Covariation of Passive–Active Microwave Measurements over Vegetated Surfaces: Case Studies at L-Band Passive and L-, C- and X-Band Active
Abstract
:1. Introduction
2. Context and Models Used
3. Study Sites and Data
3.1. Study Sites
3.2. Data
4. Data Processing and Analysis
4.1. Preparation of Radar Data
4.2. Preliminary Analysis: Full vs. Simplified Model
4.3. Covariation Analysis
5. Results and Discussion
- Absolute values showed systematic differences;
- Variations, however, in general appeared to be correlated.
- The difference in average values from L-band and from X-band data was nearly constant across the two test fields, i.e., the same systematic displacement was observed between the L-based and X-based estimation of ;
- Correlation factors between L-based and X-based values were high to extremely high.
6. Conclusions
- Comparing X-band-derived estimates and the standard estimates provided by NASA using a combination of passive SMAP and Sentinel-1 data, on a geographically broader set of test areas;
- Incorporating active L-band data from the JAXA sensor ALOS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jagdhuber, T.; Baur, M.; Akbar, R.; Das, N.N.; Link, M.; He, L.; Entekhabi, D. Estimation of active–passive microwave covariation using SMAP and Sentinel-1 data. Remote Sens. Environ. 2019, 225, 458–468. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Konings, A.G.; McColl, K.A.; Alemohammad, S.H.; Das, N.N.; Montzka, C.; Link, M.; Akbar, R.; Entekhabi, D. Physics-based modeling of active and passive microwave covariations over vegetated surfaces. IEEE Trans. Geosci. Remote Sens. 2018, 57, 788–802. [Google Scholar] [CrossRef]
- Entekhabi, D.; Yueh, S.; De Lannoy, G. SMAP Handbook. 2014. Available online: https://smap.jpl.nasa.gov/system/internal_resources/details/original/178_SMAP_Handbook_FINAL_1_JULY_2014_Web.pdf (accessed on 1 May 2021).
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil moisture for hydrological applications: Open questions and new opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–324. [Google Scholar] [CrossRef]
- Su, F.; Wang, F.; Li, Z.; Wei, Y.; Li, S.; Bai, T.; Wang, Y.; Guo, H.; Hu, S. Predominant role of soil moisture in regulating the response of ecosystem carbon fluxes to global change factors in a semi-arid grassland on the Loess Plateau. Sci. Total Environ. 2020, 738, 139746. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Walker, J.P.; Gao, Y.; Wu, X.; Monerris, A. Estimation of Vegetation Water Content From the Radar Vegetation Index at L-Band. IEEE Trans. Geosci. Remote Sens. 2016, 54, 981–989. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R. Retrieval of Vegetation Water Content Using Brightness Temperatures from the Soil Moisture Active Passive (SMAP) Mission. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5316–5319. [Google Scholar] [CrossRef]
- Kim, S.B.; Huang, H.; Liao, T.H.; Colliander, A. Estimating Vegetation Water Content and Soil Surface Roughness Using Physical Models of L-Band Radar Scattering for Soil Moisture Retrieval. Remote Sens. 2018, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Njoku, E.G. An algorithm for merging SMAP radiometer and radar data for high-resolution soil-moisture retrieval. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1504–1512. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Jackson, T.; O’Neill, P.; De Lannoy, G.; de Rosnay, P.; Walker, J.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J.; et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 2017, 192, 238–262. [Google Scholar] [CrossRef]
