# Comment on “Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy” by Milillo et al. (2019)

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Exploited Data and Multi-Temporal SAR Techniques

#### 2.1. CSK Dataset

#### 2.2. The SBAS Technique

#### 2.3. The TomoSAR Technique

## 3. Results

## 4. Discussion and Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Genova, le 43 Vittime del Crollo del Ponte Morandi. Available online: https://www.ansa.it/liguria/notizie/2018/08/18/-le-43-vittime-del-crollo-del-ponte-morandi_9f53cd46-1b85-45ae-a23a-dc92c9c5cef3.html (accessed on 3 December 2020).
- Milillo, P.; Giardina, G.; Perissin, D.; Milillo, G.; Coletta, A.; Terranova, C. Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy. Remote Sens.
**2019**, 11, 1403. [Google Scholar] [CrossRef][Green Version] - Bonano, M.; Manunta, M.; Pepe, A.; Paglia, L.; Lanari, R. From previous C-band to new X-band SAR systems: Assessment of the DInSAR mapping improvement for deformation time-series retrieval in urban areas. IEEE Trans. Geosci. Remote Sens.
**2013**, 51, 1973–1984. [Google Scholar] [CrossRef] - Sansosti, E.; Berardino, P.; Bonano, M.; Calò, F.; Castaldo, R.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; et al. How second generation SAR systems are impacting the analysis of ground deformation. Int. J. Appl. Earth Obs. Geoinf.
**2014**, 28, 1–11. [Google Scholar] [CrossRef][Green Version] - Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens.
**2002**, 40, 2375–2383. [Google Scholar] [CrossRef][Green Version] - Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens.
**2004**, 42, 1377–1386. [Google Scholar] [CrossRef] - Bonano, M.; Manunta, M.; Marsella, M.; Lanari, R. Long-term ERS/ENVISAT deformation time-series generation at full spatial resolution via the extended SBAS technique. Int. J. Remote Sens.
**2012**, 33, 4756–4783. [Google Scholar] [CrossRef] - Fornaro, G.; Reale, D.; Serafino, F. Four-Dimensional SAR Imaging for Height Estimation and Monitoring of Single and Double Scatterers. IEEE Trans. Geosci. Remote Sens.
**2009**, 47, 224–237. [Google Scholar] [CrossRef] - Fornaro, G.; Lombardini, F.; Pauciullo, A.; Reale, D.; Viviani, F. Tomographic Processing of Interferometric SAR Data: Developments, applications, and future research perspectives. IEEE Signal Process. Mag.
**2014**, 31, 41–50. [Google Scholar] [CrossRef] - Manunta, M.; Marsella, M.; Zeni, G.; Sciotti, M.; Atzori, S.; Lanari, R. Two-scale surface deformation analysis using the SBAS-DInSAR technique: A case study of the city of Rome, Italy. Int. J. Remote Sens.
**2008**, 29, 1665–1684. [Google Scholar] [CrossRef] - Arangio, S.; Calò, F.; Di Mauro, M.; Bonano, M.; Marsella, M.; Manunta, M. An application of the SBAS-DInSAR technique for the assessment of structural damage in the city of Rome. Struct. Infrastruct. Eng.
**2014**, 10, 1469–1483. [Google Scholar] [CrossRef] - Fornaro, G.; Verde, S.; Reale, D.; Pauciullo, A. CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline-Multitemporal Interferometric SAR Processing. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 2050–2065. [Google Scholar] [CrossRef] - Scifoni, S.; Bonano, M.; Marsella, M.; Sonnessa, A.; Tagliafierro, V.; Manunta, M.; Lanari, R.; Ojha, C.; Sciotti, M. On the joint exploitation of long-term DInSAR time series and geological information for the investigation of ground settlements in the town of Roma (Italy). Remote Sens. Environ.
**2016**, 182, 113–127. [Google Scholar] [CrossRef] - Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Zinno, I.; Bonano, M.; Manunta, M.; Moretti, S.; Casagli, N. Combined use of C- and X-band SAR data for subsidence monitoring in an urban area. Geosciences
**2017**, 7, 21. [Google Scholar] [CrossRef][Green Version] - Wang, Y.; Zhu, X.X.; Shi, Y.; Bamler, R. Operational TomoSAR processing using TerraSAR-X high resolution spotlight stacks from multiple view angles. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 7047–7050. [Google Scholar] [CrossRef]
- Zhu, M.; Wan, X.; Fei, B.; Qiao, Z.; Ge, C.; Minati, F.; Vecchioli, F.; Li, J.; Costantini, M. Detection of Building and Infrastructure Instabilities by Automatic Spatiotemporal Analysis of Satellite SAR Interferometry Measurements. Remote Sens.
**2018**, 10, 1816. [Google Scholar] [CrossRef][Green Version] - Zhu, X.X. Very High Resolution Tomographic SAR Inversion for Urban Infrastructure Monitoring—A Sparse and Nonlinear Tour. Ph.D. Thesis, Technische Universität München, Verlag der Bayerischen Akademie der Wissenschaften, München, Germany, 2011. [Google Scholar]
- Reale, D.; Fornaro, G.; Pauciullo, A.; Zhu, X.; Bamler, R. Tomographic Imaging and Monitoring of Buildings with Very High Resolution SAR Data. IEEE Geosci. Remote Sens. Lett.
