J. Evolution of the Hydro-Ecological Environment and Its Natural and Anthropogenic Causes during 1985–2019 in the Nenjiang River Basin. Sci. Total Environ. 2021, 799, 149256. [Google Scholar] [CrossRef]
- Buonocore, C.; Pascual, J.; Cayeiro, M.; Salinas, R.M.; Mejías, M.B. Modelling the Impacts of Climate and Land Use Changes on Water Quality in the Guadiana Basin and the Adjacent Coastal Area. Sci. Total Environ. 2021, 776, 146034. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, F.; Zhang, H.; Dong, X. Quantifying Changes in Multiple Ecosystem Services during 2000–2012 on the Loess Plateau, China, as a Result of Climate Variability and Ecological Restoration. Ecol. Eng. 2016, 97, 258–271. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Bense, V.F. Ground Surface Temperature and the Detection of Permafrost in the Rugged Topography on NE Qinghai-Tibet Plateau. Geoderma 2019, 333, 57–68. [Google Scholar] [CrossRef]
- Bosch, A.; Schmidt, K.; He, J.S.; Doerfer, C.; Scholten, T. Potential CO2 Emissions from Defrosting Permafrost Soils of the Qinghai-Tibet Plateau under Different Scenarios of Climate Change in 2050 and 2070. Catena 2017, 149, 221–231. [Google Scholar] [CrossRef]
- Wang, T.; Wu, T.; Wang, P.; Li, R.; Xie, C.; Zou, D. Spatial Distribution and Changes of Permafrost on the Qinghai-Tibet Plateau Revealed by Statistical Models during the Period of 1980 to 2010. Sci. Total Environ. 2019, 650, 661–670. [Google Scholar] [CrossRef]
- Wang, G.; Mao, T.; Chang, J.; Song, C.; Huang, K. Processes of Runoff Generation Operating during the Spring and Autumn Seasons in a Permafrost Catchment on Semi-Arid Plateaus. J. Hydrol. 2017, 550, 307–317. [Google Scholar] [CrossRef]
- Lin, Z.; Gao, Z.; Niu, F.; Luo, J.; Yin, G.; Liu, M.; Fan, X. High Spatial Density Ground Thermal Measurements in a Warming Permafrost Region, Beiluhe Basin, Qinghai-Tibet Plateau. Geomorphology 2019, 340, 1–14. [Google Scholar] [CrossRef]
- Sun, A.; Zhou, J.; Yu, Z.; Jin, H.; Sheng, Y.; Yang, C. Three-Dimensional Distribution of Permafrost and Responses to Increasing Air Temperatures in the Head Waters of the Yellow River in High Asia. Sci. Total Environ. 2019, 666, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, Y.; O’Connor, M.; Cardenas, M.B.; Kling, G. Active Layer Freeze-Thaw and Water Storage Dynamics in Permafrost Environments Inferred from InSAR. Remote Sens. Environ. 2020, 248, 112007. [Google Scholar] [CrossRef]
- Li, D.; Wen, Z.; Luo, J.; Zhang, M.; Chen, B. Slope Failure Induced by Cold Snap and Continuous Precipitation in the Seasonal Frozen Area of Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 694, 133547.1–133547.10. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Wu, X.; Zhao, L.; Yue, G.; Zhao, Y.; Qiao, Y.; Li, Y. Seasonal Variations in Labile Soil Organic Matter Fractions in Permafrost Soils with Different Vegetation Types in the Central Qinghai–Tibet Plateau. Catena 2016, 137, 670–678. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Wang, S.; Wang, Q.; Chen, J.; Shi, W.; Wang, X.; Liu, Y.; Tu, Y.; Huang, M.; et al. The Impacts of Vegetation on the Soil Surface Freezing-Thawing Processes at Permafrost Southern Edge Simulated by an Improved Process-Based Ecosystem Model. Ecol. Model. 2021, 456, 109663. [Google Scholar] [CrossRef]