- Fernandez-Moran, R.; Al-Yaari, A.; Mialon, A.; Mahmoodi, A.; Al Bitar, A.; De Lannoy, G.; Rodriguez-Fernandez, N.; Lopez-Baeza, E.; Kerr, Y.; Wigneron, J.P. SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product. Remote Sens. 2017, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.H.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Parrens, M.; Molero, B.; Leroux, D.; Wigneron, J.P. Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens. Environ. 2016, 180, 40–63. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Njoku, E.G.; Yueh, S.H. Uncertainty estimates in the SMAP combined active–passive downscaled brightness temperature. IEEE Trans. Geosci. Remote Sens. 2015, 54, 640–650. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Colliander, A.; Yueh, S.; Jagdhuber, T.; Chen, F.; Crow, W.; O’Neill, P.E.; et al. The SMAP and Copernicus Sentinel 1A/B microwave active–passive high resolution surface soil moisture product. Remote Sens. Environ. 2019, 233, 111380. [Google Scholar] [CrossRef]
- Werninghaus, R.; Buckreuss, S. The TerraSAR-X mission and system design. IEEE Trans. Geosci. Remote Sens. 2009, 48, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Virelli, M.; Coletta, A.; Battagliere, M.L. ASI COSMO-SkyMed: Mission overview and data exploitation. IEEE Geosci. Remote Sens. Mag. 2014, 2, 64–66. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Entekhabi, D.; Das, N.; Baur, M.; Kim, S.; Yueh, S.; Link, M. Physically-based covariation modelling and retrieval for mono-(LL) and multi-frequency (LC) active–passive microwave data from SMAP and Sentinel-1. In Proceedings of the 3rd Satellite Soil Moisture Validation and Application Workshop, New York, NY, USA, 20–21 September 2016; pp. 21–22. [Google Scholar]
- O’Neill, P.; Bindlish, R.; Chan, S.; Njoku, E.; Jackson, T. Algorithm Theoretical Basis Document. Level 2 & 3 Soil Moisture (Passive) Data Products; Jet Propulsion Laboratory: Pasadena, CA, USA, 2018. Available online: https://smap.jpl.nasa.gov/system/internal_resources/details/original/275_L2_3_SM_P_RevA_web.pdf (accessed on 1 May 2021).
- Freeman, A. Fitting a two-component scattering model to polarimetric SAR data. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; Volume 5, pp. 2649–2651. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Lax, M. Multiple scattering of waves. Rev. Mod. Phys. 1951, 23, 287. [Google Scholar] [CrossRef]
- Neumann, M.; Ferro-Famil, L.; Reigber, A. Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1086–1104. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; Das, N.; Njoku, E.; Johnson, J.; Shi, J. Algorithm Theoretical Basis Document L2 & L3 Radar/Radiometer Soil Moisture (Active/Passive) Data Products; Jet Propulsion Laboratory California Institute of Technology: Pasadena, CA, USA, 2014; Volume 1. [Google Scholar]
- Chan, S. Enhanced Level 2 Passive Soil Moisture Product Specification Document; Jet Propulsion Laboratory California Institute of Technology: Pasadena, CA, USA, 2019. [Google Scholar]
- Miranda, N.; Meadows, P.J.; Type, D.; Note, T. Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF. 2015. Available online: https://sentinel.esa.int/documents/247904/685163/S1-Radiometric-Calibration-V1.0.pdf (accessed on 26 April 2021).
