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Abstract: Merging satellite precipitation products tends to reduce the errors associated with individual
satellite precipitation products and has higher potential for hydrological applications. The current
study evaluates the performance of merged multi-satellite precipitation dataset (daily temporal and
0.25◦ spatial resolution) developed using the Dynamic Bayesian Model Averaging algorithm across four
different climate regions, i.e., glacial, humid, arid and hyper-arid regions, of Pakistan during 2000–2015.
Four extensively evaluated SPPs over Pakistan, i.e., Tropical Rainfall Measurement Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA) 3B42V7, Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR),
Climate Prediction Center MORPHing technique (CMORPH), and Era-Interim, are used to develop
the merged multi-satellite precipitation dataset. Six statistical indices, including Mean Bias Error,
Mean Absolute Error, Root Mean Square Error, Correlation Coefficient, Kling-Gupta efficiency,
and Theil’s U coefficient, are used to evaluate the performance of merged multi-satellite precipitation
dataset over 102 ground precipitation gauges both spatially and temporally. Moreover, the ensemble
spread score and standard deviation are also used to depict the spread and variation of precipitation
of merged multi-satellite precipitation dataset. Skill scores for all statistical indices are also included in
the analyses, which shows improvement of merged multi-satellite precipitation dataset against Simple
Model Averaging. The results revealed that DBMA-MSPD assigned higher weights to TMPA (0.32)
and PERSIANN-CDR (0.27). TMPA presented higher skills in glacial and humid regions with average
weights of 0.32 and 0.37 as compared to PERSIANN-CDR of 0.27 and 0.25, respectively. TMPA and
Era-Interim depicted higher skills during pre-monsoon and monsoon seasons, with average weights of
0.31 and 0.52 (TMPA) and 0.25 and 0.21 (Era-Interim), respectively. Merged multi-satellite precipitation
dataset overestimated precipitation in glacial/humid regions and showed poor performance, with
the poorest values of mean absolute error (2.69 mm/day), root mean square error (11.96 mm/day),
correlation coefficient (0.41), Kling-Gupta efficiency score (0.33) and Theil’s U (0.70) at some stations
in glacial/humid regions. Higher performance is observed in hyper-arid region, with the best
values of 0.71 mm/day, 1.72 mm/day, 0.84, 0.93, and 0.37 for mean absolute error, root mean square
error, correlation coefficient, Kling-Gupta Efficiency score, and Theil’s U, respectively. Merged
multi-Satellite Precipitation Dataset demonstrated significant improvements as compared to TMPA
across all climate regions with average improvements of 45.26% (mean bias error), 30.99% (mean
absolute error), 30.1% (root mean square error), 11.34% (correlation coefficient), 9.53% (Kling-Gupta
efficiency score) and 8.86% (Theil’s U). The ensemble spread and variation of DBMA-MSPD calculated
using ensemble spread score and standard deviation demonstrates high spread (11.38 mm/day) and
variation (12.58 mm/day) during monsoon season in the humid and glacial regions, respectively.
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Moreover, the improvements of DBMA-MSPD quantified against fixed weight SMA-MSPD reveals
supremacy of DBMA-MSPD, higher improvements (40–50%) in glacial and humid regions.

Keywords: satellite precipitation; merged multi-satellite precipitation dataset; Dynamic Bayesian
Model Averaging; regional and seasonal evaluation; complex topography; diverse climate; Pakistan

1. Introduction

Precipitation is one of the integral components in climate studies and global water and energy
cycles [1]. Precipitation is used as a forcing data in hydrological modeling such as weather
monitoring, streamflow forecasting, flood simulations and warnings, and hydrological trend analysis [2].
Therefore, the accuracy of hydrological simulations and applications is contingent on the accuracy of
precipitation. Conventional ground-based precipitation measurements, including rain (or snow) gauges
networks and weather radar systems, are either sparsely distributed both spatially and temporally or
do not exist at all due to climate variability, complex topography, human geography, and other limited
conditions [3,4]. However, ground precipitation gauges (GPGs) are considered the most accurate
method for measuring the precipitation because they provide direct precipitation observations [5].

Recent advancements in remote sensing technologies provide an alternative solution to surmount
the spatial and temporal limitations of conventional ground-based precipitation measurement networks.
Satellite-based precipitation products (SPPs) have been utilized during the past thirty years for regional
to global scale precipitation estimation [6,7]. At present, SPPs have been extensively applied in
hydrological simulations [8–10], regional and global precipitation pattern recognition, and drought
monitoring [11–13]. The applications of SPPs are complicated, and the proper selection of one SPP
over another is debatable. Therefore, the evaluation of each SPP against the in-situ observations before
the application is extremely important and considered a standard process [14,15].

Various studies have evaluated different SPPs against the GPGs both on regional and global
scales at daily [16–22], monthly [17,19,23,24], and annual [17,20] temporal resolutions. It is concluded
from the previous studies that all the SPPs have inevitable errors based on different statistical indices,
including mean error, correlation with GPGs, and other categorical indices (probability of detection,
critical success index, and false alarm ratio). The errors might be associated with precipitation retrieval
algorithms or other factors such as the topographic, climatic and seasonal dependency of SPPs.
These errors impact the quality of precipitation estimates, which propagate further into hydrological
modeling and other applications [16].

Several efforts, such as developing new products with high spatial and temporal resolution [23,25],
reducing sampling issues, improvements in precipitation estimation algorithms, merging different SPPs
using relative weights and weight estimation using the dynamic methods, have been made to address
the uncertainties of existing SPPs [7,16,26]. Developing and application of a merged multi-satellite
precipitation dataset (MSPD) based on different statistical models or even the same statistical model can
significantly improve the accuracy of meteorological and hydrological models [27]. The performance
of MSPD is generally better than all or most of the individual merging members. Several methods
are proposed in literature to develop MSPDs, which include Statistical Objective Analysis [28],
Conditional Merging [29,30], Simple Scaling Method [30], data assimilation [31], Bayesian Model
Averaging [26,27,32], probability density function [33], variation approach [34], and neural network
analysis [35]. Furthermore, Li and Shao [36] merged gauged precipitation and TRMM datasets over
Australia using a non-parametric kernel merging method, and concluded high performance of the
developed MSPD. Readers are referred to [36–39] for more details about techniques to develop MSPDs.

Many studies reported significantly better performance of MSPD developed for estimation
of climate and hydrological variables using a simple model averaging (SMA) approach [24,27,40].
Shen et al. [41] evaluated the One-Outlier Removed (OOR) method and reported better performance of
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OOR than SMA for all seasons except the winter in Tibetan Plateau. Bayesian Model Averaging (BMA)
is a more progressive merging technique, which calculates the optimum weights for individual merging
members based on the ground observations. In this method, consensus predictions are derived from
multiple competing predictors, and MSPD is generated to exploit the strength of every prediction. BMA
method assigns weights to each member based on its predictive performance [27,42,43]. It provides
a more convincing portrayal of the predictive uncertainty that considers both within-model and
between-model variances and also outperformed other merging techniques by producing reliable
and precise results [40,42,43]. This method has also been successfully applied in hydrological
modeling and streamflow simulations [44–46]. A MSPD using Dynamic BMA (DBMA) was developed
recently to optimally merge four SPPs and evaluated over Tibetan Plateau both topographically
and seasonally [26,47]. It accounts for both spatial and temporal variability in the performances
of the merging members. The DBMA-MSPD was found superior to both SMA and OOR merging
methods [26].