- Jin, X.-Y.; Jin, H.-J.; Iwahana, G.; Marchenko, S.S.; Luo, D.-L.; Li, X.-Y.; Liang, S.-H. Impacts of Climate-Induced Permafrost Degradation on Vegetation: A Review. Adv. Clim. Chang. Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- Guo, W.; Liu, H.; Anenkhonov, O.A.; Shangguan, H.; Sandanov, D.V.; Korolyuk, A.Y.; Hu, G.; Wu, X. Vegetation Can Strongly Regulate Permafrost Degradation at Its Southern Edge through Changing Surface Freeze-Thaw Processes. Agric. For. Meteorol. 2018, 252, 10–17. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Z.; Guo, L.; He, H.S.; Li, M.H. Effects of Winter Chilling vs. Spring Forcing on the Spring Phenology of Trees in a Cold Region and a Warmer Reference Region. Sci. Total Environ. 2020, 725, 138323. [Google Scholar] [CrossRef]
- Xiao, G.; Zhang, Q.; Yu, L.; Wang, R.; Bai, H. Impact of Temperature Increase on the Yield of Winter Wheat at Low and High Altitudes in Semiarid Northwestern China. Agric. Water Manag. 2010, 97, 1360–1364. [Google Scholar] [CrossRef]
- Saulnier, M.; Talon, B.; Edouard, J.L. New Pedoanthracological Data for the Long-Term History of Forest Species at Mid-High Altitudes in the Queyras Valley (Inner Alps). Quat. Int. 2015, 366, 15–24. [Google Scholar] [CrossRef]
- Zhang, B.; Niu, Z.; Zhang, D.; Huo, X. Dynamic Changes and Driving Forces of Alpine Wetlands on the Qinghai–Tibetan Plateau Based on Long-Term Time Series Satellite Data: A Case Study in the Gansu Maqu Wetlands. Remote Sens. 2022, 14, 4147. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Li, Z.; Li, Y.; Zhang, Q.; Zan, M. Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau. Remote Sens. 2021, 13, 4952. [Google Scholar] [CrossRef]
- Su, X.; Zhang, Y.; Jia, J.; Liang, Y.; Li, Y. InSAR-Based Monitoring and Identification of Potential Landslides in Lueyang County, the Southern Qinling Mountains, China. J. Mt. Sci. 2021, 39, 59–70. [Google Scholar] [CrossRef]
- Meng, Z.; Shu, C.; Wu, Q.; Yang, Y.; Fu, Z. Monitoring Surface Deformation of High-Speed Railway Using Time-Series InSAR Method in Northeast China. IOP Conf. Ser. Earth Environ. Sci. 2021, 660, 012011. [Google Scholar] [CrossRef]
- Yao, J.; Yao, X.; Wu, Z.; Liu, X. Research on Surface Deformation of Ordos Coal Mining Area by Integrating Multitemporal D-InSAR and Offset Tracking Technology. J. Sens. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Jiang, C.; Fan, W.; Yu, N.; Nan, Y. A New Method to Predict Gully Head Erosion in the Loess Plateau of China Based on SBAS-InSAR. Remote Sens. 2021, 13, 421. [Google Scholar] [CrossRef]
- Cian, F.; Blasco, J.M.D.; Carrera, L. Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences 2019, 9, 124. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Dai, Z.; Gong, H.; Guo, T.; Guo, G.; Wang, J.; Teatini, P. Spatiotemporal Modeling of Land Subsidence Using a Geographically Weighted Deep Learning Method Based on PS-InSAR. Sci. Total Environ. 2021, 799, 149–244. [Google Scholar] [CrossRef]
- Chen, J.; Wu, T.; Zou, D.; Liu, L.; Wu, X.; Gong, W.; Zhu, X.; Li, R.; Hao, J.; Hu, G.; et al. Magnitudes and Patterns of Large-Scale Permafrost Ground Deformation Revealed by Sentinel-1 InSAR on the Central Qinghai-Tibet Plateau. Remote Sens. Environ. 2022, 268, 112778. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.; Feng, G.; Wang, Q.; Hu, J. Monitoring Surface Deformation over Permafrost with an Improved SBAS-InSAR Algorithm: With Emphasis on Climatic Factors Modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Rouyet, L.; Lauknes, T.R.; Christiansen, H.H.; Strand, S.M.; Larsen, Y. Seasonal Dynamics of a Permafrost Landscape, Adventdalen, Svalbard, Investigated by InSAR. Remote Sens. Environ. 2019, 231, 111236. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Zhang, T.; Wu, Q.; Jin, H.; Jin, R. Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafr. Periglac. Processes 2012, 23, 322–333. [Google Scholar] [CrossRef]
