Assessing the Nexus between Environmental Degradation, Agro-Climate Financing, and Economic Growth in Sub-Saharan Africa
Abstract
1. Introduction
2. Empirical Literature
2.1. Environmental Degradation and Economic Growth
2.2. Agricultural Finance and Economic Growth
2.3. Climate Finance and Economic Growth
2.4. Literature Gap
3. Materials and Methods
3.1. Model Specifications—Baseline Model (GMM)
3.2. Model for Robustness Check
4. Results
4.1. Testing for Stationarity
4.2. Testing for Cointegration
4.3. Estimation of the Baseline Model—System GMM Analysis
4.4. Estimation of the Robustness Check Model—FMOLS and DOL Analysis
5. Discussion of Findings
6. Conclusion and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barro, R.; Sala, M.; Xavier, I. Economic Growth, 2nd ed.; Prentice Hall: Saddle River, NJ, USA, 2004; p. 6. [Google Scholar]
- McCoskey, S.; Kao, C. A residual-based test of the null of cointegration in panel data. Econom. Rev. 1998, 17, 57–84. [Google Scholar] [CrossRef]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Rahman, M.; Uddin, S.; Islam, T. Impacts of environmental degradation on economic growth: A case study of developing economies. J. Dev. Stud. 2017, 53, 742–755. [Google Scholar]
- Cheng, Z.; Li, L.; Liu, J. Environmental degradation and economic development: Evidence from industrial pollution in China. Ecol. Econ. 2016, 120, 22–34. [Google Scholar]
- Karakari, A.A.; Ansa, R. Government expenditure and the challenge of environmental degradation: Evidence from Sub-Saharan Africa. J. Environ. Econ. Manag. 2006, 52, 507–525. [Google Scholar]
- Zanjani, Z.; Soares, I.; Macedo, P. The nexus between CO2 emissions from electricity generation, GDP and energy intensity using a complete maximum entropy approach: The case of Iran. Energy Rep. 2022, 8, 319–324. [Google Scholar] [CrossRef]
- Ali, E.B.; Gyamfi, B.A.; Bekun, F.V.; Ozturk, I.; Nketiah, P. An empirical assessment of the tripartite nexus between environmental pollution, economic growth, and agricultural production in Sub-Saharan African countries. Environ. Sci. Pollut. Res. 2023, 30, 71007–71024. [Google Scholar] [CrossRef]
- Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. In Working Paper WP238. Technology and Employment Program; International Labor Office: Geneva, Switzerland, 1993. [Google Scholar]
- Maduka, A.C.; Ogwu, S.O.; Ekesiobi, C.S. Assessing the moderating effect of institutional quality on economic growth—Carbon emission nexus in Nigeria. Environ. Sci. Pollut. Res. 2022, 29, 64924–64938. [Google Scholar] [CrossRef]
- Baig, I.A.; Chandio, A.A.; Ozturk, I.; Kumar, P.; Khan, Z.A.; Salam, M. Assessing the long- and short-run asymmetrical effects of climate change on rice production: Empirical evidence from India. Environ. Sci. Pollut. Res. 2022, 29, 34209–34230. [Google Scholar] [CrossRef]
- Du, D.; Zhao, X.; Huang, R. The impact of climate change on developed economies. Econ. Lett. 2017, 153, 43–46. [Google Scholar] [CrossRef]
- Ogbuabor, J.E.; Egwuchukwu, E.I. The impact of climate change on the Nigerian economy. Int. J. Energy Econ. Policy 2017, 7, 217–223. [Google Scholar]
- Sequeira, T.N.; Santos, M.S.; Magalhães, M. Climate change and economic growth: A heterogeneous panel data approach. Environ. Sci. Pollut. Res. 2018, 25, 22725–22735. [Google Scholar] [CrossRef] [PubMed]
- Tol, R.S.J. The economic impacts of climate change. Rev. Environ. Econ. Policy 2018, 12, 4–25. [Google Scholar] [CrossRef]
