Explanation of InSAR Phase Disturbances by Seasonal Characteristics of Soil and Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory of EM Wave Propagation, Transmission and Reflection Theory, and Assumptions
- -
- is the complex dielectric constant;
- -
- is the static dielectric constant. equals in a dielectric medium (where ) but not in a “lossy” medium, i.e., where ;
- -
- is the angular frequency (f = frequency); and
- -
- and are the real and imaginary parts of , respectively.
2.2. Methods
2.2.1. Experiment I
2.2.2. Experiment II
2.2.3. Experiment III
3. Findings
3.1. Result Analyses of our Three Experiments
3.2. Comparison to Other Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Funning, G.J.; Parsons, B.; Wright, T.J.; Jackson, J.A.; Fielding, E.J. Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. J. Geophys. Res. Solid Earth 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Atzori, S.; Antonioli, A.; Tolomei, C.; De Novellis, V.; De Luca, C.; Monterroso, F. InSAR full-resolution analysis of the 2017–2018 M>6 earthquakes in Mexico. Remote Sens. Environ. 2019, 234, 111461. [Google Scholar] [CrossRef]
- Lundgren, P.; Casu, F.; Manzo, M.; Pepe, A.; Berardino, P.; Sansosti, E.; Lanari, R. Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, M.E.; Biggs, J.; Wauthier, C.; Sansosti, E.; Arnold, D.W.D.; Delgado, F.; Ebmeier, S.K.; Henderson, S.T.; Stephens, K.; Cooper, C.; et al. Towards coordinated regional multi-satellite InSAR volcano observations: Results from the Latin America pilot project. J. Appl. Volcanol. 2018, 7, 5. [Google Scholar] [CrossRef]
- Carnec, C.; Fabriol, H. Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field, Baja California, Mexico, using SAR interferometry. Geophys. Res. Lett. 1999, 26, 1211–1214. [Google Scholar] [CrossRef]
- Carlà, T.; Intrieri, E.; Raspini, F.; Bardi, F.; Farina, P.; Ferretti, A.; Colombo, D.; Novali, F.; Casagli, N. Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci. Rep. 2019, 9, 14137. [Google Scholar] [CrossRef] [Green Version]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Shi, X.; Xue, Y.; Zhang, Y.; Wei, Z.; Yu, J. The development and control of the land subsidence in the Yangtze delta, China. Environ. Geol. 2007, 55, 1725–1735. [Google Scholar] [CrossRef]
- Ortega-Guerrero, A.; Rudolph, D.L.; Cherry, J.A. Analysis of long-term land subsidence near Mexico City: Field investigations and predictive modeling. Water Resour. Res. 1999, 35, 3327–3341. [Google Scholar] [CrossRef]
- Chen, J.; Knight, R.; Zebker, H.A. The Temporal and Spatial Variability of the Confined Aquifer Head and Storage Properties in the San Luis Valley, Colorado Inferred From Multiple InSAR Missions. Water Resour. Res. 2017, 53, 9708–9720. [Google Scholar] [CrossRef]
- Hu, X.; Lu, Z.; Wang, T. Characterization of Hydrogeological Properties in Salt Lake Valley, Utah, using InSAR. J. Geophys. Res. Earth Surf. 2018, 123, 1257–1271. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis, 2nd ed.; Remote Sensing and Digital Image Processing; Kluwer Academic: Dordrecht, The Netherlands; Boston, MA, USA, 2001. [Google Scholar]
- Barnhart, W.D.; Lohman, R.B. Characterizing and estimating noise in InSAR and InSAR time series with MODIS. Geochem. Geophys. Geosyst. 2013, 14, 4121–4132. [Google Scholar] [CrossRef]
- Emardson, T.R.; Simons, M.; Webb, F.H. Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Hanssen, R.F. Atmospheric Heterogeneities in ERS Tandam SAR Interferometry; Volume Report DUP 98.1; Delft University Press: Delft, The Netherlands, 1998. [Google Scholar]