- Mu’Amalah, A.; Anjasmara, I.M.; Taufik, M. Land Subsidence Monitoring in Cepu Block Area Using PS-Insar Technique. IOP Conf. Ser. Earth Environ. Sci. 2021, 731, 012011. [Google Scholar] [CrossRef]
- Khan, R.; Li, H.; Afzal, Z.; Basir, M.; Arif, M.; Hassan, W. Monitoring Subsidence in Urban Area by PSInSAR: A Case Study of Abbottabad City, Northern Pakistan. Remote Sens. 2021, 13, 1651. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, Y.; Tan, K. Coal Mining Deformation Monitoring Using SBAS-InSAR and Offset Tracking: A Case Study of Yu County, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6077–6087. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Wu, S.; Dong, X.; Meng, Z. Surface Deformation Monitoring of a Section of Gongyu Expressway Based on SBAS-InSAR Technology. E3S Web Conf. 2021, 233, 01149. [Google Scholar] [CrossRef]
- Leenawong, C.; Chaikajonwat, T. Event Forecasting for Thailand’s Car Sales during the COVID-19 Pandemic. Data 2022, 7, 86. [Google Scholar] [CrossRef]
- Almazrouee, A.I.; Almeshal, A.M.; Almutairi, A.S.; Alenezi, M.R.; Alhajeri, S.N.; Alshammari, F.M. Forecasting of Electrical Generation Using Prophet and Multiple Seasonality of Holt–Winters Models: A Case Study of Kuwait. Appl. Sci. 2020, 10, 8412. [Google Scholar] [CrossRef]
- Rubio, L.; Alba, K. Forecasting Selected Colombian Shares Using a Hybrid ARIMA-SVR Model. Mathematics 2022, 10, 2181. [Google Scholar] [CrossRef]
- Bas, E.; Egrioglu, E.; Yolcu, U. Bootstrapped Holt Method with Autoregressive Coefficients Based on Harmony Search Algorithm. Forecasting 2021, 3, 839–849. [Google Scholar] [CrossRef]
- Zhou, W.; Tao, H.; Jiang, H. Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting. Sustainability 2022, 14, 3118. [Google Scholar] [CrossRef]
- Rubio, L.; Gutiérrez-Rodríguez, A.J.; Forero, M.G. EBITDA Index Prediction Using Exponential Smoothing and ARIMA Model. Mathematics 2021, 9, 2538. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another Look at Measures of Forecast Accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Perone, G. Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries. Econometrics 2022, 10, 18. [Google Scholar] [CrossRef]
- Yuan, Y.; Bao, A.; Liu, T.; Zheng, G.; Maeyer, P.D. Assessing Vegetation Stability to Climate Variability in Central Asia. J. Environ. Manag. 2021, 298, 113330. [Google Scholar] [CrossRef]
- Degermendzhi, A.G.; Vysotskaya, G.S.; Somova, L.A.; Pisman, T.I.; Shevyrnogov, A.P. Long-Term Dynamics of NDVI-Vegetation for Different Classes of Tundra Depending on the Temperature and Precipitation. Dokl. Earth Sci. 2020, 493, 658–660. [Google Scholar] [CrossRef]
- Szabó, S. NDVI as a Proxy for Estimating Sedimentation and Vegetation Spread in Artificial Lakes—Monitoring of Spatial and Temporal Changes by Using Satellite Images Overarching Three Decades. Remote Sens. 2020, 12, 1468. [Google Scholar] [CrossRef]
- Citakoglu, H. Comparison of Multiple Learning Artificial Intelligence Models for Estimation of Long-Term Monthly Temperatures in Turkey. Arab. J. Geosci 2021, 14, 2131. [Google Scholar] [CrossRef]