- Henseler, M.; Schumacher, I. The impact of weather on economic growth and its production factors. Clim. Chang. 2019, 154, 17–33. [Google Scholar] [CrossRef]
- Magazzino, C.; Mutascu, M.; Sarkodie, S.A.; Adedoyin, F.F.; Owusu, P.A. Heterogeneous effects of temperature and emissions on economic productivity across climate regimes. Sci. Total Environ. 2021, 775, 145893. [Google Scholar] [CrossRef]
- Shishlov, I.; Censkowsky, P. Definitions and accounting of climate finance: Between divergence and constructive ambiguity. Clim. Policy 2022, 22, 798–816. [Google Scholar] [CrossRef]
- Kelani, F.A.; Olunlade, Y.T.; Olubanwo, M.E. Agricultural financing and economic performance in Nigeria. Asian J. Agric. Ext. Econ. Sociol. 2020, 38, 61–74. [Google Scholar]
- Albrizio, S.; Kozluk, T.; Zipperer, V. Environmental policies and productivity growth: Evidence across industries and firms. J. Environ. Econ. Manag. 2017, 81, 209–226. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Churchill, S.A.; Paramati, S.R. The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions. Renew. Energy 2017, 111, 157–167. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Akinlo, T.; Temitope, J.T. Information technology, real sector and economic growth in sub-Saharan Africa: A cross-sectional dependence approach. Qual. Quant. 2021, 56, 4241–4267. [Google Scholar] [CrossRef]
- Udoh, E. An examination of public expenditure, public investment and agricultural sector growth in Nigeria: Bounds testing approach. J. Bus. Soc. Sci. 2011, 2, 285–292. [Google Scholar]
- Mignamissi, D.; Minkoé Bikoula, S.B.; Thioune, T. Inflation and economic growth in Sub-Saharan Africa: The role of institutions. J. Quant. Econ. 2023, 21, 847–871. [Google Scholar] [CrossRef]
- Bansal, S.; Kumar, P.; Mohammad, S.; Ali, N.; Ansari, M.A. Asymmetric effects of cereal crops on agricultural economic growth: A case study of India. SN Bus. Econ. 2021, 1, 160. [Google Scholar] [CrossRef]
- Awaworyi, C.S.; Inekwe, J.; Ivanovski, K.; Smyth, R. The environmental Kuznets curve in the OECD: 1870–2014. Energy Econ. 2018, 75, 389–399. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, M.; Zhang, W. The impact of environmental pollution and economic growth on public health: Evidence from China. Front. Public Health 2022, 10, 861157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gujarati, D.N. Basic Econometrics, 4th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Orolade, O.; Olabode, A.; Adebayo, O. Environmental degradation and its effect on economic growth in developing countries. Afr. J. Sustain. Dev. 2015, 9, 102–115. [Google Scholar]
- Thioune, T.; Mignamissi, D.; Minkoé Bikoula, S.B. The non-linear effect of inflation on economic growth in Sub-Saharan Africa: Does democracy matter? J. Knowl. Econ. 2024. [Google Scholar] [CrossRef]
- Bouchoucha, N. The effect of environmental degradation on health status: Do institutions matter? J. Knowl. Econ. 2021, 12, 1618–1634. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Onifade, S.T.; Nwani, C.; Bekun, F.V. Accounting for the combined impacts of natural resources rent, income level, and energy consumption on environmental quality of G7 economies: A panel quantile regression approach. Environ. Sci. Pollut. Res. 2022, 29, 2806–2818. [Google Scholar] [CrossRef]
- Cheng, S.L.; Lucey, B.; Kumar, S.; Zhang, D.; Zhang, Z. Climate finance: What we know and what we should know? J. Clim. Financ. 2022, 1, 100005. [Google Scholar]