**2011**, 8, 661–665. [Google Scholar] [CrossRef][Green Version] - Fornaro, G.; Reale, D.; Verde, S. Bridge thermal dilation monitoring with millimeter sensitivity via multidimensional SAR imaging. IEEE Geosci. Remote Sens. Lett.
**2013**, 10, 677–681. [Google Scholar] [CrossRef] - Reale, D.; Noviello, C.; Verde, S.; Cascini, L.; Terracciano, G.; Arena, L. A multi-disciplinary approach for the damage analysis of cultural heritage: The case study of the St. Gerlando Cathedral in Agrigento. Remote Sens. Environ.
**2019**, 235, 111464. [Google Scholar] [CrossRef] - Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Grandoni, D.; Battagliere, M.L.; Daraio, M.G.; Sacco, P.; Coletta, A.; Di Federico, A.; Mastracci, F. Space-based technology for emergency management: The COSMO-SkyMed constellation contribution|Copernicus Emergency Management Service. Procedia Technol.
**2014**, 16, 858–866. [Google Scholar] [CrossRef][Green Version] - Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens.
**1992**, 30, 950–959. [Google Scholar] [CrossRef][Green Version] - Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ.
**2006**, 102, 195–210. [Google Scholar] [CrossRef] - Pepe, A.; Sansosti, E.; Berardino, P.; Lanari, R. On the generation of ERS/ENVISAT DInSAR time-series via the SBAS technique. IEEE Geosci. Remote Sens. Lett.
**2005**, 2, 265–269. [Google Scholar] [CrossRef] - Notti, D.; Calò, F.; Cigna, F.; Manunta, M.; Herrera, G.; Berti, M.; Meisina, C.; Tapete, D.; Zucca, F. A User-Oriented Methodology for DInSAR Time Series Analysis and Interpretation: Landslides and Subsidence Case Studies. Pure Appl. Geophys.
**2015**, 172, 3081–3105. [Google Scholar] [CrossRef][Green Version] - D’Auria, L.; Pepe, S.; Castaldo, R.; Giudicepietro, F.; Macedonio, G.; Ricciolino, P.; Tizzani, P.; Casu, F.; Lanari, R.; Manzo, M.; et al. Magma injection beneath the urban area of Naples: A new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci. Rep.
**2015**, 5, 13100. [Google Scholar] [CrossRef] [PubMed][Green Version] - Fernández, J.; Tizzani, P.; Manzo, M.; Borgia, A.; González, P.J.; Martí, J.; Pepe, A.; Camacho, A.G.; Casu, F.; Berardino, P.; et al. Gravity-driven deformation of Tenerife measured by InSAR time series analysis. Geophys. Res. Lett.
**2009**, 36, L04306. [Google Scholar] [CrossRef][Green Version] - Lanari, R.; Berardino, P.; Bonano, M.; Casu, F.; Manconi, A.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; Sansosti, E.; et al. Surface displacements associated with the L’Aquila 2009 Mw 6.3 earthquake (central Italy): New evidence from SBAS-DInSAR time series analysis. Geophys. Res. Lett.
**2010**, 37, L20309. [Google Scholar] [CrossRef] - Diao, F.; Walter, T.R.; Solaro, G.; Wang, R.; Bonano, M.; Manzo, M.; Ergintav, S.; Zheng, Y.; Xiong, X.; Lanari, R. Fault locking near Istanbul: Indication of earthquake potential from InSAR and GPS observations. Geophys. J. Int.
**2016**, 205, 490–498. [Google Scholar] [CrossRef][Green Version] - Calò, F.; Ardizzone, F.; Castaldo, R.; Lollino, P.; Tizzani, P.; Guzzetti, F.; Lanari, R.; Angeli, M.G.; Pontoni, F.; Manunta, M. Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy. Remote Sens. Environ.
**2014**, 142, 69–82. [Google Scholar] [CrossRef][Green Version] - Cignetti, M.; Manconi, A.; Manunta, M.; Giordan, D.; De Luca, C.; Allasia, P.; Ardizzone, F. Taking Advantage of the ESA G-POD Service to Study Ground Deformation Processes in High Mountain Areas: A Valle d’Aosta Case Study, Northern Italy. Remote Sens.
**2016**, 8, 852. [Google Scholar] [CrossRef][Green Version] - Zhao, Q.; Pepe, A.; Gao, W.; Lu, Z.; Bonano, M.; He, M.L.; Wang, J.; Tang, X. A DInSAR investigation of the ground settlement time evolution of ocean-reclaimed lands in Shanghai. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2015**, 8, 1763–1781. [Google Scholar] [CrossRef] - Zeni, G.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Marsella, M.; Pepe, A.; Lanari, R. Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: The case study of the city of Rome, Italy. J. Geophys. Eng.
**2011**. [Google Scholar] [CrossRef] - Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens.
**2001**, 39, 8–20. [Google Scholar] [CrossRef] - Ferretti, A.; Fumagalli, A.; Novali, C.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens.
**2011**, 49, 3460–3470. [Google Scholar] [CrossRef] - Fornaro, G.; Serafino, F.; Soldovieri, F. Three-dimensional focusing with multipass SAR data. IEEE Trans. Geosci. Remote Sens.
**2003**, 41, 507–517. [Google Scholar] [CrossRef] - Gini, F.; Lombardini, F.; Montanari, M. Layover solution in multibaseline SAR Interferometry. IEEE Trans. Aerosp. Electron. Syst.
**2002**, 38, 1344–1356. [Google Scholar] [CrossRef] - Reigber, A.; Moreira, A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. Geosci. Remote Sens.
**2000**, 38, 2142–2152. [Google Scholar] [CrossRef] - Lombardini, F. Differential Tomography: A new framework for SAR Interferometry. IEEE Trans. Geosci. Remote Sens.
**2005**, 43, 37–44. [Google Scholar] [CrossRef] - Reale, D.; Fornaro, G.; Pauciullo, A. Extension of 4-D SAR Imaging to the Monitoring of Thermally Dilating Scatterers. IEEE Trans. Geosci. Remote Sens.
**2013**, 51, 5296–5306. [Google Scholar] [CrossRef] - Zhu, X.X.; Bamler, R. Let’s Do the Time Warp: Multicomponent Nonlinear Motion Estimation in Differential SAR Tomography. IEEE Geosci. Remote Sens. Lett.
**2011**, 8, 735–739. [Google Scholar] [CrossRef][Green Version] - Fornaro, G.; Pauciullo, A.; Serafino, F. Deformation monitoring over large areas with multipass differential SAR interferometry: A new approach based on the use of spatial differences. Int. J. Remote Sens.
**2009**. [Google Scholar] [CrossRef] - De Maio, A.; Fornaro, G.; Pauciullo, A. Detection of Single Scatterers in Multidimensional SAR Imaging. IEEE Trans. Geosci. Remote Sens.
**2009**, 47, 2284–2297. [Google Scholar] [CrossRef] - Ministero delle Infrastrutture e dei Trasporti, Consiglio Superiore dei Lavori Pubblici. Linee Guida per la Classificazione e Gestione del Rischio, la Valutazione della Sicurezza ed il Monitoraggio dei Ponti Esistenti. Available online: https://www.mit.gov.it/sites/default/files/media/notizia/2020-05/1_Testo_Linee_Guida_ponti.pdf (accessed on 3 December 2020).