- Latif, S.D.; Ahmed, A.N.; Sathiamurthy, E.; Huang, Y.F.; El-Shafie, A. Evaluation of Deep Learning Algorithm for Inflow Forecasting: A Case Study of Durian Tunggal Reservoir, Peninsular Malaysia. Nat. Hazards 2021, 109, 351–369. [Google Scholar] [CrossRef]
- Evans, F.H.; Shen, J. Long-Term Hindcasts of Wheat Yield in Fields Using Remotely Sensed Phenology, Climate Data and Machine Learning. Remote Sens. 2021, 13, 2435. [Google Scholar] [CrossRef]
- Li, J.; Chen, B. Optimal Solar Zenith Angle Definition for Combined Landsat-8 and Sentinel-2A/2B Data Angular Normalization Using Machine Learning Methods. Remote Sens. 2021, 13, 2598. [Google Scholar] [CrossRef]
- Tudor, C.; Sova, R. Benchmarking GHG Emissions Forecasting Models for Global Climate Policy. Electronics 2021, 10, 3149. [Google Scholar] [CrossRef]
- Stier, Q.; Gehlert, T.; Thrun, M.C. Multiresolution Forecasting for Industrial Applications. Processes 2021, 9, 1697. [Google Scholar] [CrossRef]
- Tao, Q.; Guo, Z.; Wang, F.; An, Q.; Han, Y. SBAS-InSAR Time Series Ground Subsidence Monitoring along Metro Line 13 in Qingdao, China. Arab. J. Geosci. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Zhu, Y.; Xing, X.; Chen, L.; Yuan, Z.; Tang, P. Ground Subsidence Investigation in Fuoshan, China, Based on SBAS-InSAR Technology with TerraSAR-X Images. Appl. Sci. 2019, 9, 2038. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z. Ultra-Short-Term Wind Speed Forecasting Using an Optimized Artificial Intelligence Algorithm. Renew. Energy 2021, 171, 1418–1435. [Google Scholar] [CrossRef]
- Xue, Y.; Meng, X.; Wasowsk, J.; Chen, G.; Li, K.; Guo, P.; Bovenga, F.; Zeng, R. Spatial Analysis of Surface Deformation Distribution Detected by Persistent Scatterer Interferometry in Lanzhou Region, China. Environ. Earth Sci. 2015, 75, 80. [Google Scholar] [CrossRef]
- Yao, G.; Ke, C.-Q.; Zhang, J.; Lu, Y.; Zhao, J.; Lee, H. Surface Deformation Monitoring of Shanghai Based on ENVISAT ASAR and Sentinel-1A Data. Environ. Earth Sci. 2019, 78, 225. [Google Scholar] [CrossRef]
- Lei, K.; Ma, F.; Chen, B.; Luo, Y.; Cui, W.; Zhou, Y.; Liu, H.; Sha, T. Three-Dimensional Surface Deformation Characteristics Based on Time Series InSAR and GPS Technologies in Beijing, China. Remote Sens. 2021, 13, 3964. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, G.; Yi, S.; Zhen, W.; Guan, J.; He, X.; Ye, B. Different Response of Vegetation to Permafrost Change in Semi-Arid and Semi-Humid Regions in Qinghai-Tibetan Plateau. Environ. Earth Sci. 2012, 66, 985–991. [Google Scholar] [CrossRef]
- Xu, M.; Kang, S.; Chen, X.; Wu, H.; Wang, X.; Su, Z. Detection of Hydrological Variations and Their Impacts on Vegetation from Multiple Satellite Observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ. 2018, 639, 1220–1232. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, G.; Li, C.; Yang, Y. The Variability of Soil Thermal and Hydrological Dynamics with Vegetation Cover in a Permafrost Region. Agric. For. Meteorol. 2012, 162–163, 44–57. [Google Scholar] [CrossRef]
- Matthew, S.; Josh, S.; Gary, M.; Welker, J.M.; Oberbauer, S.F.; Liston, G.E.; Jace, F.; Romanovsky, V.E. Winter Biological Processes Could Help Convert Arctic Tundra to Shrubland. BioScience 2005, 55, 17–26. [Google Scholar] [CrossRef]
- Wang, G.; Hu, H.; Li, T. The Influence of Freeze-Thaw Cycles of Active Soil Layer on Surface Runoff in a Permafrost Watershed. J. Hydrol. 2009, 375, 438–449. [Google Scholar] [CrossRef]
