Satellite Monitoring of Environmental Solar Ultraviolet A (UVA) Exposure and Irradiance: A Review of OMI and GOME-2
Abstract
:1. Introduction
1.1. Satellite Platforms
1.2. Solar UVA Radiation
2. GOME-2 UVA Data
3. OMI UVA Data
4. Cloud and Aerosol Data Used for GOME-2 and OMI UVA
4.1. OMI
4.2. GOME-2
5. Broadband UVA Irradiance and Exposures from OMI Data
5.1. Reconstruction of Broadband UVA Irradiance
5.2. Evaluation of Total Daily UVA Exposures
6. Comparison of GOME-2 UVA with Ground-Based Data
7. Comparison of OMI UVA with Ground-Based Data
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ialongo, I.; Arola, A.; Kujanpää, J.; Tamminen, J. Use of satellite erythemal UV products in analysing the global UV changes. Atmos. Chem. Phys. 2011, 11, 9649–9658. [Google Scholar] [CrossRef] [Green Version]
- Gueymard, C. REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation–Validation with a benchmark dataset. Sol. Energy 2008, 82, 272–285. [Google Scholar] [CrossRef]
- Qin, W.; Wang, L.; Lin, A.; Zhang, M.; Xia, X.; Hu, B.; Niu, Z. Comparison of deterministic and data-driven models for solar radiation estimation in China. Renew. Sustain. Energy Rev. 2018, 81, 579–594. [Google Scholar] [CrossRef]
- Qin, W.; Wang, L.; Wei, J.; Hu, B.; Liang, X. A novel efficient broadband model to derive daily surface solar Ultraviolet radiation (0.280–0.400 μm). Sci. Total Environ. 2020, 735, 139513. [Google Scholar] [CrossRef]
- Qin, W.; Wang, L.; Gueymard, C.A.; Bilal, M.; Lin, A.; Wei, J.; Zhang, M.; Yang, X. Constructing a gridded direct normal irradiance dataset in China during 1981–2014. Renew. Sustain. Energy Rev. 2020, 131, 110004. [Google Scholar] [CrossRef]
- Kazadzis, S.; Bais, A.; Arola, A.; Krotkov, N.; Kouremeti, N.; Meleti, C. Ozone Monitoring Instrument spectral UV irradiance products: Comparison with ground-based instruments at an urban environment. Atmos. Chem. Phys. 2009, 9, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.R.; Krotkov, N.; Celarier, E.; Larko, D.; Labow, G. Distribution of UV radiation at the Earth’s surface from TOMS-measured UV-backscattered radiances. J. Geophys. Res. 1999, 104, 12059–12076. [Google Scholar] [CrossRef]
- Udelhofen, P.M.; Gies, P.; Roy, C.; Randel, W.J. Surface UV radiation over Australia, 1979-1992: Effects of ozone and cloud cover changes on variations of UV radiation. J. Geophys. Res. 1999, 104, 19135–19159. [Google Scholar] [CrossRef]
- Earthdata, GIOVANNI. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 21 September 2020).
- Tanskanen, A.; Krotkov, N.; Herman, J.; Arola, A. Surface ultraviolet irradiance from OMI. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1267–1271. [Google Scholar] [CrossRef]
- Tanskanen, A.; Lindfors, A.; Määttä, A.; Krotkov, N.; Herman, J.; Kaurola, J.; Koskela, T.; Lakkala, K.; Fioletov, V.; Bernhard, G.; et al. Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data. J. Geophys. Res. 2007, 112, D24S44. [Google Scholar] [CrossRef] [Green Version]
- GOME-2/MetOp. Available online: https://atmos.eoc.dlr.de/app/missions/gome2 (accessed on 12 December 2020).
- Kalakoski, N. O3M SAF Validation Report. Available online: http://o3msaf.fmi.fi/docs/vr/Validation_Report_OUV_Feb_2009.pdf (accessed on 16 September 2020).