Very limited literature is available on developing and evaluating the MSPDs across
Pakistan [16,22,48]. The results demonstrated significant improvements of MSPDs overall merging
members. However, most of the literature used the fixed weight techniques [16,22] or the dynamic
weight algorithms to merge different SPPs in each climate region [48], and the spatial variation of
these weights are not fully considered. The present MSPD considers both spatial and temporal
variation in weights for different SPPs over complex topography and diverse climate of Pakistan.
The key objectives of the current study are to develop a MSPD using the Dynamic Bayesian Model
Averaging (DBMA-MSPD) algorithm for whole Pakistan, to evaluate and compare the performance of
DBMA-MSPD against the individual members at seasonal and topographical scales. This experiment
is performed using four comprehensively evaluated satellite products in Pakistan, including Tropical
Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), Climate Prediction
Center MORPHing technique (CMORPH), ERA-Interim, and Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Network (PERSIANN-CDR), at daily scale for sixteen years
(2000–2015). This study is organized as follows: Section 2 introduces the study area, data and methods,
Section 3 represents the comprehensive evaluation and discussion, and Section 4 is the conclusion of
the current research.

2. Materials and Methods

2.1. Study Area

Pakistan lies between 23.5◦–37.5◦N latitude and 62◦–75◦E longitude having an area of 803,940 km2

(Figure 1a). Pakistan shares its boundaries with China at its north, India at east, Iran, and Afghanistan
at west and the Arabian Sea at south. The study area is topographically very complex, with a maximum
elevation of 8600 m above sea level (the Himalayas and Karakoram mountain ranges) to a minimum of
0 m (Arabian Sea).

Pakistan has a diverse climate with four distinct climate regions, i.e., glacial, humid, arid, and
hyper-arid regions. Extreme north of the country is occupied by glacial region with the mean elevation
of 4158 m and mean annual precipitation of 348 mm. This region is mostly covered with snow and
glaciers. The Hindu Kush Himalaya (HKH) mountain ranges, which are very famous for snow and
glaciers, also lie in the glacial region. Snow and glacier melt from this region in the summer season is
the main source of water in the Indus river for domestic, industrial, and agriculture sectors of Pakistan.
However, the excessive snow and glacier melt caused acute flood events in Pakistan, especially the
2010 flood, which took thousands of lives and severely damaged the infrastructure and economy of the
country. The humid region consists of very high mountains of HKH and all major rivers of the country
(Indus, Kabul, Gilgit, Chitral, Swat, Panjkora, Hunza, Kurram, and Jhelum). Mean elevation of the
humid region is 1286 m, with a mean annual precipitation of 852 mm. The arid region is composed
of major agricultural region of Punjab province. The Indus river and its tributaries flow through the



Remote Sens. 2020, 12, 10 4 of 30

region and considered as a primary source of water in the region. The average elevation and mean
annual precipitation in arid region are 633 m and 322 mm, respectively. Hyper-arid region includes the
Sindh and Balochistan provinces, and south part of the Punjab province. Most of the hyper-arid region
consists of barren lands and dry mountains. The mean elevation and mean annual precipitation in the
region are 444 m and 133 mm, respectively.
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2.2. Ground Precipitation Gauge Data

Ground precipitation gauges (GPGs) are considered as standard precipitation data sources, which
provide direct precipitation records for satellite precipitation calibration and validation processes.
Pakistan Meteorology Department (PMD), and Snow and Ice Hydrology Project (SIHP) of Water and
Power Development Authority (WAPDA) own the meteorological data of Pakistan. SIHP operates
the meteorological stations at high altitudes, mostly situated in glacial and humid regions. The daily
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precipitation records from 2000 to 2015 at 102 GPGs have been collected from both organizations.
Out of 102 GPGs, precipitation records of 79 GPGs are collected from PMD, while the remaining 23
GPGs from WAPDA. Figure 1b shows the geographical distribution of obtained meteorological stations.
In the current study, GPGs are named with respect to the climate zones, i.e., GPGs in the glacial, humid,
arid, and hyper-arid regions are represented as G-GPGs, H-GPGs, A-GPGs, and HA-GPGs. The area
(km2)/number of stations in glacial, humid, arid, and hyper-arid regions are 72,774/19, 137,753/39,
270,484/19, and 322,929/25, respectively.

The precipitation records are manually collected by PMD and WAPDA, which might be subjected
to personal and instrumental errors. Furthermore, GPGs located at high elevations may also be
subjected to other errors due to splashing and wind. Therefore, PMD and WAPDA do the correction of
precipitation records following the standard code of World Meteorological Organization (WMO-N).
Moreover, data quality tests, Skewness and Kurtosis methods are performed after filling the missing
data using the zero-order method [16].

The distribution of GPGs in Pakistan is non-homogenous and very limited/scarce, which is not
enough to understand the precipitation pattern, its spatial and temporal variability over different
climate regions [48]. In the last few decades, the number of GPGs has significantly increased, but the
density is still not able to cope with scientific requirements [49]. Therefore, the application of SPPs and
development of MSPDs are of paramount importance over Pakistan as an alternative precipitation
source for hydrological and meteorological applications.

2.3. Satellite-based Precipitation Datasets

The experiment is conducted using three satellite-based precipitation datasets, including TMPA
3B42-v7, CMORPH, and PERSIANN-CDR, and one re-analysis precipitation dataset (Era-Interim).
These datasets are selected because they are comprehensively evaluated in the previous studies over
the study area (Pakistan).

2.3.1. TMPA 3B42-v7

The Tropical Rainfall Measurement Mission (TRMM), a first dedicated satellite precipitation
product launched in late 1997, was capable of measuring moderate and heavy precipitation with
reasonable accuracy. The TRMM Multi-Satellite Precipitation Analysis (TMPA) is one of the most
suitable TRMM based multi-satellite precipitation products for near real-time (3B42-RT) and research
(3B42-V6/3B42-V7) applications [50,51]. To enhance the calibration process, 3B42-V7 uses the global
real-time precipitation datasets from Global Precipitation Climatology Centre (GPCC). In the current
study, TMPA 3B42-V7 (with spatial resolution of 0.25◦ and daily temporal resolution) is used which
has many advanced specifications as compared to previous versions such as a newer IR brightness
temperature dataset, latitude band calibration system, additional satellite inputs, and a single uniformed
processed surface precipitation analysis [31].

2.3.2. PERSIANN-CDR

Center of Hydrometeorology and Remote Sensing (CHRS) at the University of California Irvine
developed the PERSIANN algorithm and has 0.25◦/daily spatial/temporal resolution. PERSIANN
adjust the neural network parameters by using Passive Microwave (PMW) data (TMI, AMSU-B,
and SSM/I) to enhance the accuracy of precipitation estimates. PERSIANN-CDR, developed by CHRS
with the same spatial resolution and family, uses the same neural network used by previous products
for precipitation estimation. The only difference is the use of input IR dataset with GridSat-B1 instead
of CPC-IR. Moreover, PMW data is not used in PERSIANN-CDR [52].

2.3.3. CMORPH

CMORPH, developed by Climate Prediction Center (CPC), uses IR based motion vectors derived
from PMW data to propagate high-quality precipitation [53]. CMORPH has 0.25◦ spatial and 3
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hours temporal resolution. IR data integrate the observations from GOES 8, GOES 10, Meteosat
5, Meteosat 8, and GMS 5 satellites. Defense Meteorological Satellite Program (DMSP), TRMM,
and NOAA polar-orbiting operational meteorological satellites are used in PMW derived precipitation
estimation in CMORPH.