- Leroux, D.J.; Kerr, Y.H.; Richaume, P.; Fieuzal, R. Spatial distribution and possible sources of SMOS errors at the global scale. Remote Sens. Environ. 2013, 133, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Paloscia, S.; Pampaloni, P.; Pettinato, S.; Brogioni, E.S.M.; Fontanelli, G.; Macelloni, G. Potentials of X-band active and passive microwave sensors in monitoring vegetation biomass. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; pp. 1–3. [Google Scholar] [CrossRef]
- Validation of ICEYE Small Satellite SAR Design for Ice Detection and Imaging. In Proceedings of the OTC Arctic Technology Conference, Tulsa, OK, USA, 1 September 2016; Available online: http://xxx.lanl.gov/abs/https://onepetro.org/OTCARCTIC/proceedings-pdf/16OARC/All-16OARC/OTC-27447-MS/1353139/otc-27447-ms.pdf (accessed on 26 April 2021). [CrossRef]
- Stringham, C.; Farquharson, G.; Castelletti, D.; Quist, E.; Riggi, L.; Eddy, D.; Soenen, S. The Capella X-band SAR Constellation for Rapid Imaging. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9248–9251. [Google Scholar] [CrossRef]
Mission (Sensor) | Dataset | Band (Polarization) | Spatial Posting | Temporal Resolution |
---|---|---|---|---|
SMAP (Radiometer) | SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture, Version 3 | L-band | 9 km | 2–3 days |
SMAP (radiometer/radar) | SMAP L2 Radiometer/Radar Half-Orbit 9 km EASE-Grid Soil Moisture, Version 3 | L-band | 9 km | 2–3 days |
Sentinel-1 (radar) | SAR Standard L1 Product, GRD type | C-band (VV, VH, HH, HV) | 9 m | <3 days |
TerraSAR-X (radar) | TSX-1.SAR.L1b-Stripmap | X-band (VV, VH) | 3 m | 11 days |
COSMO-SkyMed (radar) | COSMO_SkyMed StripMap HIMAGE mode | X-band (VV, HH) | 5 m | 16 days |
Sensing Date (yyyy/MM/dd) | [K/dB] | [K/dB] | Correlation Factor |
---|---|---|---|
2015/06/11 | −3.97367 | −4.14314 | 0.99907 |
2015/06/19 | −3.10215 | −3.24648 | |
2015/06/22 | −3.65805 | −3.86859 | |
2015/06/30 | −3.98658 | −4.14102 | |
2015/07/03 | −4.80281 | −5.04388 |
Test Site | Covariation Series Computed on | Corr. Factor between the Two Considered Series |
---|---|---|
Crop field n.1 | and (TSX) | 0.82328 |
Crop field n.2 | and (TSX) | 0.31269 |
Forest | and (TSX) | 0.95762 |
Crop field n.1 | and (C/S) | 0.89894 |
Crop field n.2 | and (C/S) | −0.44025 |
Forest | and (C/S) | 0.87690 |
Crop field n.1 | and | 0.70064 |
Crop field n.2 | and | 0.00305 |
Forest | and | 0.82348 |
Test Site | Sensing Date | [K/dB] | [K/dB] | Correlation Factor |
---|---|---|---|---|
Field n. 1 | 2015/05/04 | −3.83956 | −5.57806 | 0.99955 |
2015/05/26 | −3.85407 | −5.84327 | ||
2015/06/17 | −3.84065 | −5.60636 | ||
Field n. 2 | 2015/05/04 | −3.61885 | −5.07345 | 0.76329 |
2015/05/26 | −3.63109 | −5.53964 | ||
2015/06/17 | −3.61960 | −5.40265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albanesi, E.; Bernoldi, S.; Dell’Acqua, F.; Entekhabi, D. Covariation of Passive–Active Microwave Measurements over Vegetated Surfaces: Case Studies at L-Band Passive and L-, C- and X-Band Active. Remote Sens. 2021, 13, 1786. https://doi.org/10.3390/rs13091786
Albanesi E, Bernoldi S, Dell’Acqua F, Entekhabi D. Covariation of Passive–Active Microwave Measurements over Vegetated Surfaces: Case Studies at L-Band Passive and L-, C- and X-Band Active. Remote Sensing. 2021; 13(9):1786. https://doi.org/10.3390/rs13091786
Chicago/Turabian StyleAlbanesi, Erica, Silvia Bernoldi, Fabio Dell’Acqua, and Dara Entekhabi. 2021. "Covariation of Passive–Active Microwave Measurements over Vegetated Surfaces: Case Studies at L-Band Passive and L-, C- and X-Band Active" Remote Sensing 13, no. 9: 1786. https://doi.org/10.3390/rs13091786
APA StyleAlbanesi, E., Bernoldi, S., Dell’Acqua, F., & Entekhabi, D. (2021). Covariation of Passive–Active Microwave Measurements over Vegetated Surfaces: Case Studies at L-Band Passive and L-, C- and X-Band Active. Remote Sensing, 13(9), 1786. https://doi.org/10.3390/rs13091786