- Mateos, D.; Bilbao, J.; Kudish, A.; Parisi, A.V.; Carbajal, G.; di Sarra, A.; Román, R.; de Miguel, A. Validation of OMI satellite erythemal daily dose retrievals using ground-based measurements from fourteen stations. Remote Sens. Environ. 2013, 128, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, G.; Arola, A.; Dahlback, A.; Fioletov, V.; Heikkilä, A.; Johnsen, B.; Koskela, T.; Lakkala, K.; Svendby, T.; Tamminen, J. Comparison of OMI UV observations with ground-based measurements at high northern latitudes. Atmos. Chem. Phys. 2015, 15, 7391–7412. [Google Scholar] [CrossRef] [Green Version]
- Antón, M.; Román, R.; Valenzuela, A.; Olmo, F.J.; Alados-Arboledas, L. Direct-sun total ozone data from a Bentham spectroradiometer: Methodology and comparison with satellite observations. Atmos. Chem. Tech. Discuss. 2012, 5, 8131–8160. [Google Scholar] [CrossRef]
- Parisi, A.V.; Sabburg, J.; Kimlin, M.G. Scattered and Filtered Solar UV Measurements; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Coelho, S.G.; Rua, D.; Miller, S.A.; Agrawal, A. Suboptimal UVA attenuation by broad spectrum sunscreens under outdoor solar conditions contributes to lifetime UVA burden. Photodermatol. Photoimmunol. Photomed. 2020, 36, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health. Anticancer Res. 2016, 36, 1345–1356. [Google Scholar]
- CIE (International Commission on Illumination). Standardization of the terms UV-A1, UV-A2 and UV-B. CIE collection in Photobiology and Photochemistry. 1999. CIE TC 6-26. Available online: http://cie.co.at/publications/cie-collection-photobiology-photochemistry-1999 (accessed on 18 February 2021).
- Diffey, B. What is light? Photodermatol. Photoimmunol. Photomed. 2002, 18, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Garnacho Saucedo, G.M.; Vellejo, R.S.; Giménez, J.C.M. Effects of solar radiation and an update on photoprotection. Anales de Pediatría 2020, 92, 377-e1. [Google Scholar]
- Khan, A.Q.; Travers, J.B.; Kemp, M.G. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ. Mol. Mutagen. 2018, 59, 438–460. [Google Scholar] [CrossRef] [PubMed]
- Igoe, D.; Parisi, A.V. Evaluation of a smartphone sensor to broadband and narrowband ultraviolet A radiation. Instrum. Sci. Techol. 2015, 43, 283–289. [Google Scholar] [CrossRef]
- Kammayer, A.; Luiten, R.M. Oxidation events and skin aging. Ageing Res. Rev. 2015, 21, 16–29. [Google Scholar] [CrossRef]
- Marrionet, C.; Pierrard, C.; Golebiewski, C.; Bernerd, F. Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin. PLoS ONE. 2014, 9, e105263. [Google Scholar] [CrossRef] [Green Version]
- Tewari, A.; Grage, M.M.L.; Harrison, G.I.; Sarkany, R.; Young, A.R. UVA1 is skin deep: Molecular and clinical implications. Photochem. Photobiol. Sci. 2013, 12, 95–103. [Google Scholar] [CrossRef]
- Edstrom, D.; Porwit, A.; Ros, A. Effects on human skin of repetitive ultraviolet A1 (UVA1) irradiation and visible light. Photodermatol. Photoimmunol. Photomed. 2001, 17, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Mallet, J.D.; Rochette, P.J. Wavelength-dependent ultraviolet inductions of cyclobutene pyrimidine dimers in the human cornea. Photochem. Photobiol. Sci. 2013, 12, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Agar, N.S.; Halliday, G.M.; Barnetson, R.; Ananthaswamy, H.N.; Wheeler, M.; Jones, A.M. The basal layer in human squamous tumors harbours more UVA than UVB fingerprint mutations: A role for UVA in skin carcinogenesis. Proc. Nat. Acad. Sci. USA 2004, 101, 4954–4959. [Google Scholar] [CrossRef] [Green Version]
- CIE (International Commission on Illumination). Action Spectrum for the Production of Previtamin D3 in Human Skin. 2006. CIE 174:2006. Available online: http://cie.co.at/publications/action-spectrum-production-previtamin-d3-human-skin (accessed on 18 February 2021).
- Parisi, A.V.; Turnbull, D.J.; Kimlin, M.G. Dosimetric and spectroradiometric investigations of glass filtered solar UV. Photochem Photobiol. 2007, 83, 777–781. [Google Scholar] [CrossRef]
- EUMETSAT, Metop, Available online:. Available online: https://www.eumetsat.int/metop (accessed on 13 December 2020).
- Hassinen, S.; Hovila, J.; Kalakoski, N.; Kauppi, A.; Kujanpää, J.; Tamminen, J.; Stammes, P.; Tilstra, L.; Balis, D.; Koukouli, M. Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability. Atmos. Meas. Tech. 2016, 9, 383–407. [Google Scholar] [CrossRef] [Green Version]
- Kujanpää, J.; Kalakoski, N. Surface UV product from GOME-2 and AVHRR/3. Atmos. Meas. Tech. Discuss. 2015, 8, 4537–4580. [Google Scholar] [CrossRef]
- ESA Earth Online. GOME Instrument. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/gome (accessed on 21 September 2020).
