High-Speed Railways and Enterprise Green Innovation: Evidence from Manufacturing Industries in China
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. High-Speed Railway, the Mobility of Human Capital, and Green Innovation
2.2. High-Speed Railway, Financing Constraints, and Green Innovation
3. Methodology and Data
3.1. DID Model
3.2. Variables and Data
4. Empirical Analysis
4.1. Baseline Regression
4.2. Parallel Trend Test
4.3. Robustness Check
4.4. Test on the Mechanism
4.5. Heterogeneity Analysis
4.5.1. Ownership Heterogeneity Analysis
4.5.2. City Heterogeneity Analysis
4.5.3. Pollution Intensity Heterogeneity Analysis
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A

| ATT (Average Treatment Effect on the Treated) | p-Value |
|---|---|
| 0.058 | 0.001 |
References
- de Azevedo Rezende, L.; Bansi, A.C.; Alves, M.F.R.; Galina, S.V.R. Take Your Time: Examining When Green Innovation Affects Financial Performance in Multinationals. J. Clean. Prod. 2019, 233, 993–1003. [Google Scholar] [CrossRef]
- Gunday, G.; Ulusoy, G.; Kilic, K.; Alpkan, L. Effects of Innovation Types on Firm Performance. Int. J. Prod. Econ. 2011, 133, 662–676. [Google Scholar] [CrossRef]
- Davis, D.R.; Dingel, J.I. A Spatial Knowledge Economy. Am. Econ. Rev. 2019, 109, 153–170. [Google Scholar] [CrossRef]
- D’Attoma, I.; Ieva, M. Determinants of Technological Innovation Success and Failure: Does Marketing Innovation Matter? Ind. Mark. Manag. 2020, 91, 64–81. [Google Scholar] [CrossRef]
- Khurshid, A.; Huang, Y.; Cifuentes-Faura, J.; Khan, K. Beyond Borders: Assessing the Transboundary Effects of Environmental Regulation on Technological Development in Europe. Technol. Forecast. Soc. Change 2024, 200, 123212. [Google Scholar] [CrossRef]
- Ouyang, X.; Li, Q.; Du, K. How Does Environmental Regulation Promote Technological Innovations in the Industrial Sector? Evidence from Chinese Provincial Panel Data. Energy Policy 2020, 139, 111310. [Google Scholar] [CrossRef]
- Bonnet, P.; Olper, A. Foreign Import Competition and Green Innovation: The Impact of Chinese Trade Exposure on Technical Change in Europe. World Econ. 2025, 48, 1418–1441. [Google Scholar] [CrossRef]
- Gorodnichenko, Y.; Svejnar, J.; Terrell, K. Do Foreign Investment and Trade Spur Innovation? Eur. Econ. Rev. 2020, 121, 103343. [Google Scholar] [CrossRef]
- Un, C.A.; Rodríguez, A. Local and Global Knowledge Complementarity: R&D Collaborations and Innovation of Foreign and Domestic Firms. J. Int. Manag. 2018, 24, 137–152. [Google Scholar] [CrossRef]
- Lin, W.-L.; Cheah, J.-H.; Azali, M.; Ho, J.A.; Yip, N. Does Firm Size Matter? Evidence on the Impact of the Green Innovation Strategy on Corporate Financial Performance in the Automotive Sector. J. Clean. Prod. 2019, 229, 974–988. [Google Scholar] [CrossRef]
- Zhu, D.H.; Zhao, Z.; Semadeni, M. How and Why Top Executives Influence Innovation: A Review of Mechanisms and a Research Agenda. J. Manag. 2025, 51, 2320–2354. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, J. The Impact of High-Speed Rail on Innovation: An Empirical Test of the Companion Innovation Hypothesis of Transportation Improvement with China’s Manufacturing Firms. World Dev. 2020, 127, 104838. [Google Scholar] [CrossRef]
- Sun, X.; Li, H.; Ghosal, V. Firm-Level Human Capital and Innovation: Evidence from China. China Econ. Rev. 2020, 59, 101388. [Google Scholar] [CrossRef]
- Sunley, P. Relational Economic Geography: A Partial Understanding or a New Paradigm? Econ. Geogr. 2008, 84, 1–26. [Google Scholar] [CrossRef]