- Beever, E.A.; Woodward, A. Design of Ecoregional Monitoring in Conservation Areas of High-Latitude Ecosystems under Contemporary Climate Change. Biol. Conserv. 2011, 144, 1258–1269. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, X.; Wang, Z.; Sheng, Y.; Fang, H.; Zhao, Y.; Hu, G.; Li, W.; Pang, Q.; Shi, J. Soil Organic Carbon and Total Nitrogen Pools in Permafrost Zones of the Qinghai-Tibetan Plateau. Sci. Rep. 2018, 8, 3656. [Google Scholar] [CrossRef] [Green Version]
ID | PS (mm/a) | SBAS (mm/a) | Difference (mm/a) | ID | PS (mm/a) | SBAS (mm/a) | Difference (mm/a) |
---|---|---|---|---|---|---|---|
1 | 6.14 | 5.68 | 0.46 | 15 | −3.28 | −4.61 | 1.33 |
2 | −5.74 | −6.02 | 0.28 | 16 | −3.27 | −4.11 | 0.84 |
3 | −1.61 | −2.07 | 0.46 | 17 | −4.56 | −4.73 | 0.17 |
4 | 5.21 | 5.11 | 0.1 | 18 | 1.43 | 2.74 | −1.31 |
5 | −0.94 | −0.59 | −0.35 | 19 | −4.56 | −3.12 | −1.44 |
6 | −5.74 | −6.02 | 0.28 | 20 | 0.93 | 0.42 | 0.51 |
7 | −23.5 | −23.9 | 0.4 | 21 | 1.19 | 0.97 | 0.22 |
8 | −24.01 | −24.65 | 0.64 | 22 | 1.17 | 0.96 | 0.21 |
9 | −17.03 | −19.09 | 2.06 | 23 | 0.35 | 0.21 | 0.14 |
10 | 4.23 | 4.36 | −0.13 | 24 | 0.44 | 0.53 | −0.09 |
11 | 0.98 | 1.62 | −0.64 | 25 | 1.14 | 0.77 | 0.37 |
12 | 1.21 | 2.68 | −1.47 | 26 | 2.17 | 3.85 | −1.68 |
13 | −1.99 | −2.93 | 0.94 | Absolute mean value | None | None | 0.11 |
14 | −3.27 | −3.88 | 0.61 |
Vegetation Cover Type | Correlation Coefficient | Significance Test p-Value |
---|---|---|
Grassland | −0.269 | <0.01 |
Meadow | 0.06 | <0.01 |
Cultivated vegetation | −0.022 | 0.313 |
Alpine vegetation | −0.116 | <0.01 |
Coniferous forest | 0.06 | <0.01 |
Model | Indicator | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Average |
---|---|---|---|---|---|---|---|
Holt’s | RMSE | 2.582 | 2.179 | 3.970 | 2.609 | 4.706 | 3.2092 |
MAE | 2.068 | 1.734 | 3.203 | 2.066 | 3.617 | 2.5376 | |
MASE | 0.070 | 0.059 | 0.076 | 0.067 | 0.079 | 0.0702 | |
Holt–Winters | RMSE | 2.489 | 2.144 | 3.797 | 2.012 | 4.527 | 2.9938 |
MAE | 2.004 | 1.753 | 3.167 | 1.524 | 3.542 | 2.1039 | |
MASE | 0.067 | 0.059 | 0.076 | 0.050 | 0.070 | 0.0644 | |
ARIMA | RMSE | 2.415 | 1.864 | 2.721 | 2.611 | 5.858 | 3.0938 |
MAE | 1.873 | 1.366 | 2.111 | 2.061 | 4.479 | 2.3780 | |
MASE | 0.063 | 0.046 | 0.050 | 0.068 | 0.098 | 0.0650 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yu, Q.; Ma, J.; Yang, L.; Liu, W.; Li, J. Study and Prediction of Surface Deformation Characteristics of Different Vegetation Types in the Permafrost Zone of Linzhi, Tibet. Remote Sens. 2022, 14, 4684. https://doi.org/10.3390/rs14184684
Wang X, Yu Q, Ma J, Yang L, Liu W, Li J. Study and Prediction of Surface Deformation Characteristics of Different Vegetation Types in the Permafrost Zone of Linzhi, Tibet. Remote Sensing. 2022; 14(18):4684. https://doi.org/10.3390/rs14184684
Chicago/Turabian StyleWang, Xiaoci, Qiang Yu, Jun Ma, Linzhe Yang, Wei Liu, and Jianzheng Li. 2022. "Study and Prediction of Surface Deformation Characteristics of Different Vegetation Types in the Permafrost Zone of Linzhi, Tibet" Remote Sensing 14, no. 18: 4684. https://doi.org/10.3390/rs14184684
APA StyleWang, X., Yu, Q., Ma, J., Yang, L., Liu, W., & Li, J. (2022). Study and Prediction of Surface Deformation Characteristics of Different Vegetation Types in the Permafrost Zone of Linzhi, Tibet. Remote Sensing, 14(18), 4684. https://doi.org/10.3390/rs14184684