- Özer, I.E.; Rikkert, S.J.H.; van Leijen, F.J.; Jonkman, S.N.; Hanssen, R.F. Sub-seasonal Levee Deformation Observed Using Satellite Radar Interferometry to Enhance Flood Protection. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Lauknes, T.; Piyush Shanker, A.; Dehls, J.; Zebker, H.; Henderson, I.; Larsen, Y. Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens. Environ. 2010, 114, 2097–2109. [Google Scholar] [CrossRef]
- Reeves, J.A.; Knight, R.; Zebker, H.A.; Schreüder, W.A.; Shanker Agram, P.; Lauknes, T.R. High quality InSAR data linked to seasonal change in hydraulic head for an agricultural area in the San Luis Valley, Colorado. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Tomás, R.; Li, Z.; Lopez-Sanchez, J.M.; Liu, P.; Singleton, A. Using wavelet tools to analyse seasonal variations from InSAR time-series data: A case study of the Huangtupo landslide. Landslides 2016, 13, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Zwieback, S.; Hajnsek, I.; Edwards-Smith, A.; Morrison, K. Depth-Resolved Backscatter and Differential Interferometric Radar Imaging of Soil Moisture Profiles: Observations and Models of Subsurface Volume Scattering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3281–3296. [Google Scholar] [CrossRef]
- Brancato, V.; Hajnsek, I. Analyzing the Influence of Wet Biomass Changes in Polarimetric Differential SAR Interferometry at L-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1494–1508. [Google Scholar] [CrossRef]
- Zwieback, S.; Hajnsek, I. Influence of Vegetation Growth on the Polarimetric Zero-Baseline DInSAR Phase Diversity—Implications for Deformation Studies. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3070–3082. [Google Scholar] [CrossRef]
- De Zan, F.; Parizzi, A.; Prats-Iraola, P.; Lopez-Dekker, P. A SAR Interferometric Model for Soil Moisture. IEEE Trans. Geosci. Remote Sens. 2014, 52, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Pain, H. Chapter 8: Electromagnetic Waves. In The Physics of Vibrations and Waves, 6th ed.; John Wiley & Sons, Ltd.: West Sussex, UK, 2005; pp. 199–238. [Google Scholar]
- Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing—Active and Passive; Volume II, Advanced Level Textbooks and Reference Works; Addison-Wesley: Reading, MA, USA, 1982; p. 607. [Google Scholar]
- Böttcher, C.J.F. Dielectrics in Time-Dependent Fields, 2nd ed.; Elsevier Scientific Pub. Co.: Amsterdam, NY, USA, 1978. [Google Scholar]
- Lorrain, P.; Corson, D.R.; Lorrain, F. Electromagnetic Fields and Waves: Including Electric Circuits, 3rd ed.; Freeman: New York, NY, USA, 1988. [Google Scholar]
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Wu, L.K. Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens. 1985, 1, 25–34. [Google Scholar] [CrossRef]
- Gadani, D.; Rana, V.; Bhatnagar, S.; Prajapati, A.; Vyas, A. Effect of salinity on the dielectric properties of water. Indian J. Pure Appl. Phys. (IJPAP) 2012, 50, 405–410. [Google Scholar]
- Ellison, W.; Balana, A.; Delbos, G.; Lamkaouchi, K.; Eymard, L.; Guillou, C.; Prigent, C. New permittivity measurements of seawater. Radio Sci. 1998, 33, 639–648. [Google Scholar] [CrossRef]
- El-rayes, M.; Ulaby, F. Microwave Dielectric Spectrum of Vegetation—Part I: Experimental Observations. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 541–549. [Google Scholar] [CrossRef]
- Ulaby, F.; Tavakoli, A.; Thomas, B. Microwave Propagation Constant for a Vegetation Canopy With Vertical Stalks. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 714–725. [Google Scholar] [CrossRef]
- Dobson, M.; Ulaby, F.; Hallikainen, M.; El-rayes, M. Microwave Dielectric Behavior of Wet Soil—Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Xian, C.L.; Chen, Y.; Tong, L.; Jia, M.Q. Measurement on the Dielectric Constant of Grass with Rectangular Waveguide at C Band. Appl. Mech. Mater. 2011, 130–134, 2138–2142. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Westerhoff, R. Satellite Remote Sensing for Improvement of Groundwater Characterisation. Ph.D. Thesis, University of Waikato, Hamilton, NZ, USA, 2017. [Google Scholar]