2.3.4. Reanalysis Precipitation Product (Era-Interim)

The global atmospheric reanalysis precipitation dataset, Era-Interim, is developed by the European
Centre for Medium-Range Weather Forecasts (ECMWF). Era-interim provides the real-time global
precipitation observations from 1979 to present with spatial resolution 0.25◦. Era-Interim data is
generated from the data assimilation system based on IFS (Cy31r2) 2006 release. It includes a
four-dimensional variational (4D-Var) analysis with 12 hours window. Era-Interim estimates the
precipitation based on temperature and relative humidity while using weather forecast model [54].

2.4. Dynamic Bayesian Model Averaging (DBMA)

The term dynamic is used to consider both spatial and temporal variability of BMA weights.
BMA is a statistical approach to combine the predictions and inferences based on multiple competing
models to yield a highly skillful and reliable probabilistic merging [26,27]. BMA uses Bayes theorem
to model not only parameters uncertainty through prior distribution but also model the uncertainty
by obtaining parameter and model’s posterior. It is a robust technique for direct model selection,
combined estimation, and prediction. BMA estimates weights as posterior probabilities, which reflect
model’s forecasting skills relative to other models in the training period [27]. In the current study,
BMA is applied to optimally merge four SPPs to improve satellite precipitation estimation and
obtain best agreement with GPGs measurements by adjusting predictive probability density function
(PDF). Figure 2 shows the flow chart of dynamic BMA (DBMA) algorithm for merging multi-satellite
precipitation. MSPD in the current study is developed by following the methodology proposed by
Ma et al. [26], to which readers are referred for a detailed description.

The calculated BMA weights are adjusted for all merged members at each calibrated location on
each day. Note that BMA analyses are performed only when all the SPPs captured precipitation (hit cases
only). Since BMA weights are applied at the point scale, pixels having at least a single GPG are checked
for spatiotemporal SPPs coincidence. The next day weights of dynamic BMA are based on adding new
sample data (e.g., 41st day) and deleting the oldest sample data (e.g., 1st day) from the training dataset.
Therefore, there is considerable overlap (39 days) between the training data at GPG from one day to another.

Several studies demonstrated that the performance of dynamic MSPDs in terms of Root Mean
Square Error (RMSE) and Correlation Coefficient (CC) increased till 40 days; however, no improvements
are observed beyond 40 days interval [26,47,55–57]. Therefore, BMA is trained for a time window of
three years using 40 days training period. The training was performed for each calibrated GPG on a
daily temporal scale. Considering year 2002 as a basic (starting) year (for which previous two years of
daily precipitation data is available), 40 days of training period in one year and 40 training days in each
of the previous two years, with a total of 120 days are considered to optimize BMA weights. Hamill [55]
also concluded that expanding the training period to include the same season days from previous
year would likely improve model performance. The optimal BMA weights were then interpolated
to the whole study area (Pakistan) using the ordinary kriging method. Finally, a blended satellite
precipitation estimate for each grid is calculated based on individual data and corresponding optimal
grid weights across Pakistan.

To check the importance and sensitivity of training time windows (TTW), we have considered
four sets of TTW, i.e., 1-year, 2-years, 3-years, and 5-years. MAE and RMSE statistical indices calculated
on daily temporal scale averaged over each year of TTW are used to evaluate the accuracy and
performance of MSPD during each TTW (Figures 3 and 4, respectively). Figures 3 and 4 show the MSPD
performance in glacial, humid, arid, and hyper-arid regions during four sets of TTW. The analyses
show that performance of DBMA-MSPD increases with an increase in TTW duration, which supports
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the statement of Hamil [55]. Higher fluctuations (low accuracy) are observed for 1-year TTW, which are
decreasing with an increase in TTW duration, e.g., 3-years and 5-years. The analyses depict that there
are no significant improvements when we expand the duration from 3-years to 5-years (only minor
improvements in 5-years TTW as compared to 3-years). Therefore, 3-years of TTW is selected because
of considerable improvements as compared to 1-year and 2-years TTW and less number of training
datasets as compared to 5-years TTW.
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2.5. Performance Evaluation

The statistical indices, including Mean Bias Error (MBE), Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), Correlation Coefficient (CC) [58], Kling-Gupta efficiency (KGE score) [59],
Theil’s U coefficient [60], ensemble spread score (ESS), and standard deviation (SD) are used to assess
and compare the performance of DBMA-MSPD against the GPG observations. Table 1 represents a
complete description of the statistical indices. MBE demonstrates over/under-estimation of precipitation
with positive/negative values. MAE represents the average absolute error between DBMA-MSPD and
GPGs. RMSE evaluates the average squared error magnitude between the merged (DBMA-MSPD)
and observed precipitation data. CC represents an agreement between the simulated and observed
observations. KGE combines the variability ratio (γ), bias ratio (β), and correlation coefficient (R).
The perfect values for KGE, β, and γ are all 1. Theil’s U evaluates the accuracy of DBMA-MSPD
forecasted precipitation associated with GPGs. Theil’s U can be related to R2 but differs in boundary
conditions, i.e., not bounded by zero and one. Value of Theil’s U closer to zero represents perfect
forecasting accuracy; assumes a value of 1 when models forecast the same errors as the naïve no-change
extrapolation and value greater than 1 represent worst forecasting accuracy and has to be rejected [60].
ESS is usually the deviation of DBMA-MSPD precipitation from its mean [61]. The ideal DBMA merged
precipitation will have the same size of ESS as its RMSE at the same time span [61,62]. SD is used to
describe the MSPD simulated precipitation variance. A higher SD value indicates a higher variation in
simulated precipitation from its mean.

Moreover, we further compared the performance of DBMA-MSPD with SMA based MSPD. SMA is
a fixed weight ensemble approach, which merges SPPs using the arithmetic mean of all members [41].
The equation for SMA approach is given as:

MSPDSMA =
1
n

n∑
i=1

Si (1)

where Si represents individual SPP, n is the number of SPPs and MSPDSMA is the final MSPD developed
using SMA approach.
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Table 1. Statistical indices used to evaluate the performance of DBMA-MSPD. M is the simulated
(merged precipitation) data, O is the observed precipitation data from GPGs, n is the number of samples,
X is the data element (X = M for the DBMA-MSPD while X = O for GPGs), CV is the coefficient of
variation, and bars on variables represents the average values.

Statistical Index Equation Perfect Value

Mean Bias Error (MBE) MBE = 1
n

n∑
i=1

(Mi −Oi) 0

Mean Absolute Error (MAE) MAE = 1
n

n∑
i=1
|Mi −Oi| 0

Root Mean Square Error (RMSE) RMSE =

√
1
n

n∑
i=1

(Mi −Oi)
2 0

Correlation Coefficient (CC) CC =

n∑
i=1
(Mi−Mi)(Oi−Oi)√

n∑
i=1
(Mi−Mi)

2
√

n∑
i=1
(Oi−Oi)

2
1

KGE Score KGE = 1−
√
(CC− 1)2 + (β− 1)2 + (γ− 1)2

where β = M/O, γ = (CV)M/(CV)O

1

Theil’s U U =

√
n∑

i=1
(Mi −Oi)

2/
n∑

i=1
M2

i 0

Ensemble spread score ESS =

√
1

n−1

n∑
i=1

(
M−Mi

)2
0

Standard deviation SD =

√
1
n

n∑
i=1

(
X −X

)2

The performance of DBMA-MSPD is compared with fixed weight MSPD (SMA, hereinafter
SMA-MSPD) using a skill score for each statistical index used in the analyses (shown in Table 1).
For example, the skill scores of MBE and MAE are shown in Equations (2) and (3), respectively.