- Zhang, H. How Does Agglomeration Promote the Product Innovation of Chinese Firms? China Econ. Rev. 2015, 35, 105–120. [Google Scholar] [CrossRef]
- Tang, C.; Guan, M.; Dou, J. Understanding the Impact of High Speed Railway on Urban Innovation Performance from the Perspective of Agglomeration Externalities and Network Externalities. Technol. Soc. 2021, 67, 101760. [Google Scholar] [CrossRef]
- Liu, C.; Lai, S.; Ni, Y.; Chen, L. Dynamic Modelling and Analysis of a Physics-Driven Strategy for Vibration Control of Railway Vehicles. Veh. Syst. Dyn. 2024, 63, 1080–1110. [Google Scholar] [CrossRef]
- Wang, Q.; Li, D.; Zeng, J.; Peng, X.; Wei, L.; Du, W. A Diagnostic Method of Freight Wagons Hunting Performance Based on Wayside Hunting Detection System. Measurement 2024, 227, 114274. [Google Scholar] [CrossRef]
- Gutiérrez, J. Location, Economic Potential and Daily Accessibility: An Analysis of the Accessibility Impact of the High-Speed Line Madrid–Barcelona–French Border. J. Transp. Geogr. 2001, 9, 229–242. [Google Scholar] [CrossRef]
- Martínez Sánchez-Mateos, H.S.; Givoni, M. The Accessibility Impact of a New High-Speed Rail Line in the UK—A Preliminary Analysis of Winners and Losers. J. Transp. Geogr. 2012, 25, 105–114. [Google Scholar] [CrossRef]
- Banerjee, A.; Duflo, E.; Qian, N. On the Road: Access to Transportation Infrastructure and Economic Growth in China. J. Dev. Econ. 2020, 145, 102442. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Lin, S.; Zhang, J.; Zeng, J. Does High-Speed Railway Promote Regional Innovation Growth or Innovation Convergence? Technol. Soc. 2021, 64, 101472. [Google Scholar] [CrossRef]
- Duan, L.; Sun, W.; Zheng, S. Transportation Network and Venture Capital Mobility: An Analysis of Air Travel and High-Speed Rail in China. J. Transp. Geogr. 2020, 88, 102852. [Google Scholar] [CrossRef]
- Zeng, Q.; Liao, M.; Wang, Y. Transportation Infrastructure, Market Integration and Corporate Innovation. Appl. Econ. 2025, 57, 5427–5443. [Google Scholar] [CrossRef]
- Mao, N.; Sun, W.; Zhang, L. The Innovation Effects of Transportation Infrastructure: Evidence from Highways in China. Econ. Transp. 2024, 38, 100352. [Google Scholar] [CrossRef]
- Cui, W.; Tang, J. Does the Construction of Transportation Infrastructure Enhance Regional Innovation Capabilities: Evidence from China. J. Knowl. Econ. 2023, 14, 3598–3615. [Google Scholar] [CrossRef]
- Mao, Y.; Xie, Y.; Zhuo, C. How Does International Transport Corridor Affect Regional Green Development: Evidence From The China-Europe Railway Express. J. Environ. Plan. Manag. 2024, 67, 1602–1627. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Shi, J.; Li, J.; Liu, J.; Sriboonchitta, S. Does China-Europe Railway Express Improve Green Total Factor Productivity in China? Sustainability 2023, 15, 8031. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y. How Does High-Speed Railway Affect Green Innovation Efficiency? A Perspective of Innovation Factor Mobility. J. Clean. Prod. 2020, 265, 121623. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, Q.; Tao, C. The Impact of High-Speed Rail on Regional Green Innovation Performance-Based on the Dual Perspective of High-Speed Rail Opening and High-Speed Rail Network. Pol. J. Environ. Stud. 2023, 32, 1459–1472. [Google Scholar] [CrossRef]
- Zhu, Z.; Lin, X.; Yang, H. Booming with Speed: High-Speed Rail and Regional Green Innovation. J. Adv. Transp. 2021, 2021, 9705982. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, F.; Yao, S. Does Government-Driven Infrastructure Boost Green Innovation? Evidence of New Infrastructure Plan in China. J. Asian Econ. 2024, 95, 101828. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, Y.; Sheng, L.; Yu, Z. The Impacts of High-Speed Rail Networks on Urban Green Innovation. Transp. Policy 2025, 163, 168–184. [Google Scholar] [CrossRef]