- Fintan, P.; Lema, A. The dynamic synergies between agricultural financing and economic growth of Tanzania. Afr. J. Econ. Rev. 2018, 4, 46–60. [Google Scholar]
- Acheampong, A.O.; Opoku, E.E.O. Environmental degradation and economic growth: Investigating linkages and potential pathways. Energy Econ. 2023, 123, 106734. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Alola, A.A.; Bekun, F.V. The nexus of environmental sustainability and agro-economic performance of Sub-Saharan African countries. Heliyon 2020, 6, e04878. [Google Scholar] [CrossRef] [PubMed]
- Asongu, S.A.; Agboola, M.O.; Alola, A.A.; Bekun, F.V. The criticality of growth, urbanization, electricity, and fossil fuel consumption to environment sustainability in Africa. Sci. Total Environ. 2020, 712, 136376. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Lin, C.F.; Chu, C.S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Anh, D.L.T.; Nguyen, T.A.; Chandio, A.A. Climate change and its impacts on Vietnam agriculture: A macroeconomic perspective. Ecol. Inform. 2023, 74, 101960. [Google Scholar] [CrossRef]
- Syed, A.; Raza, T.; Tufail, T.; Eash, N.S. Climate impacts on the agricultural sector of Pakistan: Risks and solutions. Environ. Chall. 2022, 6, 100433. [Google Scholar] [CrossRef]
- Ceesay, E.K.; Francis, P.C.; Jawneh, S.; Njie, M.; Belford, C.; Fanneh, M.M. Climate change, growth in agriculture value added, food availability and economic growth nexus in the Gambia: A Granger causality and ARDL modeling approach. SN Bus. Econ. 2022, 1, 100. [Google Scholar] [CrossRef]
- Okunlola, O.C.; Ayetigbo, O.A. Impact of Agricultural Financing on Agricultural Growth Sustainability in Nigeria. J. Dev. Areas. 2024, 58, 171–203. [Google Scholar] [CrossRef]
- Szymczyk, K.; Şahin, D.; Bağcı, H.; Kaygın, C.Y. The effect of energy usage, economic growth, and financial development on CO2 emission management: An analysis of OECD countries with a high environmental performance index. Energies 2021, 14, 4671. [Google Scholar] [CrossRef]
- Yang, X.; Li, N.; Mu, H.; Pang, J.; Zhao, H.; Ahmad, M. Study on the long-term impact of economic globalization and population aging on CO2 emissions in OECD countries. Sci. Total Environ. 2021, 787, 147625. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, I.; Aslan, A.; Altinoz, B. Investigating the nexus between CO2 emissions, economic growth, energy consumption and pilgrimage tourism in Saudi Arabia. Econ. Res-Ekon. Istraživanja 2021, 35, 3083–3098. [Google Scholar] [CrossRef]
- Ali, S.; Ying, L.; Anjum, R.; Nazir, A.; Shalmani, A.; Shah, T.; Shah, F. Analysis on the nexus of CO2 emissions, energy use, net domestic credit, and GDP in Pakistan: An ARDL bound testing analysis. Environ. Sci. Pollut. Res. 2021, 28, 4594–4614. [Google Scholar] [CrossRef]
- Kumar, P. Impact of climate change on cereal production: Evidence from lower-middle-income countries. Environ. Sci. Pollut. Res. 2021, 28, 51597–51611. [Google Scholar] [CrossRef]
- Okunlola, F.A.; Osuma, G.O.; Omankhanlen, E.A. Agricultural Finance and Economic Growth: Evidence From Nigeria. Bus. Theory Pract. 2019, 20, 467–475. [Google Scholar] [CrossRef]
- Ayeomoni, I.O.; Aladejana, S.A. Agricultural credit and economic growth nexus: Evidence from Nigeria. Int. J. Acad. Res. Account. Financ. Manag. Sci. 2016, 6, 146–158. [Google Scholar] [CrossRef]