MBEscore = 100×
(
1−

MBEDBMA
MBESMA

)
(2)

MAEscore = 100×
(
1−

MAEDBMA
MAESMA

)
(3)

3. Results

3.1. Data Normality and Box-Cox Transformation

BMA analyses require the normal distribution of precipitation data; however, the precipitation
data is usually gamma-distributed. Since we have considered only the hit cases and 2 mm as a
threshold for precipitation and no precipitation events, the data is closely normally distributed almost
overall GPGs/SPPs in four climate regions. The Jarque-Bera test was used to determine the normality
of precipitation distribution [63]. Data is normally distributed when the skewness (symmetry of
residuals) is close to zero, and kurtosis (peakedness of the curve) is closer to a value of 3. During
our analyses, skewness of the data is ranging between 0.27 to 0.78, kurtosis between 2.18 to 3.99,
and Jarque-Bera between 13.46 to 47.28. Besides the Jarque-Bera test, we also applied Box-Cox
transformation before the application of BMA to ensure that the transformed individual is close to
normal distribution. The Box-Cox transformation is reliable for non-normal distribution in hydrological
variables [26,42,44,64]. Box-Cox transformation has the capability to transform the non-normally
distributed data to datasets either normally distributed or close enough to the normal distribution [65].
The results confirm that precipitation is normally distributed after Box-Cox transformation (Figure 5).
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probability density function (PDF) along the normal (red) line.

The application of Box-Cox transformation is dependent on λ values, which might be positive
or negative. This demonstrates that the transformed results do not cover the entire range (−∞, +∞);
therefore, approximately normal distribution of precipitation is expected. The λ is obtained by
calculating a minimum of unconstrained multivariable function using the Nelder-Mead simplex
technique [66]. The λ value is dependent on length of the sampling data (number of precipitation
observations), and its values for TMPA, PERSIANN-CDR, Era-Interim, and CMORPH are ranging
between 0.02–1.57, −0.03–2.21, 0.02–1.96, and −0.08–2.37, respectively. The λ values of TMPA at
representative GPGs across each glacial, humid, arid, and hyper-arid regions are 1.352, 0.515, 0.619,
and 1.386, respectively.

3.2. Spatiotemporal Distribution of DBMA-MSPD Weights over Pakistan

The weights of the merged members (TMPA, Era-Interim, PERSIANN-CDR, and CMORPH)
for the DBMA-MSPD are averaged over four seasons during 2000–2015 and presented in Figure 6.
The analysis shows that DBMA assigned higher weights to TMPA (Figure 6a) and PERSIANN-CDR
(Figure 6c), followed by Era-Interim (Figure 6b) and CMOPRH (Figure 6d). The average weights of
TMPA, PERSIANN-CDR, Era-Interim, and CMORPH during 2000–2015 are 0.32, 0.27, 0.22, and 0.19,
respectively. On the regional scale, TMPA shows higher skills in glacial (0.32) and humid (0.37) regions as
compared to PERSIANN-CDR having DBMA weights of 0.27 and 0.25. Moreover, the average weights of
Era-Interim vary from a maximum of 0.22 in glacial to 0.20 in humid region. Similarly, CMORPH weights
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varies from 0.18 (humid region) to 0.20 (glacial region). However, in arid region PERSIANN-CDR
(0.29) dominated TMPA (0.26), followed by Era-Interim (0.25). Further, hyper-arid region is dominated
by TMPA and Era-Interim with the average weights of 0.31 and 0.29, respectively. While the average
weights of PERSIANN-CDR and CMORPH in hyper-arid regions are 0.22 and 0.18.
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The seasonal (pre-monsoon, monsoon, post-monsoon, and winter) distribution of DBMA-MSPD
weights of four merged members over Pakistan during 2000–2015 are shown in Figures 7–10.
The temporal spans of four seasons are: April, May, and June (pre-monsoon), July, August, and
September (monsoon), October and November (post-monsoon), and December, January, February, and
March (winter). More than 60% of precipitation is received during the monsoon season in Pakistan,
which varies with topography and climate in magnitude from low (<100 mm) in the glacial region
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(34–36◦N), higher (>700 mm) in the North-East (29–33◦N) and again low (around 100 mm) in the South
(24–28◦N) [16,67]. Spatial distribution of relative weights of merged members varies seasonally over
all the climate regions.
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(c) PERSIANN-CDR, and (d) CMORPH, in monsoon season during 2000–2015.

During the pre-monsoon season (Figure 7), higher weights are assigned to TMPA (0.31), followed
by Era-Interim (0.25). Weights of PERSIANN-CDR and CMORPH are 0.23 and 0.21. Highest average
weight for TMPA is observed in the arid (0.36) and humid (0.33) regions. The distribution of weight
is gradually decreasing from arid towards the hyper-arid region (0.31). However, for Era-Interim,
highest average weight is observed in the humid (0.34) and glacial (0.25) regions. In contrast,
for PERSIANN-CDR, the highest weight is observed in hyper-arid (0.28) and arid regions (0.26).
Moreover, no specific trend is observed for CMORPH.
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Figure 9. Spatial distribution of DBMA-MSPD weights of merged members, (a) TMPA, (b) Era-Interim,
(c) PERSIANN-CDR, and (d) CMORPH, in post-monsoon season during 2000–2015.

During the monsoon season (Figure 8), TMPA dominates other merging members having higher
accuracy with an overall average weight of 0.52, which is significantly higher than average weights of
Era-Interim (0.21), PERSIANN-CDR (0.14) and CMORPH (0.13), respectively. Similarly, on a regional
scale, TMPA shows relatively higher skills in the humid and hyper-arid regions with average weights of
0.54 and 0.53, respectively. TMPA experienced almost similar average weights in all the climate regions.
In the case of Era-Interim, highest weights are observed in hyper-arid and arid regions with average
values of 0.24 and 0.23, respectively. However, no particular trend is observed for PERSIANN-CDR
and CMORPH. PERSIANN-CDR and CMORPH experience higher skills in the glacial region with
average weights of 0.16 and 0.17, respectively.
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Figure 10. Spatial distribution of relative DBMA-MSPD weights of the merged members, (a) TMPA,
(b) Era-Interim, (c) PERSIANN-CDR, and (d) CMORPH, in winter season during 2000–2015.

During the post-monsoon season (Figure 9), weights are shifted to PERSIANN-CDR and CMORPH
with average weights of 0.33 and 0.25. The average weights of TMPA and Era-Interim are 0.20 and 0.22.
PERSIANN-CDR and CMORPH show a relatively small variation in the distribution of weights across
different climate regions. PERSIANN-CDR shows higher skills in arid (0.37) and hyper-arid (0.36)
regions while relatively lower skills in glacial (0.33) and humid (0.32) regions. However, no significant
variation is observed for CMORPH. The regional average weights for CMORPH are 0.26 (glacial),
0.27 (humid), 0.26 (arid) and 0.25 (hyper-arid).