- EUMETSAT AC SAF (Atmospheric Composition Monitoring). Welcome to AC SAF/FMI Ordering Server. Available online: https://safserver.fmi.fi) (accessed on 6 February 2021).
- Munro, R.; Lang, R.; Klaes, D.; Poli, G.; Retscher, C.; Lindstrot, R.; Huckle, R.; Lacan, A.; Grzegorski, M.; Holdak, A.; et al. The GOME-2 instrument on the Metop series of satellites: Instrument design, calibration, and level 1 data processing—An overview. Atmos. Meas. Tech. 2016, 9, 1279–1301. [Google Scholar] [CrossRef] [Green Version]
- Kujanpää, J. Algorithm Theoretical Basis Document, Offline UV (OUV) Products. Available online: http://o3msaf.fmi.fi/docs/atbd/Algorithm_Theoretical_Basis_Document_OUV_Jun_2013.pdf (accessed on 2 December 2020).
- Stammes, P. OMI Algorithm Theoretical Basis Document Volume III Clouds, Aerosols and Surface UV Irradiance. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/ATBD-OMI-03.pdf (accessed on 1 November 2020).
- Jebar, M.A.A.; Parisi, A.V.; Downs, N.J.; Turner, J. Evaluated UVA irradiances over a twelve year period at a sub-tropical site from Ozone Monitoring Instrument data including the influence of cloud. Photochem. Photobiol. 2018, 94, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Jebar, M.A.A.; Parisi, A.V.; Downs, N.J.; Turner, J. Validation of Ozone Monitoring Instrument UV satellite data using spectral and broadband surface based measurements at a Queensland site. Photochem. Photobiol. 2017, 93, 1289–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krotkov, N.; Bhartia, P.; Herman, J.; Fioletov, V.; Kerr, J. Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols: 1. Cloud-free case. J. Geophys. Res. Atmos. 1998, 103, 8779–8793. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.; Herman, J.; Bhartia, P.K.; Seftor, C.; Arola, A.; Kaurola, J.; Taalas, P.; Vasilkov, A. OMI Surface Irradiance Algorithm. In OMI Algorithm Theoretical Basis Document Volume III; Stammes, P., Ed.; 2002; pp. 72–108. Available online: https//projects.knmi.nl/omi/documents/data/OMI_ATBD_Volume_3_V2.pdf (accessed on 1 December 2020).
- Krotkov, N.A.; Barthia, P.K.; Herman, J.R.; Slusser, J.; Scott, G.; Labow, G.; Vasilkov, A.P.; Eck, T.F.; Dubovik, O.; Holben, B.N. Aerosol ultraviolet absorption experiment (2000 to 2004), part 2: Absorption optical thickness, refractive index, and single scattering albedo. Opt. Eng. 2005, 44, 041005. [Google Scholar] [CrossRef]
- Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.A.; Kujanpä, J.; Tamminen, J. A new approach to correct for absorbing aerosols in OMI UV. Geophys. Res. Lett. 2009, 36, L22805. [Google Scholar] [CrossRef]
- Antón, M.; Valenzuela, A.; Román, R.; Lyamani, H.; Krotkov, N.; Arola, A.; Olmo, F.J.; Alados-Arboledas, L. Influence of desert dust intrusions on ground-based and satellite-derived ultraviolet irradiance in southeastern Spain. J. Geophys. Res. 2012, 117, D19209. [Google Scholar] [CrossRef] [Green Version]
- Kujanpää, J.; Kalakoski, N. Operational surface UV radiation product from GOME-2 and AVHRR/3 data. Atmos. Meas. Tech. 2015, 8, 4399–4414. [Google Scholar] [CrossRef] [Green Version]
- Tilstra, L.G.; Tuinder, O.N.; Stammes, P. GOME-2 Absorbing Aerosol Index: Statistical analysis, comparison to GOME-1 and impact of instrument degradation. In Proceedings of the 2010 EUMETSAT Meteorological Satellite Conference, Cordoba, Spain, 20–23 September 2010; p. 57. [Google Scholar]
- Kujanpää, J. Algorithm Theoretical Basis Document, Offline UV Products and Data Record R1. Available online: https://acsaf.org/docs/atbd/Algorithm_Theoretical_Basis_Document_OUV_May_2019.pdf (accessed on 1 October 2020).