- Mapanje, O.; Karuaihe, S.; Machethe, C.; Ami, M.S. Financing Sustainable Agriculture in Sub-Saharan Africa: A Review of the Role of Financial Technologies. Sustainability 2023, 15, 4587. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, W.; Cai, W.; Liu, T. The impact of digital finance use on sustainable agricultural practices adoption among smallholder farmers: An evidence from rural China. Environ. Sci. Pollut. Res. Int. 2022, 29, 39281–39294. [Google Scholar] [CrossRef]
- Havemann, T.; Negra, C.; Werneck, F. Blended finance for agriculture: Exploring the constraints and possibilities of combining financial instruments for sustainable transitions. Agric. Hum. Values 2020, 37, 1281–1292. [Google Scholar] [CrossRef]
- Romanus, O.; Ngozi, A.; Tyrone, A. Agro-financing and food production in Nigeria. Heliyon 2020, 6, e04001. [Google Scholar] [CrossRef] [PubMed]
- Rahji, M.A.Y.; Fakayode, S.B. A multinomial logit analysis of agricultural credit rationing by commercial banks in Nigeria. Int. Res. J. Financ. Econ. 2009, 24, 97–103. [Google Scholar]
- Odoemenem, I.U.; Obinne, C.P.O. Assessing the factors influencing the utilization of improved cereal crop production technologies by small-scale farmers in Nigeria. Ind. J. Sci. Technol. 2010, 3, 180–183. [Google Scholar] [CrossRef]
- Egwu, P.N. Impact of agricultural financing on agricultural output, economic growth and poverty alleviation in Nigeria. J. Biol. Agric. Healthc. 2016, 6, 36–42. [Google Scholar]
- Mallum, A. A Review of Agricultural Finance Policy Development in Nigeria; Univ Maiduguri Ann Borno: Maiduguri, Nigeria, 2016; Volume XXVI. [Google Scholar]
- Njuguna, E.; Nyairo, N. Formal conditions that affect agricultural credit supply to small-scale farmers in rural Kenya: Case study for Kiambu county. Int. J. Sci. Basic. Appl. Res. 2015, 20, 59–66. [Google Scholar]
- Philip, D.; Nkonya, E.; Pender, J.; Oni, O.A. Constraints to Increasing Agricultural Productivity in Nigeria: A Review; Nigeria Strategy Support Program (NSSP) Background Paper No. NSSP 006. 2009; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2009. [Google Scholar]
- Adeleke, S.; Kamara, A.; Brixiova, Z. Smallholder Agriculture in East Africa: Trends, Constraints and Opportunities. In AfDB Working Paper No 105; African Development Bank Group: Abidjan, Côte d’Ivoire, 2010. [Google Scholar]
- Adejobi, O.; Atobatele, J.T. An analysis of loan delinquency among small scale farmers in Southwestern Nigeria: Application of logit and loan performance indices. East. Afr. Agric. For. J. 2008, 74, 149–155. [Google Scholar]
- Obansa, S.A.J.; Maduekwe, I.M. Agriculture financing and economic growth in Nigeria. Eur. Sci. J. 2013, 9, 1–37. [Google Scholar]
- Adeleye, N.; Osabuohien, E.; Asongu, S. Agro-industrialisation and financial intermediation in Nigeria. Afr. J. Econ. Manag. Stud. 2020, 11, 443–456. [Google Scholar] [CrossRef]
- Mafimisebi, T.E.; Oguntade, A.E.; Ayeomoni, O.E. A perspective on partial credit guarantee schemes in developing countries: The case of the Nigerian agricultural credit guarantee scheme fund (ACGSF). In Proceedings of the World Bank Conference, Washington, DC, USA, 13–14 March 2004. [Google Scholar]
- Agbada, A.O. Agricultural financing and optimising output for sustainable economic development in Nigeria: An empirical analysis. J. Emerg. Trends Econ. Manag. Sci. 2016, 6, 359–366. [Google Scholar]
- Asif, M.H.; Zhongfu, T.; Dilanchiev, A.; Irfan, M.; Eyvazov, E.; Ahmad, B. Determining the influencing factors of consumers’ attitude toward renewable energy adoption in developing countries: A roadmap toward environmental sustainability and green energy technologies. Environ. Sci. Pollut. Res. 2023, 30, 47861–47872. [Google Scholar] [CrossRef]