During the winter season (Figure 10), PERSIANN-CDR and TMPA show higher skills as compared
to other merged members. The average weights of the merged members during the winter season are
0.33 (TMPA), 0.14 (Era-Interim), 0.38 (PERSIANN-CDR), and 0.15 (CMORPH). In the glacial, arid and
hyper-arid regions, PERSIANN-CDR dominated TMPA. However, TMPA shows slightly higher skills
in the humid region. The average weights of PERSIANN-CDR in all the climate regions from glacial to
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hyper-arid region are 0.35, 0.38, 0.41, and 0.40, respectively. Similarly, the average weight of TMPA are
0.27 (glacial), 0.39 (humid), 0.28 (arid) and 0.35 (hyper-arid).

The average DBMA-MSPD weights (Figure 11) at representative GPGs in each climate region
are plotted against DOY (Day of the Year). Representative GPGs are those whose weights are close
to the average temporal distribution of DBMA-MSPD weights in the corresponding climate region.
The representative stations for glacial, humid, arid and hyper-arid regions are G-GPG10, H-GPG17,
A-GPG13, and HA-GPG17, respectively. In the glacial region, significant variation is observed in
PERSIANN-CDR and Era-Interim weights. However, less volatility can be seen for TMPA and
moderate for CMORPH. Peak weights of TMPA, PERSIANN-CDR, and Era-Interim are observed
between DOY 156–232 during monsoon season (late pre-monsoon, monsoon, and early post-monsoon
rainy days). In the humid region, higher weights are assigned to TMPA followed by PERSIANN-CDR.
Higher fluctuations in weights are observed only for PERSIANN-CDR. The monsoon precipitation
(DOY 181–273) is captured very well by TMPA and PERSIANN-CDR representing peak weights during
the season. In contrast, less volatility is observed for Era-Interim and CMORPH. The arid region is
dominated by PERSIANN-CDR, followed by TMPA and Era-Interim (almost similar weights). There is
a significant fluctuation of PERSIANN-CDR and Era-Interim weights in the monsoon season. TMPA is
showing a different trend in the arid region as compared to other regions, i.e., no significant fluctuation
during the monsoon season. In the hyper-arid region, dominated by TMPA and Era-Interim, all the
SPPs captured high precipitation events effectively.
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3.3. Statistical Evaluation of DBMA-MSPD over Pakistan

Statistical evaluation of DBMA-MSPD is performed using pixel by pixel analysis (pixels
having at least one GPG were selected) to ensure proper analysis of DBMA-MSPD over Pakistan.
The DBMA-MSPD performance in daily precipitation estimation over 102 GPGs during the past 16
years over entire Pakistan is shown in Figure 12.
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Figure 12a shows mean bias error (MBE) of DBMA-MSPD over Pakistan. DBMA-MSPD
overestimated precipitation in the extreme north (glacial region) of Pakistan; however, the error
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is declining towards the south. The maximum overestimation is observed at HMS4 (+1.89 mm/day),
while the maximum underestimation is −1.14 mm/day at HMS34.

Figure 12b shows the spatial distribution of mean absolute error (MAE) over Pakistan. A high
magnitude of error is observed in the glacial and humid regions, which are gradually decreasing toward
the hyper-arid region. The MAE for DBMA-MSPD is variable even in the glacial and humid regions
ranging from 2.69 mm/day (at HMS4) to 1.36 mm/day at GMS5. However, MAE falls gradually from
humid region to hyper-arid region ranging from 2.38 mm/day at HMS11 to 0.71 mm/day at HAMS18.

Figure 12c shows RMSE distribution, where a similar spatial distribution trend as MAE is observed,
i.e., RMSE is decreasing from north to south. RMSE is ranging from 11.96 mm/day (at HMS11) to
1.72 mm/day (HAMS8). The figure depicts higher RMSE in the downstream part of the glacial region
and upstream part of the humid region. Minimum RMSE is observed in the South-West of Pakistan.

DBMA-MSPD shows a higher correlation with the GPGs with an average CC of 0.70 (Figure 12d)
over the entire Pakistan. Higher CC is mainly observed in the south-east of Pakistan (maximum CC is
0.84 at HAMS18), while lower CC is 0.41 observed at GMS2 (glacial region). DBMA-MSPD shows
poor correlation with GPGs in the glacial region, which gradually increasing towards the South of
Pakistan. The average CC in the glacial region is 0.55, which increases to 0.68 in humid region, 0.77 in
arid, and 0.81 in hyper-arid regions.

Figure 12e shows the spatial distribution of KGE score compared to GPGs observations. Smaller
KGE score is observed in extreme east and west of glacial region, which gradually increases toward the
south of Pakistan (from glacial region to hyper-arid region). The maximum KGE score is observed in
hyper-arid region, more specifically at HA-GPG20 (0.93) and HA-GPG19 (0.91). Smallest KGE score in
glacial the region might be associated with poor performance of individual SPPs in glacial and humid
regions. The smallest KGE score is 0.33 at G-GPG10 and 0.34 at G-GPG11.

Figure 12f represents the spatial distribution of Theil’s U over Pakistan. Theil’s U is used in
this study to observe the merged dataset forecasting accuracy over the spatial span of study area. It
also squares the deviation to give more weight to errors and to exaggerate errors that help to detect
the regions with high errors. Theil’s U values closer to or larger than 1 represent poor forecasting
capability of the statistical model (DBMA). It is observed that the model’s forecasting is considerably
increasing from north to south of Pakistan. The performance of DBMA-MSPD is poor in the glacial
region, which is increasing gradually towards the hyper-arid region. Theil’s U is ranging from 0.70 at
H-GPG4 to 0.37 at HA-GPG18. The average Theil’s U overall climate regions are 0.53, representing
better forecasting accuracy of DBMA-MSPD.

Table 2 shows the mean and median of ESS and SD scores of DBMA-MSPD and SMA-MSPD during
different seasons across four climate regions of Pakistan. For DBMA-MSPD, the analyses show that
high ensemble spread is observed during monsoon season followed by pre- and post-monsoon seasons.
The minimum spread is depicted in hyper-arid region across all seasons due to low precipitation
magnitude/intensity and higher SPPs performance. On the other hand, higher spread is observed in
humid region (more specifically in the north-west of the region) with maximum average ESS values of
11.38 mm/day and 9.26 mm/day, respectively, during monsoon and pre-monsoon seasons. A similar
trend is also observed for the glacial region, with the maximum average ESS values of 10.26 mm/day in
monsoon, and 8.80 mm/day in pre-monsoon seasons. In contrast, higher ESS values for arid region
are observed during the post-monsoon season, which might be associated with relatively frequent
precipitation (moderate magnitude and intensity).

Results in Table 2 show that variation in precipitation is dependent on magnitude and intensity,
i.e., higher variation during monsoon season and lower variation in winter season. SD statistic for
DBMA-MSPD shows high variations in glacial region as compared with other regions. Lower variations
are observed in hyper-arid region, having very minimal precipitation amount. The maximum mean
SD values in glacial and humid regions are 12.58 mm/day and 11.43 mm/day during monsoon season.
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Table 2. Ensemble Spread Scores (ESS) and Standard deviations (SD) of DBMA-MSPD and SMA-MSPD
across four climate regions during four seasons (mm/day).