- Qin, Y. ‘No County Left Behind?’ The Distributional Impact of High-Speed Rail Upgrades in China. J. Econ. Geogr. 2017, 17, 489–520. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Feddersen, A. From Periphery to Core: Measuring Agglomeration Effects Using High-Speed Rail. J. Econ. Geogr. 2018, 18, 355–390. [Google Scholar] [CrossRef]
- Li, H.; Guo, H. Spatial Spillovers of Pollution via High-Speed Rail Network in China. Transp. Policy 2021, 111, 138–152. [Google Scholar] [CrossRef]
- Diebolt, C.; Hippe, R. The Long-Run Impact of Human Capital on Innovation and Economic Development in the Regions of Europe. Appl. Econ. 2019, 51, 542–563. [Google Scholar] [CrossRef]
- Charnoz, P.; Lelarge, C.; Trevien, C. Communication Costs and the Internal Organisation of Multi-Plant Businesses: Evidence From the Impact of the French High-Speed Rail. Econ. J. 2018, 128, 949–994. [Google Scholar] [CrossRef]
- Zhao, K.; Li, W. High-Speed Railway Network, City Heterogeneity, and City Innovation. Sustainability 2023, 15, 15648. [Google Scholar] [CrossRef]
- Yan, L.; Tu, M.; Chagas, A.; Tai, L. The Impact of High-Speed Railway on Labor Spatial Misallocation—Based on Spatial Difference-in-Differences Analysis. Transp. Res. Part A 2022, 164, 82–97. [Google Scholar] [CrossRef]
- Ma, C.; Tan, K.; He, J. The Impact of Opening a High-Speed Railway on Urban Innovation: A Comparative Perspective of Traditional Innovation and Green Innovation. Land 2023, 12, 1671. [Google Scholar] [CrossRef]
- Agrawal, A.; Galasso, A.; Oettl, A. Roads and Innovation. Rev. Econ. Stat. 2017, 99, 417–434. [Google Scholar] [CrossRef]
- Dong, X.; Zheng, S.; Kahn, M.E. The Role of Transportation Speed in Facilitating High Skilled Teamwork across Cities. J. Urban Econ. 2020, 115, 103212. [Google Scholar] [CrossRef]
- Brown, J.R.; Fazzari, S.M.; Petersen, B.C. Financing Innovation and Growth: Cash Flow, External Equity, and the 1990s R&D Boom. J. Financ. 2009, 64, 151–185. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Li, Y. High-Speed Railway, Factor Flow and Enterprise Innovation Efficiency: An Empirical Analysis on Micro Data. Socio-Econ. Plan. Sci. 2022, 82, 101305. [Google Scholar] [CrossRef]
- Jacobson, L.S.; LaLonde, R.J.; Sullivan, D.G. Earnings Losses of Displaced Workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar]
- Shao, S.; Tian, Z.; Yang, L. High Speed Rail and Urban Service Industry Agglomeration: Evidence from China’s Yangtze River Delta Region. J. Transp. Geogr. 2017, 64, 174–183. [Google Scholar] [CrossRef]
- Dong, X. High-Speed Railway and Urban Sectoral Employment in China. Transp. Res. Part A Policy Pract. 2018, 116, 603–621. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Y. Does High-Speed Railway Promote Urban Innovation? Evidence from China. Socio-Econ. Plan. Sci. 2023, 86, 101464. [Google Scholar] [CrossRef]
- Lin, R.; Li, C.; Qiu, Y.; Huang, J.; Lin, X. Can High-Speed Rail Promote Regional Technological Innovation? An Explanation Based on City Network Centrality. Res. Transp. Bus. Manag. 2024, 57, 101245. [Google Scholar] [CrossRef]
- Sun, L.; Abraham, S. Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects. J. Econom. 2021, 225, 175–199. [Google Scholar] [CrossRef]
- Kaplan, S.N.; Zingales, L. Do Investment-Cash Flow Sensitivities Provide Useful Measures of Financing Constraints? Q. J. Econ. 1997, 112, 169–215. [Google Scholar] [CrossRef]