- Oboh, V.U.; Ekpebu, I.D. Determinants of formal agricultural credit allocation to the farm sector by arable crop farmers in Benue State, Nigeria. Afr. J. Res. 2011, 6, 181–185. [Google Scholar]
- Gandolfo, G.; Padoan, P.C.; de Arcangelis, G. The theory of exchange rate determination and exchange rate forecasting. In Open-Economy Macroeconomics. International Economic Association Series; Frisch, H., Wörgötter, A., Eds.; Palgrave Macmillan: London, UK, 1993; pp. 332–352. [Google Scholar] [CrossRef]
- Osabohien, R.; Osuagwu, E.; Osabuohien, E.; Ekhator-Mobayode, U.E.; Matthew, O.; Gershon, O. Household access to agricultural credit and agricultural production in Nigeria: A propensity score matching model. S. Afr. J. Econ. Manag. Sci. 2020, 23, 1–11. [Google Scholar] [CrossRef]
- Osabohien, R.; Ufua, D.; Moses, C.L.; Osabuohien, E. Accountability in agricultural governance and food security in Nigeria. Braz. J. Food Technol. 2020, 23, e2019089. [Google Scholar] [CrossRef]
- Kurozumi, E.; Hayakawa, K. Asymptotic properties of the efficient estimators for cointegrating regression models with serially dependent errors. J. Econom. 2009, 149, 118–135. [Google Scholar] [CrossRef]
- Taher, H. Climate change and economic growth in Lebanon. Int. J. Energy Econ. Policy 2019, 9, 20–24. [Google Scholar] [CrossRef]
- Dell, M.; Jones, B.F.; Olken, B.A. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef]
- Holtermann, L.; Rische, M.-C. The Subnational Effect of Temperature on Economic Production: A Disaggregated Analysis in European Regions; MPRA Working Paper; University Library of Munich: Munich, Germany, 2020; p. 104606. Available online: https://mpra.ub.uni-muenchen.de/104606/ (accessed on 9 October 2024).
- Njogu, G.K.; Olweny, T.; Njeru, A. Relationship between farm production capacity and agricultural credit access from commercial banks. Int. Acad. J. Econ. Financ. 2018, 3, 159–174. [Google Scholar]
- Donohoe, M. Causes and health consequences of environmental degradation and social injustice. Soc. Sci. Med. 2003, 56, 573–587. [Google Scholar] [CrossRef]
- Mankiw, G. Principles of Macroeconomics, 6th ed.; South-Western Cengage Learning: Mason, OH, USA, 2011; p. 236. ISBN 978-0538453066. [Google Scholar]
- Orugun, F.I.; Manasseh, C.O.; Onwumere, J.U.J.; Yaro, I.B.; John, E.I.; Olorutumba, O. Linkages between inflation, exchange rates, finance, and nonperforming loans: Evidence from low- and middle-income countries. Seybold Rep. J. 2024, 19, 55–75. [Google Scholar] [CrossRef]
- Unah, I.O.; Manasseh, C.O.; Nwonye, G.N. Nexus between foreign direct investment, exchange rate, capital expenditure, and economic growth in Egypt. J. Xi’an Shiyou Univ. Nat. Sci. Ed. 2022, 18. Available online: https://www.xisdxjxsu.asia/viewarticle.php?aid=767 (accessed on 9 October 2024).
- Ghura, D.; Grennes, T.J. The impact of real exchange rate misalignment and instability on macroeconomic performance in Sub-Saharan Africa. J. Dev. Econ. 1993, 42, 155–174. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Hansen, B.E. Statistical inference in instrumental variables regression with I(1) processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Hao, Y. Does China’s outward direct investment improve green total factor productivity in the ‘Belt and Road’ countries? Evidence from dynamic threshold panel model analysis. J. Environ. Manag. 2020, 275, 111295. Available online: https://ssrn.com/abstract=3824206 (accessed on 9 October 2024).