Season
Climate
Region

ESS Mean ESS Median SD Mean SD Median

DBMA SMA DBMA SMA DBMA SMA DBMA SMA

Pre-Monsoon Glacial 8.80 4.86 8.71 4.84 11.35 6.56 11.44 6.50
Humid 9.26 6.60 8.94 6.49 10.42 6.25 10.47 6.23

Arid 3.97 2.58 3.69 2.67 4.21 2.73 3.98 2.69
Hyper-arid 3.03 1.90 2.99 1.94 3.63 2.25 3.55 2.33

Monsoon Glacial 10.26 5.33 9.61 5.36 12.58 6.79 12.47 6.75
Humid 11.38 6.67 11.25 6.60 11.43 6.57 11.58 6.63

Arid 3.76 2.27 3.50 2.24 5.95 3.92 5.74 3.95
Hyper-arid 2.67 1.81 1.92 1.85 4.48 2.91 4.41 2.98

Post-Monsoon Glacial 9.41 5.12 9.20 5.10 10.80 6.33 10.92 6.41
Humid 8.14 4.67 7.86 4.56 9.24 5.29 9.46 5.28

Arid 4.14 2.58 3.95 2.60 4.35 2.83 4.10 2.88
Hyper-arid 3.13 1.95 3.02 2.02 3.61 2.33 3.53 2.38

Winter Glacial 8.79 4.87 8.75 4.75 10.61 6.07 10.70 6.03
Humid 8.67 4.73 8.43 4.80 8.69 4.93 8.46 4.92

Arid 3.99 2.48 3.71 2.51 4.19 2.68 3.95 2.72
Hyper-arid 2.75 1.77 2.88 1.80 3.45 2.12 3.53 2.10

SMA-MSPD shows comparatively lower ensemble spread and precipitation variation as compared
to DBMA-MSPD. The analyses show that ESS score is increasing with the increase in precipitation
magnitude and intensity. Thus, a higher ESS score is observed during monsoon followed by
post-monsoon and pre-monsoon seasons. The ensemble spread of SMA-MSPD also varies with
topography, i.e., high ESS score (6.67 mm/day) across humid region followed by 5.33 mm/day in
glacial region during monsoon season. Minimum ensemble spread is observed across hyper-arid
region, which might be associated with minimal precipitation in the region. A minimum ESS score of
1.77 mm/day is observed during the winter season across hyper-arid region. The analyses show that
SMA-MSPD is not as effective as DBMA-MSPD to express the ensemble spread in precipitation during
all seasons across all climate regions.

SMA-MSPD has a relatively poor capacity to depict the variation in precipitation as DBMA-MSPD
evaluated across all four climate regions during different precipitation seasons. The precipitation
variation is dependent on seasonal variations in magnitude and intensity of precipitation. In glacial
region, a higher SD (average value of 6.79 mm/day) is observed during monsoon season, while minimum
SD in 6.07 mm/day in winter season. The higher variation in SMA-MSPD precipitation (with average
SD value of 6.57 mm/day) in humid region is observed during the monsoon season, while minimum
average SD (2.12 mm/day) is observed during winter season in hyper-arid region.

Figure 13 shows the skill scores (improvements) of DBMA-MSPD compared with SMA-MSPD
across Pakistan. Figure 13a shows higher improvements in MBE in the center north of glacial region
(45–50%), which is decreasing from north to south (from glacial to humid, arid, and hyper-arid regions).
Higher skills in glacial and humid regions confirm the significant improvements of BMA algorithm
as compared to SMA. Besides, the supremacy dynamic (spatial and temporal) variation of weights
can also be depicted from glacial and humid regions. Lower improvements in MBE are observed
in hyper-arid region, more specifically in the south-east. The lower skills in hyper-arid region are
associated with higher performance of individual SPP in the region.
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MAE skills show higher improvements in 40%–50% and 30–40% in glacial and humid regions,
respectively (Figure 13b). Slightly lower improvements in MAE are observed in the west of arid and
east of hyper-arid regions ranging between 30–35%. Figure 13c shows higher improvements in RMSE
across glacial (40–50%) and humid (40–45%) region, while lower in the middle of hyper-arid region
(30–35%).

Lower improvements as compared to other skill scores are observed in CC, KGE, and Theil’s U
(Figure 13d–f). DBMA-MSPD significantly improved the CC in east of glacial region as compared to
SMA-MSPD, while moderate improvements are observed in the rest of glacial and humid regions.
Lower CC skill score is depicted in the extreme west of hyper-arid region (10–15%). There is no particular
trend observed in the KGE skill score in glacial and humid regions; however, higher improvements are
observed in these two regions, which are declining towards the hyper-arid region (Figure 13e). Theil’s
U score has been significantly increased in the extreme north of the glacial region (22–24%). However,
the improvements of DBMA-MSPD show a decreasing trend towards the south (hyper-arid region)
of Pakistan.

The ESS and SD skill scores of DBMA-MSPD compared with SMA-MSPD are also calculated and
presented in Figure 14. Higher improvements in ensemble spread are observed in humid (40–50%)
and glacial (35–40%) regions. ESS score is decreasing towards the hyper-arid region, where the ESS
score is ranging between 20–30% (Figure 14a). SD skill score (Figure 14b) shows contrasting figues as
compared with ESS score in humid and glacial regions. Maximum SD skill score (35–45%) is observed
in glacial region, while SD score is ranging from 30% to 45% in humid region. Minimum improvements
(20–30%) in terms of SD are observed in hyper-arid region.
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Overall, the skill scores show high improvements of DBMA-MSPD in glacial and humid regions,
which is declining towards the hyper-arid region. Lower improvements in hyper-arid/arid region are
due to the high performance of individual SPPs, low magnitude of precipitation and low elevation.
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Higher improvements in glacial region are due to the robustness of BMA algorithm and dynamic
variation of weights as compared to fixed weight SMA-MSPD.

3.4. Comparison of DBMA-MSPD with SMA-MSPD and Merging Members using GPGs Observations

The comparison and evaluation of DBMA-MSPD and four merged members against 102 GPGs in
four climate zones using selected six statistical indices are presented in Table 3. The analysis shows
that DBMA-MSPD outperformed all the merged members and showing significant improvement in all
climate zones. Among the merged members, TMPA shows supremacy in capturing precipitation with
high forecasting accuracies and a high correlation with GPGs in all climate zones. On the other side,
CMORPH presents the worst performance in all climate zones. The analysis confirms a significant
reduction in errors for DBMA-MSPD as compared to individual merged members and shows highest
potential to be utilized in hydrological applications [26,48].

Table 3. Evaluation of DBMA-MSPD and four merged members against 102 GPGs using daily averaged
statistical indices during 2000–2015.