**Figure 1.**Representation of the two exploited COSMO-SkyMed (CSK) frames acquired from ascending (black rectangle) and descending (red rectangle) orbits, superimposed on a Google Earth optical image. Note that the white rectangle falling within the two frames represents the area of interest surrounding the Polcevera viaduct close to the Morandi bridge.

**Figure 2.**SAR data representation in the temporal/perpendicular baseline plane for the two CSK datasets relevant to the area of interest. The black triangles and the red diamonds represent the ascending and descending acquisitions, respectively. The reference (master) images selected for the processing of the ascending and descending CSK datasets, relevant to the 29 October 2014 and to the 3 February 2015 acquisitions, respectively, are identified by the arrows.

**Figure 3.**Mean deformation velocity maps over the area of interest for (

**a**) Small BAseline Subset (SBAS) and (

**b**) TomoSAR processing results achieved for the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR results relevant to the descending dataset. Colormap is set according to the estimated velocity with the convention that negative values correspond to departure from the sensor along the LOS. Reference pixels for SBAS and TomoSAR processing are located at [44.4130°, 8.8879°] and [44.4160°, 8.8738°], respectively, which are in stable areas far away from the bridge.

**Figure 4.**Highlight on the coherent pixels located within the yellow frame, corresponding to the northern roadway, for (

**a**) SBAS and (

**b**) TomoSAR processing results achieved for the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR results relevant to the descending dataset. Colormap is set according to the estimated velocity with the convention that negative values correspond to departure from the sensor along the Line of Sight (LOS). The white graduated axis represents the longitudinal coordinate of the yellow rectangle whose origin is set at the southern/eastern end of the bridge.