- Beck, T.H.L.; Demirgüç-Kunt, A.; Levine, R. Law, endowments, and finance. J. Financ. Econ. 2003, 70, 137–181. [Google Scholar] [CrossRef]
- Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels (Advances in Econometrics, Vol. 15); Baltagi, B.H., Fomby, T.B., Hill, R.C., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2001; pp. 93–130. [Google Scholar] [CrossRef]
- Masih, A.M.M.; Masih, R. Energy consumption, real income and temporal causality: Results from a multi-country study based on cointegration and error-correction modelling techniques. Energy Econ. 1996, 18, 165–183. [Google Scholar] [CrossRef]
- Im, K.; Pesaran, M.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econ. 1997, 115, 53–74. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M. A simple estimator of cointegrating vectors in higher-order integrated systems. Econometrica 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Aghion, P.; Bacchetta, P.; Rancière, R.; Rogoff, K. Exchange rate volatility and productivity growth: The role of financial development. J. Monet. Econ. 2009, 56, 494–513. [Google Scholar] [CrossRef]
- Khan, M.; Schimmelpfennig, A. Inflation in Pakistan. Pak. Dev. Rev. 2006, 45, 185–202. Available online: https://EconPapers.repec.org/RePEc:pid:journl:v:45:y:2006:i:2:p:185-202 (accessed on 9 October 2024).
- Manasseh, C.O.; Abada, F.C.; Okiche, E.L.; Okanya, O.; Nwakoby, I.C.; Offu, P.; Ogbuagu, A.R.; Okafor, C.O.; Obidike, P.C.; Nwonye, N.G. External debt and economic growth in Sub-Saharan Africa: Does governance matter? PLoS ONE 2022, 17, e0264082. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S. The role of macroeconomic factors in growth. J. Monet. Econ. 1993, 32, 485–512. [Google Scholar] [CrossRef]
- Barro, R.J. Determinants of Economic growth: A cross-country empirical study. In NBER Working Paper No. 5698; MIT Press: Cambridge, MA, USA, 1996; Available online: https://www.nber.org/system/files/working_papers/w5698/w5698.pdf (accessed on 9 October 2024).
- Okojie, C.; Monye-Emina, A.; Eghafona, K.; Osaghae, G.; Ehiakhamen, J.O. Institutional Environment and Access to Microfinance by Self-Employed Women in the Rural Areas of Edo State. In NSSP Brief No. 14; International Food Policy Research Institute: Washington, DC, USA, 2010. [Google Scholar]
- Opoku, E.E.O.; Boachie, M.K. The environmental impact of industrialization and foreign direct investment. Energy Policy 2020, 137, 111178. [Google Scholar] [CrossRef]
- He, J. Pollution haven hypothesis and environmental impacts of foreign direct investment: The case of industrial emission of sulfur dioxide (SO2) in Chinese provinces. Ecol. Econ. 2006, 60, 228–245. [Google Scholar] [CrossRef]
| Acronym | Definition | Source | Apriori |
|---|---|---|---|
| Dependent Variable | |||
| RGDP | Real gross domestic product | World Bank’s Development Indicators (WDI, 2023) | To be determined |
| Explanatory Variables | |||