Zone SPPs/MSPD MBE
(mm/day)

MAE
(mm/day)

RMSE
(mm/day) CC KGE

Score
Theil’s

U

Glacial
zone

DBMA-MSPD 0.99 1.96 8.80 0.55 0.36 0.53
SMA-MSPD 1.85 2.66 10.18 0.48 0.32 0.55

TMPA 1.91 2.79 10.83 0.45 0.31 0.56
Era-Interim 2.27 3.25 11.39 0.38 0.28 0.64

PERSIANN-CDR 2.14 3.01 11.01 0.42 0.27 0.60
CMORPH 2.51 3.60 11.87 0.34 0.25 0.67

Humid
zone

DBMA-MSPD 0.78 1.75 8.23 0.68 0.51 0.44
SMA-MSPD 1.47 2.64 10.99 0.61 0.47 0.46

TMPA 1.54 2.80 11.62 0.59 0.46 0.48
Era-Interim 1.86 3.34 11.58 0.52 0.43 0.54

PERSIANN-CDR 1.65 3.05 11.32 0.56 0.40 0.51
CMORPH 2.04 3.65 11.84 0.49 0.38 0.58

Arid
zone

DBMA-MSPD −0.25 1.52 4.62 0.78 0.67 0.41
SMA-MSPD −0.32 2.87 6.79 0.73 0.63 0.44

TMPA −0.36 3.15 7.28 0.71 0.62 0.46
Era-Interim −0.53 3.65 7.91 0.63 0.58 0.54

PERSIANN-CDR 0.46 3.40 7.64 0.67 0.55 0.50
CMORPH −0.62 3.91 8.18 0.61 0.53 0.57

Hyper-Arid
zone

DBMA-MSPD −0.71 1.23 3.83 0.80 0.86 0.41
SMA-MSPD −1.43 2.16 5.72 0.76 0.81 0.44

TMPA −1.51 2.32 5.97 0.76 0.80 0.46
Era-Interim −2.00 2.82 6.53 0.68 0.77 0.53

PERSIANN-CDR −1.76 2.57 6.24 0.72 0.75 0.50
CMORPH −2.25 3.04 6.84 0.65 0.71 0.57

The improvements of DBMA-MSPD against SMA-MSPD are 46.48%, 26.31%, 13.55%, 12.73%,
11.11%, and 3.63% in MBE, MAE, RMSE, CC, KGE and Theil’s U, respectively, across glacial region.
Similarly, 46.94%, 21.87% and 50.34% in MBE, 33.71%, 47.04% and 43.05% in MAE, 25.11%, 31.96% and
33.04% in RMSE, 10.29%, 6.41% and 5% in CC, 7.84%, 5.97% and 5.81 in KGE score, and 4.35%, 6.82%
and 6.82% in Theil’s U improvements are observed in humid, arid and hyper-arid regions, respectively.

DBMA-MSPD is compared with TMPA (best merging member) to quantify improvement of
developed MSPD. DBMA-MSPD improved MBE, MAE, RMSE, CC, KGE score and Theil’s U in the
glacial zone by 48.17%, 29.75%,18.74%, 18.18%, 13.88% and 5.36%, respectively. Performance of
DBMA-MSPD in humid zone is increased by 49.35% (MBE), 37.50% (MAE), 29.17% (RMSE), 13.23%
(CC), 9.80% (KGE score) and 8.33% (Theil’s U). Similarly, improvements in arid and hyper-arid zones
are 30.55% and 52.98% in MBE, 51.74% and 46.98% in MAE, 36.54% and 35.84% in RMSE, 8.97% and
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5% in CC, 7.46% and 6.97% in KGE score, respectively. Equal improvements of 10.87% in Theil’s U
are observed in both arid and hyper-arid zones. The average improvements of MSPD across all four
climate regions are 45.26% (MBE), 30.99% (MAE), 30.1% (RMSE), 11.34% (CC), 9.53% (KGE score) and
8.86% (Theil’s U).

4. Discussion

Accurate estimation and capturing higher spatial and temporal variation in precipitation
is a challenging task over the diverse climate and complex topography of Pakistan [16].
The sparse distribution of GPGs contributes to low accuracy in estimation of precise precipitation.
Therefore, SPPs are used as an alternative which provides homogenous precipitation estimates on
regional to global scales. With significant advancement in remote sensing techniques and continuous
improvements in satellite-based retrieval algorithms provide cost-effective and reliable precipitation
estimates [68,69]. However, SPPs observations are subjected to uncertainties resulting from retrieval
algorithms. To reduce these uncertainties and to obtain high-quality precipitation estimates, researchers
have focused on merging individual SPPs [16,22,26,70].

Very limited studies are found which focused on the development of merged precipitation datasets
over Pakistan. Very recently, Rahman et al. [48], Rahman et al. [16], and Muhammad et al. [22]
developed and evaluated merged multi-satellite precipitation datasets (MSPDs) in Pakistan.
Muhammad et al. [22] developed MSPD across Pakistan by assigning relative weights to SPPs, i.e.,
Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM (IMERG)
research version (IMERG-IR), IMERG real-time (IT), and TRMM 2B42 (RT). The results demonstrated
significant agreement with GPG observations and improvements as compared to individual SPPs.
Rahman et al. [48] developed Dynamic Clustered Bayesian Model Averaging (DCBA-MSPD) across
Pakistan and evaluated its performance across four climate regions (spatial evaluation) and four
seasons (temporal evaluation) during 2000–2015. They concluded better performance of DCBA-MSPD
as compared to individual SPP members. However, relatively poor performance was observed over
high elevated areas of glacial and humid regions. Similarly, Rahman et al. [16] reported significant
improvement in precipitation estimation and reduction in uncertainties both on regional and seasonal
scales. In the current study, the performance of DBMA-MSPD shows elevation dependency. Besides the
significant improvements in reduction of errors associated with individual SPPs, higher discrepancies
are observed in glacial and humid zones (high elevated zones). Besides the improvements, all the
MSPDs show a strong dependency on precipitation magnitude/intensity and elevation [16,26,41].
Shen et al. [41] reported that precipitation estimation capability of MSPDs reduces significantly at an
elevation higher than 4000 m.

The possible sources of errors are elevation dependency, climate variability, topographic complexity,
impact (limitations) of different sensors used in SPPs, and the retrieval algorithms used to estimate
precipitation [48,71]. The topography of Pakistan is very complex, consisting of the permanent snow
and glaciers in glacial region, high mountain peaks and hilly areas in northern parts and plain areas
having arid and hyper-arid characteristics in the south, all in a very short spatial span. The topographic
complexity also contributes to strong scattering of MW (microwave) signals, especially across cold
climate and snow-dominated regions (i.e., glacial region) [31,72].

The poor performance of all MSPDs evaluated over Pakistan in the glacial region might be
associated with the performance of IR (InfraRed) and MW sensors used in precipitation estimation.
Information about precipitation estimates based on the lowest temperature on the top of cloud is
provided by IR sensors, while PMW provides details about precipitation area rather than cloud
temperature [73]. The clouds over glacial region are relatively warm and hamper the capabilities of
sensors to estimate precipitation from warmer clouds. This is because the cloud top temperature is
too warm for the IR sensors’ threshold to differentiate between precipitation and no precipitation
clouds [74,75]. Furthermore, the accuracy of IR sensors is also dependent on brightness temperature,
and polarization properties vary with snow cover and exposure, which in turn depend on altitude and
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terrain of the mountainous region [72,76]. Besides the limitations of IR sensors, PMW sensors have
poor accuracy in detecting precipitation over mountains (glacial and humid regions in the current
study), which is due to warmer clouds that could produce heavy precipitation without more ice aloft
in PMW algorithm, dense vegetation cover, and relative coarse spatial resolution [73].

Intense precipitation during monsoon season across the humid region causes attenuation in signals,
which is very frequent in such regions [77]. In addition, the retrieval algorithms used to estimate
precipitation also contributes to errors in SPPs [78,79]. The algorithms used in SPPs uses IR brightness
temperature at the top of the cloud and indirectly estimate the precipitation without taking into
consideration the elevation impact and sub-cloud evaporation phenomena [72,73], hence significantly
affect the quality and accuracy of SPPs [80]. Besides the poor performance of SPPs due to retrieval
algorithms over heavy precipitation regions, the processing schemes of MW and IR sensors contribute
to further uncertainties [72]. Moreover, external errors related to the data quality of GPGs such as
splashing and wind effects, human-induced errors, impact of snow, and non-uniform/sparse/limited
distribution of GPGs also plays a role in calibrating the SPPs [81].