Material | Exp. I: () | Exp. II: () | ||
---|---|---|---|---|
Air | ≈1 | 0 | - | - |
Pure Water | 75 | 15 | - | - |
Fresh-Brackish Water (<5000 ppm) | 75 | 30 | - | - |
Dry sand | 3 | 0 | 180 | - |
Sandy loam ( = 0.2) | 12 | 2 | 177 | - |
Silty Clay ( = 0.4) | 24 | 5 | 178 | - |
Crop Vegetation example | 5.5 | 1.25 | 174 | −173 |
Grass vegetation example | 2 | 1 | 151 | −168 |
Date [dd/mm/yyyy] | [mm] | Grass Height [m] | Description | ||||
---|---|---|---|---|---|---|---|
1/12/2012 | 0.11 | 5.9 | 1.1 | 0.3 | growing | 4.4 | 2.4 |
13/12/2012 | 0.12 | 6.4 | 1.2 | 0.33 | growing | 4.33 | 2.135 |
25/12/2012 | 0.4 | 27 | 5 | 0.36 | growing | 4.13 | 1.88 |
6/01/2013 | 0.2 | 12 | 2 | 0.39 | growing | 4 | 2.38 |
18/01/2013 | 0.16 | 9.0 | 1.6 | 0.05 | cut | 3.75 | 1.88 |
30/01/2013 | 0.18 | 10.4 | 1.8 | 0.08 | drying out | 3.5 | 1.25 |
11/02/2013 | 0.20 | 12.2 | 2.0 | 0.11 | drying out | 3.25 | 0.88 |
23/02/2013 | 0.3 | 18.0 | 3 | 0.15 | drying out | 3 | 0.75 |
7/03/2013 | 0.26 | 15.4 | 2.6 | 0.185 | growing | 2.75 | 1.25 |
19/03/2013 | 0.29 | 17.2 | 2.9 | 0.2225 | growing | 3.25 | 1.25 |
31/03/2013 | 0.32 | 19.6 | 3.4 | 0.15 | grazing | 3.375 | 1.25 |
12/04/2013 | 0.35 | 22.1 | 3.9 | 0.1 | grazing | 3.63 | 1.25 |
24/04/2013 | 0.37 | 24.3 | 4.4 | 0.07 | winter | 3.75 | 1.88 |
6/05/2013 | 0.39 | 25.8 | 4.8 | 0.05 | winter | 3.75 | 1.88 |
18/05/2013 | 0.40 | 26.8 | 5.0 | 0.05 | winter | 3.75 | 1.88 |
30/05/2013 | 0.40 | 27.0 | 5.0 | 0.05 | winter | 3.75 | 1.88 |
11/06/2013 | 0.39 | 26.4 | 4.9 | 0.05 | winter | 3.75 | 1.88 |
23/06/2013 | 0.38 | 25.0 | 3.6 | 0.05 | winter | 3.75 | 1.88 |
5/07/2013 | 0.36 | 23.1 | 4.1 | 0.05 | winter | 3.75 | 1.88 |
17/07/2013 | 0.33 | 20.7 | 3.6 | 0.05 | winter | 3.75 | 1.88 |
29/07/2013 | 0.30 | 18.2 | 3.0 | 0.05 | winter | 3.75 | 1.875 |
10/08/2013 | 0.27 | 16.2 | 2.7 | 0.05 | winter | 3.75 | 1.88 |
22/08/2013 | 0.24 | 14.4 | 2.4 | 0.06 | winter | 3.75 | 1.88 |
3/09/2013 | 0.21 | 12.7 | 2.1 | 0.07 | winter | 4 | 2.13 |
15/09/2013 | 0.19 | 11.0 | 1.9 | 0.1 | growing | 4.5 | 2.25 |
27/09/2013 | 0.17 | 9.6 | 1.7 | 0.13 | growing | 4.63 | 2.375 |
9/10/2013 | 0.15 | 8.3 | 1.5 | 0.16 | growing | 4.88 | 2.5 |
21/10/2013 | 0.13 | 7.4 | 1.3 | 0.19 | growing | 5.25 | 2.63 |
2/11/2013 | 0.12 | 6.6 | 1.2 | 0.22 | growing | 5.38 | 2.5 |
14/11/2013 | 0.12 | 6.1 | 1.2 | 0.26 | growing | 5 | 2.5 |
26/11/2013 | 0.11 | 5.9 | 1.1 | 0.29 | growing | 3.75 | 1.88 |
8/12/2013 | 0.12 | 6.4 | 1.2 | 0.32 | growing | 3.75 | 1.88 |
20/12/2013 | 0.13 | 7.0 | 1.3 | 0.35 | growing | 3.75 | 1.88 |
1/01/2014 | 0.14 | 7.9 | 1.4 | 0.36 | growing | 3.13 | 1.25 |
13/01/2014 | 0.16 | 9.0 | 1.6 | 0.37 | growing | 3.13 | 0.88 |
25/01/2014 | 0.18 | 10.4 | 1.8 | 0.38 | growing | 3.13 | 0.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westerhoff, R.; Steyn-Ross, M. Explanation of InSAR Phase Disturbances by Seasonal Characteristics of Soil and Vegetation. Remote Sens. 2020, 12, 3029. https://doi.org/10.3390/rs12183029
Westerhoff R, Steyn-Ross M. Explanation of InSAR Phase Disturbances by Seasonal Characteristics of Soil and Vegetation. Remote Sensing. 2020; 12(18):3029. https://doi.org/10.3390/rs12183029
Chicago/Turabian StyleWesterhoff, Rogier, and Moira Steyn-Ross. 2020. "Explanation of InSAR Phase Disturbances by Seasonal Characteristics of Soil and Vegetation" Remote Sensing 12, no. 18: 3029. https://doi.org/10.3390/rs12183029
APA StyleWesterhoff, R., & Steyn-Ross, M. (2020). Explanation of InSAR Phase Disturbances by Seasonal Characteristics of Soil and Vegetation. Remote Sensing, 12(18), 3029. https://doi.org/10.3390/rs12183029