**Figure 5.**Plots of the estimated height of the coherent pixels located within the yellow rectangle in Figure 4 for (

**a**) SBAS and (

**b**) TomoSAR results achieved for the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR results relevant to the descending dataset. Red and black diamonds correspond to measurement points located on the roadway, pillars and cables and at the ground level, respectively. Horizontal axis corresponds to the longitudinal distance from the origin of the yellow rectangle located at its southern/eastern end, as reported by the white graduated scale in Figure 4.

**Figure 6.**Plots of the estimated deformation mean velocity of the coherent pixels located at the northern roadway level within the yellow rectangle in Figure 4 for the (

**a**) SBAS and (

**b**) TomoSAR processing results achieved for the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR results relevant to the descending dataset. Horizontal axis corresponds to the longitudinal distance from the origin of the yellow rectangle located at its southern/eastern end, as reported by the white graduated scale in Figure 4.

**Figure 7.**Zoom of Figure 4 in the area of interest related to the collapsed pillar, (

**a**) SBAS and (

**b**) TomoSAR processing results over the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR results relevant to the descending dataset.

**Figure 8.**Plots of the estimated deformation time series for the coherent pixels in the area of interest related to the collapsed pillar provided in Figure 7 for (

**a**) SBAS and (

**b**) TomoSAR results relevant to the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR results for the descending dataset.

**Figure 9.**Highlight on the measurement points located within the red frame, corresponding to the southern roadway for (

**a**) SBAS and (

**b**) TomoSAR processing results related to the ascending dataset, (

**c**) SBAS and (

**d**) TomoSAR results relevant to the descending dataset. Colormap is set according to the estimated velocity with the convention that negative values correspond to departure from the sensor along the LOS. The white graduated axis represents the longitudinal coordinate of the red rectangle whose origin is set at the southern/eastern end of the bridge.

**Figure 10.**Plots of the estimated height of the coherent pixels located within the red rectangle in Figure 9 for the (

**a**) SBAS and (

**b**) TomoSAR processing results related to the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR results relevant to the descending dataset. Red and black squares correspond to measurement points located at the roadway, pillars and cables and at the ground level, respectively. Horizontal axis corresponds to the longitudinal distance from the origin of the red rectangle located at its southern/eastern end, as reported by the white graduated scale in Figure 9.

**Figure 11.**Plots of the estimated mean deformation velocity of the coherent pixels located at the southern roadway level within the red rectangle in Figure 9 for (

**a**) SBAS and (

**b**) TomoSAR processing results of the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR results relevant to the descending dataset. The horizontal axis corresponds to the longitudinal distance from the origin of the red rectangle located at its southern/eastern end, as reported by the white graduated scale in Figure 9.

**Figure 12.**Zoom of Figure 9 in the area of interest related to the collapsed pillar, (

**a**) SBAS and (

**b**) TomoSAR processing results over the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR processing results related to the Descending dataset.

**Figure 13.**Plots of the estimated deformation time series for the coherent pixels in the area of interest of the collapsed pillar provided in Figure 12 for the (

**a**) SBAS and (

**b**) TomoSAR results achieved for the ascending dataset, and (

**c**) SBAS and (

**d**) TomoSAR results related to the descending dataset.

Ascending | Descending | |
---|---|---|

Wavelength | ~3,1 cm | |

Acquisition mode | H-IMAGE | |

Average look angle | ~34° | ~27° |

Spatial resolution of the interferometric data | ~3 m × 3 m | |

Beam-ID | H4-05 | H4-01 |

Time interval | 23 February 2011–5 August 2018 | 7 January 2011–6 August 2018 |

Number of acquisitions | 132 | 134 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lanari, R.; Reale, D.; Bonano, M.; Verde, S.; Muhammad, Y.; Fornaro, G.; Casu, F.; Manunta, M.
Comment on “Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy” by Milillo et al. (2019). *Remote Sens.* **2020**, *12*, 4011.
https://doi.org/10.3390/rs12244011

**AMA Style**

Lanari R, Reale D, Bonano M, Verde S, Muhammad Y, Fornaro G, Casu F, Manunta M.
Comment on “Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy” by Milillo et al. (2019). *Remote Sensing*. 2020; 12(24):4011.
https://doi.org/10.3390/rs12244011

**Chicago/Turabian Style**

Lanari, Riccardo, Diego Reale, Manuela Bonano, Simona Verde, Yasir Muhammad, Gianfranco Fornaro, Francesco Casu, and Michele Manunta.
2020. "Comment on “Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy” by Milillo et al. (2019)" *Remote Sensing* 12, no. 24: 4011.
https://doi.org/10.3390/rs12244011