The factors mentioned above are the causes of poor performance of MSPDs over glacial and
humid regions of Pakistan, i.e., poor performance of SPPs in glacial and humid regions leads to
greater uncertainties in the developed MSPDs [57]. High performance of individual SPPs in arid and
hyper-arid regions [16,82,83] contributes to the high performance of MSPDs.

MSPD developed using a dynamic algorithm (variation of weights over time and space) has many
advantages as compared to fixed weight-based MSPD. The dynamic weights can account the regional
topographic complexity as we all as extreme local climate that can influence the merging process.
In comparison to fixed weight MSPDs, the improvements of DBMA-MSPD is quantified using a skill
score calculated using SMA-MSPD as a reference forecast. The analyses show significant improvement
of DBMA-MSPD across glacial and humid regions and relatively lower improvements in hyper-arid
region. We investigated the DBMA-MSPD performance for a particular season at a specific location.
Variation of weights over time in a dynamic algorithm demonstrates the performance of MSPDs based
on precipitation intensity and magnitude, e.g., monsoon season in Pakistan having an intense and high
magnitude of precipitation. Sometimes, the dynamic algorithms (such as DBMA and DCBA) randomly
select an individual SPP rather than considering the SPP having a high correlation with GPGs and
low errors (high weight) in a particular season. Thus, higher uncertainties are introduced during the
merging process [56].

5. Conclusions

The current study proposed a merged multi-satellite precipitation dataset (MSPD) using Dynamic
Bayesian Model Averaging (DBMA) algorithm from four satellite-based precipitation products (SPPs),
including TMPA 3B42v7, PERSIANN-CDR, Era-Interim, and CMORPH. The MSPD was evaluated
over four different climate regions of Pakistan, i.e., glacial, humid, arid and hyper-arid, both on spatial
and seasonal (pre-monsoon, monsoon, post-monsoon, and winter) scale. Performance of MSPD is
evaluated over 102 GPGs using six statistical indices at daily temporal scale, including Mean Bias Error
(MBE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Correlation Coefficient (CC),
Kling-Gupta efficiency (KGE score) and Theil’s U coefficient during 2000-2015. The key findings from
the current study are listed below:

(1) The MSPD has significantly improved the performance of individual SPPs. TMPA has higher
accuracy as compared to other SPPs. The average improvements of MSPD across all climate
regions with respect to TMPA are 45.26% (MBE), 30.99% (MAE), 30.1% (RMSE), 11.34% (CC),
9.53% (KGE score) and 8.86% (Theil’s U).

(2) DBMA-MSPD has assigned higher weights to TMPA and PERSIANN-CDR followed by
Era-Interim and CMORPH. The average weights of TMPA, PERSIANN-CDR, Era-Interim,
and CMORPH across Pakistan during 2000–2015 are 0.32, 0.27, 0.22 and 0.19, respectively.



Remote Sens. 2020, 12, 10 25 of 30

(3) On regional scale, TMPA shows higher skills in glacial (0.32) and humid (0.37) regions as
compared to PERSIANN-CDR with 0.27 (glacial) and 0.25 (humid), Era-Interim with 0.22 (glacial)
and 0.20 (humid), and CMORPH with 0.20 (glacial) and 0.18 (humid). Moreover, arid and
hyper-arid regions are dominated by PERSIANN-CDR and TMPA, with average weights of 0.29
and 0.31, respectively.

(4) Spatial evaluation of MSPD depicted poorer performance in glacial and humid regions,
which significantly improved towards arid and hyper-arid regions. Precipitation is overestimated
in glacial and humid regions while underestimated in arid and hyper-arid regions.
Maximum overestimation and underestimation are +1.89 mm/day and −1.14 mm/day, respectively.
MAE and RMSE are ranging from 2.69–0.71 mm/day and 11.96–1.72 mm/day, respectively. Higher CC
is observed in hyper-arid (0.84) while lower in glacial (0.41). The average CC across glacial, humid,
arid, and hyper-arid regions are 0.55, 0.68, 0.77, and 0.81, respectively. The maximum (0.93) and
minim (0.33) KGE score is observed in hyper-arid and glacial regions, indicating better performance
of MSPD in hyper-arid region. Theil’s U is ranging from 0.70 (humid) to 0.37 (hyper-arid) with an
average value of 0.53 across all climate regions.

(5) The heavy precipitation seasons (pre-monsoon and monsoon) are dominated by TMPA
(with average weights of 0.31 and 0.52) and Era-Interim (0.25 and 0.21). PERSIANN-CDR
presented a higher performance in post-monsoon and winter seasons with average weights of
0.33 and 0.38, respectively. The significant seasonal variations of DBMA-MSPD weights indicate
the necessity to use dynamic weights in merging the SPPs.

(6) TMPA and PERSIANN-CDR accurately captured the precipitation trends in heavy precipitation
seasons (pre-monsoon and monsoon) in glacial and humid regions. Similarly, in arid and
hyper-arid regions PERSIANN-CDR and Era-Interim and TMPA and Era-Interim followed the
heavy precipitation trends.

(7) The ensemble spread and variation of DBMA-MSPD precipitation are evaluated using ensemble
spread score (ESS) and standard deviation (SD), respectively. The ensemble spread is increasing
with magnitude and intensity of the precipitation. Higher ESS with an average value of
11.38 mm/day was observed across the humid region during monsoon season. Lower ensemble
spread is depicted in hyper-arid region during the winter season. The variation in precipitation
showed elevation dependency, subjected to magnitude and intensity of precipitation, i.e., higher
variation during monsoon season over high elevation regions. The maximum average SD values
in glacial and humid regions are 12.58 mm/day and 11.43 mm/day.

(8) The ESS and SD scores of SMA-MSPD showed relatively lower ensemble spread and variation in
precipitation. Maximum spread with average value of 6.67 mm/day is observed during monsoon
season in humid region, while a lower ESS score of 1.77 mm/day is observed in hyper-arid region
during the winter season. Similarly, higher variation in SMA-MSPD precipitation (with SD average
value of 6.79 mm/day) is depicted in glacial region during monsoon season, while minimum SD
(2.12 mm/day) in hyper-arid region during winter season.

(9) The skill score used to quantify the improvements of DBMA-MSPD against SMA-MSPD
shows high improvements (40–50% for MBE, MAE and RMSE, and 20–25% for CC, KGE
and Theil’s U) in glacial and humid region. However, relatively low improvements are observed
across hyper-arid region (20–30% for MBE, MAE, and RMSE, and 10–15% for CC, KGE, and
Theil’s U). Higher improvements in ensemble spread are observed in humid (40–50%) and
glacial (35–40%) regions, while lower improvements in hyper-arid region (20–30%). Similarly,
maximum and minimum improvements are observed in SD across glacial (35–45%) and hyper-arid
(20–30%) regions.

In further studies, the role and impact of different SPPs on the performance of MSPD can
be explored, e.g., by replacing the Era-Interim with its new version ERA5, the Era-Interim with
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SM2RAIN-based products, the TMPA with IMERG. Moreover, real-time versions of TMPA and IMERG
can also be considered.
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