| CO2 | Carbon dioxide emissions—measure of environmental degradation | World Bank’s Development Indicators (WDI, 2023) | Negative |
| AGF | Agricultural finance measured by total financial assistance and flow for agriculture by recipients | World Bank’s Development Indicators (WDI, 2023) | Positive |
| CLF | Climate finance proxied with green bond issuance | IMF (2023) Climate Fund Database | Positive |
| Control Variables | |||
| EXR | Exchange rate | World Bank World Development Indicators (WDI, 2023) | Positive |
| INFL | Inflation rate | World Bank Development Indicators (WDI, 2023) | Negative |
| Var | RGDP | CO2 | AGF | CLF | EXR | INFL |
|---|---|---|---|---|---|---|
| Mean | 22.71 | 3.689 | 1.135 | 1.803 | 2.821 | 2.735 |
| Median | 22.64 | 4.399 | 0.863 | 1.943 | 3.258 | 2.616 |
| Maximum | 28.93 | 5.906 | 5.058 | 4.901 | 5.529 | 6.879 |
| Minimum | 18.64 | −5.829 | −7.002 | −3.808 | −4.383 | −0.134 |
| Std. Dev. | 2.052 | 1.819 | 2.161 | 1.334 | 1.948 | 1.221 |
| Skewness | 0.627 | −2.254 | 0.250 | −0.653 | −1.704 | 0.284 |
| Kurtosis | 3.236 | 7.878 | 2.616 | 3.804 | 5.301 | 2.561 |
| Jarque–Bera | 85.99 | 2263. | 14.34 | 53.22 | 891.7 | 27.03 |
| Probability | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Obs | 1265 | 1231 | 867 | 542 | 1265 | 1260 |
| Var | RGDP | CO2 | AGF | CLF | EXR | INFL |
|---|---|---|---|---|---|---|
| RGDP | 1 | |||||
| CO2 | 0.812 | 1 | ||||
| AGF | −0.787 | −0.618 | 1 | |||
| CLF | −0.532 | −0.385 | 0.546 | 1 | ||
| EXR | 0.400 | 0.283 | −0.378 | −0.211 | 1 | |
| INFL | 0.677 | 0.154 | −0.188 | −0.129 | 0.534 | 1 |
| Var | LLC | IPS | Fisher-ADF | Fisher-PP | Order of Integration | |
|---|---|---|---|---|---|---|
| Level | First Diff. | |||||
| RGDP | −5.529 *** (0.000) | −6.370 *** (0.000) | 218.2 *** (0.000) | 421.4 *** (0.000) | _ | I(1) |
| CO2 | 7.063 *** (0.000) | −4.574 *** (0.000) | 276.0 *** (0.000) | 518.9 *** (0.000) | _ | I(1) |
| AGF | −5.050 *** (0.000) | −8.267 *** (0.000) | 294.8 *** (0.000) | 294.3 *** (0.000) | I(0) | _ |
| CLF | −4.368 *** (0.000) | −3.875 *** (0.000) | 178.2 *** (0.000) | 177.3 *** (0.000) | I(0) | _ |
| EXR | −25.44 *** (0.000) | −23.57 *** (0.000) | 673.7 *** (0.000) | 877.0 *** (0.000) | _ | I(1) |
| INFL | 5.914 *** (0.000) | −2.859 *** (0.002) | 218.0 *** (0.000) | 216.2 *** (0.000) | _ | I(1) |
| Within Dimension | Between Dimension | Kao Test (Robustness Check) | ||||||
|---|---|---|---|---|---|---|---|---|
| Panel V-Statistic | Panel Rho-Statistic | Panel PP-Statistic | Panel PP-Statistic | Group Rho-Statistic | Group PP-Statistic | Group ADF-Statistic | ADF-Statistic | |
| Model 1 | −4.606 *** (0.000) | 5.012 *** (0.000) | 2.476 (0.993) | 6.764 *** (0.000) | 8.112 *** (0.000) | 3.284 (0.999) | 8.879 *** (0.000) | 2.466 *** (0.006) |
| Model 2 | −3.037 *** (0.000) | 2.862 ** (0.033) | −1.819 ** (0.023) | 4.255 *** (0.001) | 5.822 *** (0.000) | 2.084 *** (0.002) | 2.791 *** (0.000) | 3.661 (0.000) |
| Variable | Model 1 | Model 2 |