- Yang, M.; Wang, E. The Impact of Transportation Infrastructure on Manufacturing Energy Intensity: Micro Evidence from High-Speed Railway in China. Energy J. 2024, 45, 4. [Google Scholar] [CrossRef]

| Symbols | Variables | Definition | Observations | Mean | SD |
|---|---|---|---|---|---|
| Green innovation | Natural logarithm of the application number of green patents plus 1 1 | 26,339 | 0.280 | 0.630 | |
| Dummy | A dummy variable taking the value 1 (open HSR) or 0 (other cases) | 26,339 | 0.330 | 0.470 | |
| Firm scale | Natural logarithm of total assets of enterprise | 26,339 | 22.000 | 1.110 | |
| Firm age | Natural logarithm of age plus 1 | 26,339 | 2.060 | 0.740 | |
| Return on assets | The ratio of net profit to total assets | 26,339 | 0.040 | 0.060 | |
| Tangible asset ratio | The ratio of the residual value of total assets minus the sum of net intangible assets and net goodwill to the total assets | 26,339 | 0.940 | 0.070 | |
| Shareholding ratio | The sum of the shareholding ratios of the top ten shareholders | 26,339 | 57.000 | 14.020 | |
| Mobility of human capital | The number of R&D personnel | 16,813 | 5.600 | 1.120 | |
| Financing constraints | KZ index | 26,339 | 1.440 | 2.770 |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| 0.0971 *** | 0.0923 *** | 0.0693 *** | 0.0951 *** | 0.0836 *** | 0.0602 *** | |
| (3.1460) | (3.2210) | (3.2524) | (2.6811) | (2.6743) | (2.8162) | |
| 0.1298 *** | 0.1159 *** | 0.1326 *** | ||||
| (11.7004) | (10.9291) | (11.9902) | ||||
| −0.1264 *** | −0.0953 *** | −0.0941 *** | ||||
| (−6.9487) | (−6.1508) | (−6.3742) | ||||
| 0.0438 | 0.2457 ** | 0.1640 | ||||
| (0.3631) | (2.1053) | (1.4877) | ||||
| 0.3462 *** | 0.2501 *** | 0.4685 *** | ||||
| (3.9161) | (2.7864) | (5.4503) | ||||
| −0.0020 ** | −0.0016 ** | −0.0021 *** | ||||
| (−2.3528) | (−2.3925) | (−2.8432) | ||||
| Constant | 0.2545 *** | 0.2561 *** | 0.2638 *** | −2.5539 *** | −2.2451 *** | −2.7804 *** |
| (18.4409) | (21.4243) | (24.7975) | (−9.4007) | (−8.8165) | (−11.0222) | |
| Industry | No | Yes | Yes | No | Yes | Yes |
| Year | No | No | Yes | No | No | Yes |
| Observations | 21,761 | 21,760 | 21,760 | 21,761 | 21,760 | 21,760 |
| R-squared | 0.0054 | 0.0658 | 0.1314 | 0.0477 | 0.0961 | 0.1697 |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| 0.0621 ** | 0.0584 *** | 0.0649 *** | 0.0411 ** | 0.1916 *** | 0.0604 *** | |
| (2.5444) | (2.8178) | (2.9365) | (2.0471) | (3.3979) | (2.8193) | |
| 0.1248 *** | 0.1197 *** | 0.1372 *** | 0.1250 *** | 0.4158 *** | 0.1328 *** | |
| (9.6204) | (11.6063) | (11.8472) | (12.5915) | (13.7900) | (11.9814) | |
| −0.0916 *** | −0.1073 *** | −0.0965 *** | −0.0875 *** | −0.3286 *** | −0.0944 *** | |
| (−6.0669) | (−8.1794) | (−6.4328) | (−5.1922) | (−7.3512) | (−6.3648) | |
| 0.1745 | 0.2206 * | 0.3199 *** | 0.1649 * | 1.6367 *** | 0.1627 | |
| (1.0896) | (1.9407) | (3.1385) | (1.6627) | (3.8554) | (1.4721) | |
| 0.6025 *** | 0.4117 *** | 0.4361 *** | 0.4640 *** | 1.5401 *** | 0.4681 *** | |
| (5.9041) | (4.7016) | (5.1299) | (4.9387) | (4.6248) | (5.4251) | |
| −0.0020 ** | −0.0025 *** | −0.0020 *** | −0.0022 *** | −0.0077 *** | −0.0021 *** | |
| (−2.3839) | (−3.0936) | (−2.9258) | (−2.6731) | (−3.5103) | (−2.8231) | |
| 0.3736 *** | ||||||
| (4.2687) | ||||||
| 0.0394 | ||||||
| (1.3418) | ||||||
| GDP | 0.0147 | |||||
| (0.5898) | ||||||
| Constant | −2.7464 *** | −2.5477 *** | −2.8458 *** | −2.6085 *** | −10.9559 *** | −2.7830 *** |
| (−8.4982) | (−10.4597) | (−10.7171) | (−10.8685) | (−13.6043) | (−11.0206) | |