- Levelt, P.F.; Hilsenrath, E.; Leppelmeier, G.W.; van den Oord, G.H.J.; Bhartia, P.K.; Tamminen, J.; de Haan, J.F.; Veefkind, J.P. Science objectives of the Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1199–1208. [Google Scholar] [CrossRef]
- Den Outer, P.N.; van Dijk, A.; Slaper, H.; Validation of Ultraviolet Radiation Budgets Using Satellite Observations from the OMI Instrument. RIVM Report 610002002/008, Netherlands Agency for Aerospace Programmes (NIVR). Available online: https://rivm.openrepository.com/bitstream/handle/10029/257333/610002002.pdf?sequence=3 (accessed on 30 October 2020).
- Weihs, P.; Blumthaler, M.; Rieder, H.E.; Kreuter, A.; Simic, S.; Laube, W.; Schmalwieser, A.W.; Wagner, J.E.; Tanskanen, A. Measurement of UV irradiance within the area of one satellite pixel. Atmos. Chem. Phys. 2008, 8, 5615–5626. [Google Scholar] [CrossRef] [Green Version]
- Janjai, S.; Wisitsirikun, S.; Buntoung, S.; Pattarapanitchai, S.; Watten, R.; Masiri, I.; Bhattarai, B.K. Comparsion of UV index from Ozone Monitoring Instrument (OMI) with multi-channel filter radiometers at four sites in the tropics: Effects of aerosols and clouds. Int. J. Climatol. 2013, 32, 435–461. [Google Scholar] [CrossRef]
- Herman, J.; Cede, A.; Huang, L.; Ziemke, J.; Torres, O.; Krotkov, N.; Kowalewski, M.; Blank, K. Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone from 2005–2018 estimated form OMI and EPIC observations. Atmos. Chem. Phys. 2020, 20, 8351–8380. [Google Scholar] [CrossRef]
- Anav, A.; Rafanenlli, C.; Di Menno, I.; Di Menno, M. An algorithm to evaluate solar irradiance and effective dose rates using spectral UV irradiance at four selected wavelengths. Rad. Prot. Dos. 2004, 111, 239–250. [Google Scholar] [CrossRef]
- Igoe, D.P.; Parisi, A.V. Broadband direct UVA irradiance measurement for clear skies evaluated using a smartphone. Rad. Prot. Dos. 2015, 167, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.; Slusser, J.R. Estimation of UV-A irradiance from measurements of 368-nm spectral irradiance. J. Atmos. Ocean Technol. 2005, 22, 1853–1863. [Google Scholar] [CrossRef]
- Piervitali, E.; Benedetti, E.; Damini, A.; Rafanelli, C.; Di Menno, I.; Casu, G.; Malaspina, F.; Anav, A.; Di Menno, M. Evaluation of Environmental UV Doses by Empirical WL4UV Model and Multichannel Radiometer. In Proceedings of the SPIE 5886, Ultraviolet Ground- and Space-Based Measurements, Models and Effects; Bernhard, V.G., Slusser, J.R., Herman, J.R., Gao, W., Eds.; SPIE: Bellingham, WA, USA, 2005; pp. 251–259. [Google Scholar]
- Jebar, M.A.; Parisi, A.V.; Downs, N.J.; Turner, J. Influence of clouds on OMI satellite total daily UVA exposure over a 12-year period at a Southern Hemisphere site. Int. J. Remote Sensing. 2020, 41, 272–283. [Google Scholar] [CrossRef]
- Jebar, M.A. Development and Validation of a Novel Approach for Evaluation of Broadband UVA Irradiance and Total Daily UVA Exposures from ONI Satellite Data. PhD Thesis, University of Southern Queensland, Toowoomba, Australia, 2019. [Google Scholar]
- Diffey, B.L. A simple technique for estimating daily ambient erythemal ultraviolet from the ultraviolet index. Photodermatol. Photoimmunol. Photomed. 2009, 25, 227–229. [Google Scholar] [CrossRef] [PubMed]
- CIE (International Commission on Illumination). Erythema Reference Action Spectrum and Standard Erythema Dose. CIE S 007/E-1998, Vienna, Austria. Available online: http://cie.co.at/publications/erythema-reference-action-spectrum-and-standard-erythema-dose-0 (accessed on 18 February 2021).