|---|---|---|
| Sys. GMM | Sys. GMM | |
| RGDP (−1) | 22.04 *** (0.000) | 22.26 *** (0.000) |
| CO2 | −3.165 *** (0.000) | - |
| AGF | 0.074 *** (0.000) | - |
| CLF | −0.601 *** (0.000) | - |
| EXR | 0.093 *** (0.000) | 0.054 *** (0.000) |
| INFL | −0.058 *** (0.000) | −0.078 *** (0.000) |
| CO2*AGF | - | −0.106 *** (0.000) |
| AGF*CLF | 0.031 *** (0.000) | |
| No. of Obs. | 1085 | 1085 |
| AR1 | −1.448 (0.086) | −1.854 (0.158) |
| AR2 | 1.525 (0.227) | 1.669 (0.195) |
| Hansen | 28.13 (0.464) | 68.25 (0.338) |
| Variable | Model 1 | Model 2 | ||
|---|---|---|---|---|
| FMOLS | DOLS | FMOLS | DOLS | |
| RGDP (−1) | −0.015 *** (0.000) | −0.067 *** (0.000) | 0.469 *** (0.000) | 0.243 *** (0.000) |
| CO2 | −0.0003 ** (0.024) | 0.0006 *** (0.000) | - | - |
| AGF | 0.0058 *** (0.000) | 0.0009 (0.331) | - | - |
| CLF | 0.0007 (0.202) | 0.0086 *** (0.000) | - | - |
| EXR | −0.0002 (0.629) | 0.3 (0.534) | 0.0004 *** (0.000) | 0.0006 *** (0.000) |
| INFL | −2.429 *** (0.000) | −0.266 *** (0.002) | 4.426 (0.600) | 4.976 (0.578) |
| CO2*AGF | 1.979 *** (0.001) | −1.301 *** (0.000) | ||
| AGF*CLF | 0.036 *** (0.000) | 0.177 ** (0.016) | ||
| No. of Obs. | 1195 | 1200 | 1085 | 1145 |
| 0.786 | 0.615 | 0.648 | 0.843 | |
| Normal | 36.82 (0.201) | 25.61 (0.224) | 70.86 (2.113) | 14.85 (0.198) |
| Serial | 7.052 (0.948) | 30.23 (0.000) | 36.82 (0.237) | 19.31 (0.347) |
| Reset | −3.030 (0.000) | 10.05 (0.948) | 9.052 (0.948) | −3.812 (0.202) |
| 2.534 (0.673) | −6.435 (0.188) | −0.030 (0.261) | 4.777 (0.389) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manasseh, C.O.; Logan, C.S.; Okanya, O.C.; Okiche, E.L.; Ede, K.K.; Ogbuabor, J.E.; Igwemeka, E.C.; Ilo, S.; Onuselogu, O.C.O. Assessing the Nexus between Environmental Degradation, Agro-Climate Financing, and Economic Growth in Sub-Saharan Africa. Sustainability 2025, 17, 9862. https://doi.org/10.3390/su17219862
Manasseh CO, Logan CS, Okanya OC, Okiche EL, Ede KK, Ogbuabor JE, Igwemeka EC, Ilo S, Onuselogu OCO. Assessing the Nexus between Environmental Degradation, Agro-Climate Financing, and Economic Growth in Sub-Saharan Africa. Sustainability. 2025; 17(21):9862. https://doi.org/10.3390/su17219862
Chicago/Turabian StyleManasseh, Charles O., Chine Sp Logan, Ogochukwu C. Okanya, Ebelechukwu L. Okiche, Kenechukwu K. Ede, Jonathan E. Ogbuabor, Ebele C. Igwemeka, Sylvester Ilo, and Odidi C. O. Onuselogu. 2025. "Assessing the Nexus between Environmental Degradation, Agro-Climate Financing, and Economic Growth in Sub-Saharan Africa" Sustainability 17, no. 21: 9862. https://doi.org/10.3390/su17219862
APA StyleManasseh, C. O., Logan, C. S., Okanya, O. C., Okiche, E. L., Ede, K. K., Ogbuabor, J. E., Igwemeka, E. C., Ilo, S., & Onuselogu, O. C. O. (2025). Assessing the Nexus between Environmental Degradation, Agro-Climate Financing, and Economic Growth in Sub-Saharan Africa. Sustainability, 17(21), 9862. https://doi.org/10.3390/su17219862