| Industry | Yes | Yes | Yes | Yes | Yes | Yes |
| Year | Yes | Yes | Yes | Yes | Yes | Yes |
| Observations | 10,237 | 20,502 | 18,738 | 21,472 | 21,761 | 21,692 |
| R-squared | 0.1729 | 0.1741 | 0.1719 | 0.1245 | 0.1991 | 0.1696 |
| Variables | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| 0.0799 * | 0.0523 ** | −0.2212 *** | 0.0592 *** | |
| (1.7412) | (2.0965) | (−4.4985) | (2.7719) | |
| 0.0765 *** | ||||
| (5.3933) | ||||
| −0.0050 * | ||||
| (−1.9418) | ||||
| 0.7161 *** | 0.0643 *** | 0.0735 *** | 0.1331 *** | |
| (35.6010) | (5.2665) | (2.9764) | (12.0803) | |
| −0.1075 ** | −0.0732 *** | 0.4897 *** | −0.0917 *** | |
| (−2.4943) | (−4.5893) | (13.9469) | (−6.2065) | |
| 2.7720 *** | 0.1091 | −21.0905 *** | 0.0587 | |
| (12.0476) | (0.9596) | (−49.6348) | (0.4962) | |
| −0.1834 | 0.4786 *** | −0.9414 *** | 0.4633 *** | |
| (−1.0500) | (5.0452) | (−3.5377) | (5.4025) | |
| −0.0003 | −0.0020 *** | −0.0141 *** | −0.0022 *** | |
| (−0.2040) | (−2.8834) | (−7.2788) | (−2.9143) | |
| Constant | −9.8577 *** | −1.7610 *** | 1.3273 ** | −2.7751 *** |
| (−24.5434) | (−6.5547) | (2.2742) | (−10.9658) | |
| Industry | Yes | Yes | Yes | Yes |
| Year | Yes | Yes | Yes | Yes |
| Observations | 12,701 | 12,701 | 26,338 | 21,760 |
| R-squared | 0.5434 | 0.1933 | 0.5657 | 0.1699 |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| 0.1203 *** | 0.0487 | 0.0833 ** | 0.0235 | 0.0208 | 0.0758 *** | |
| (3.2288) | (1.5331) | (2.5885) | (0.8299) | (0.6143) | (3.0996) | |
| 0.1672 *** | 0.0994 *** | 0.1291 *** | 0.1635 *** | 0.1240 *** | 0.1354 *** | |
| (9.2016) | (8.2233) | (8.0930) | (9.3979) | (6.1198) | (8.9462) | |
| −0.1476 *** | −0.0921 *** | −0.1211 *** | −0.0805 *** | −0.0666 *** | −0.1043 *** | |
| (−5.1002) | (−5.0270) | (−5.5534) | (−4.0074) | (−3.1122) | (−6.0456) | |
| 0.0796 | 0.3283 *** | 0.2428 | 0.2498 | 0.3142 * | 0.0727 | |
| (0.4085) | (2.6373) | (1.3101) | (1.3960) | (1.7489) | (0.5191) | |
| 0.5075 *** | 0.3544 *** | 0.4743 *** | 0.5359 *** | 0.5027 *** | 0.4647 *** | |
| (2.8437) | (3.4190) | (3.4480) | (3.9850) | (3.0170) | (4.5476) | |
| −0.0034 *** | −0.0019 * | −0.0030 ** | −0.0019 ** | −0.0009 | −0.0026 *** | |
| (−3.6954) | (−1.9153) | (−1.9795) | (−2.4283) | (−0.9359) | (−2.7407) | |
| Constant | −3.3643 *** | −1.9936 *** | −2.5643 *** | −3.5487 *** | −2.7884 *** | −2.7722 *** |
| (−7.4474) | (−6.6634) | (−7.2652) | (−8.4733) | (−6.0529) | (−8.1765) | |
| Industry | Yes | Yes | Yes | Yes | Yes | Yes |
| Year | Yes | Yes | Yes | Yes | Yes | Yes |
| Observations | 7734 | 14,023 | 9341 | 9081 | 6631 | 15,127 |
| R-squared | 0.2193 | 0.1604 | 0.1641 | 0.1694 | 0.1760 | 0.1763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, K.; Yang, X.; Li, H.; Zhang, L. High-Speed Railways and Enterprise Green Innovation: Evidence from Manufacturing Industries in China. Sustainability 2025, 17, 9747. https://doi.org/10.3390/su17219747
Yu K, Yang X, Li H, Zhang L. High-Speed Railways and Enterprise Green Innovation: Evidence from Manufacturing Industries in China. Sustainability. 2025; 17(21):9747. https://doi.org/10.3390/su17219747
Chicago/Turabian StyleYu, Kemei, Xiandong Yang, Hongchang Li, and Lei Zhang. 2025. "High-Speed Railways and Enterprise Green Innovation: Evidence from Manufacturing Industries in China" Sustainability 17, no. 21: 9747. https://doi.org/10.3390/su17219747
APA StyleYu, K., Yang, X., Li, H., & Zhang, L. (2025). High-Speed Railways and Enterprise Green Innovation: Evidence from Manufacturing Industries in China. Sustainability, 17(21), 9747. https://doi.org/10.3390/su17219747