- Kollias, N.; Ruvolo, E.; Sayre, R.M. The value of the ratio of UVA to UVB in sunlight. Photochem. Photobiol. 2011, 87, 1474–1475. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.V.; Downs, N.; Turner, J.; King, R. Comparison of GOME-2 UVA satellite data to ground-based spectroradiometer measurements at a sub-tropical site. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3145–3149. [Google Scholar] [CrossRef]
- du Preez, D.J.; Parisi, A.V.; Millar, D.A.; Bencherif, H.; Wright, C.Y. Comparison of GOME-2 UVA satellite data to ground-based UVA measurements in South Africa. Photochem. Photobiol. 2020, 96, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Zempila, M.M.; Fountoulakis, I.; Taylor, M.; Kazadzis, S.; Arola, A.; Koukouli, M.E.; Bais, A.; Meleti, C.; Balis, D. Validation of OMI erythemal doses with multi-sensor ground-based measurements in Thessaloniki, Greece. Atmos. Environ. 2018, 183, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.A. Local cloud cover, ground-based and satellite measurements of erythemal dose rate for an urban, tropical site in Southern Hemisphere. J. Atmos. Sol. Terr. Phys. 2011, 73, 2474–2481. [Google Scholar] [CrossRef]
- Antón, M.; Cachorro, V.E.; Vilaplana, J.M.; Toledano, C.; Krotkov, N.A.; Arola, A.; Serrano, A.; de la Morena, B. Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain)—Part 1: Analysis of parameter influence. Atmos. Chem. Phys. 2010, 10, 5979–5989. [Google Scholar] [CrossRef] [Green Version]
- Cachorro, V.E.; Toledano, C.; Antón, M.; Berjon, A.; de Frutos, A.; Vilaplana, J.M.; Arola, A.; Krotkov, N.A. Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain)—Part 2: Analysis of site aerosol influence. Atmos. Chem. Phys. 2010, 10, 16385–16423. [Google Scholar] [CrossRef]
- Turner, J.; Igoe, D.P.; Parisi, A.V.; McGonigle, A.J.; Amar, A.; Wainwright, L. A review on the ability of smartphones to detect ultraviolet (UV) radiation and their potential to be used in UV research and for public education purposes. Sci. Total Environ. 2020, 706, 135873. [Google Scholar] [CrossRef] [PubMed]
- Gies, P.; van Deventer, E.; Green, A.C.; Sinclair, C.; Tinker, R. Review of the Global Solar UV Index 2015 Workshop Report. Health Phys. 2018, 114, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Long, C.N.; Sabburg, J.; Calbó, J.; Pagès, D. Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Ocean Technol. 2006, 23, 633–652. [Google Scholar] [CrossRef] [Green Version]
OMI | GOME-2 | |
---|---|---|
Satellite | NASA EOS Aura spacecraft | Metop-A, Metop-B and Metop-C |
Altitude | 705 km | 800 to 850 km |
Orbit | Sun-synchronous polar orbit | Sun-synchronous polar orbit |
Overpass time | 1.45 pm local time | 9.30 am local time |
Pixel size at nadir | 13 km × 24 km | 80 km × 40 km |
Swath width | 2600 km | 1920 for Metop-B 960 km for Metop-A |
Measurement waveband | 270 nm to 500 nm | 240 nm to 790 nm |
Data website | NASA GIOVANNI [9] | EUMETSAT AC SAF [37] |
Data start date | October 2004 | June 2009 |
UVA spectral products | Solar noon 324 nm irradiance Solar noon 380 nm irradiance | nil |
UVA broadband products | nil | Total daily UVA (315–400 nm) exposure Maximum UVA irradiance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, A.V.; Igoe, D.; Downs, N.J.; Turner, J.; Amar, A.; A Jebar, M.A. Satellite Monitoring of Environmental Solar Ultraviolet A (UVA) Exposure and Irradiance: A Review of OMI and GOME-2. Remote Sens. 2021, 13, 752. https://doi.org/10.3390/rs13040752
Parisi AV, Igoe D, Downs NJ, Turner J, Amar A, A Jebar MA. Satellite Monitoring of Environmental Solar Ultraviolet A (UVA) Exposure and Irradiance: A Review of OMI and GOME-2. Remote Sensing. 2021; 13(4):752. https://doi.org/10.3390/rs13040752
Chicago/Turabian StyleParisi, Alfio V., Damien Igoe, Nathan J. Downs, Joanna Turner, Abdurazaq Amar, and Mustapha A. A Jebar. 2021. "Satellite Monitoring of Environmental Solar Ultraviolet A (UVA) Exposure and Irradiance: A Review of OMI and GOME-2" Remote Sensing 13, no. 4: 752. https://doi.org/10.3390/rs13040752
APA StyleParisi, A. V., Igoe, D., Downs, N. J., Turner, J., Amar, A., & A Jebar, M. A. (2021). Satellite Monitoring of Environmental Solar Ultraviolet A (UVA) Exposure and Irradiance: A Review of OMI and GOME-2. Remote Sensing, 13(4), 752. https://doi.org/10.3390/rs13040752