Farmers’ Variety Naming and Crop Varietal Diversity of Two Cereal and Three Legume Species in the Moroccan High Atlas, Using DATAR
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Varietal Naming: Ethnosemantics and Ethnotaxonomy
3.2. Crop-Variety Diversity and Distribution per Species and Across Hubs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mulumba, J.W.; Nankya, R.; Adokorach, J.; Kiwuka, C.; Fadda, C.; de Santis, P.; Jarvis, D.I. A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric. Ecosyst. Environ. 2012, 157, 70–86. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, D.I.; Hodgkin, T.; Sthapit, B.R.; Fadda, C.; Lopez-Noriega, I. An Heuristic Framework for Identifying Multiple Ways of Supporting the Conservation and Use of Traditional Crop Varieties within the Agricultural Production System. Crit. Rev. Plant Sci. 2011, 30, 125–176. [Google Scholar] [CrossRef] [Green Version]
- Sawadogo, M.; Ouedraogo, J.; Belem, M.; Balma, D.; Dossou, B.; Jarvis, D.I. Components of the ecosystem as instruments of cultural practices in the in situ conservation of agricultural biodiversity. Plant Genet. Resour. Newsl. 2005, 141, 19–25. [Google Scholar]
- Bhandari, B. Summer Rainfall Variability and the Use of Rice (Oryza sativa L.) Varietal Diversity for Adaptation: Farmers’ Perceptions and Responses in Nepal. Master’s Thesis, CBM Swedish Biodiversity Centre, Uppasala, Sweden, 2009. [Google Scholar]
- Thurston, H.D.; Salick, J.; Smith, M.E.; Trutmann, P.; Pham, J.L.; McDowell, R. Traditional management of agrobiodiversity. In Agrobiodiversity. Characterization, Utilization and Management; Wood, D., Lenn´e, J.M., Eds.; CABI Publishing: Wallingford, UK, 1999; pp. 211–243. [Google Scholar]
- Zhu, Y.; Chen, H.; Fan, J.; Wang, Y.; Li, Y.; Chen, J.; Fan, J.X.; Yang, S.; Hu, L.; Leung, H.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Trutmann, P.; Voss, J.; Fairhead, J. Indigenous knowledge and farmer perception of common bean disease in the central African highlands. Agric. Hum. Values 1996, 13, 64–70. [Google Scholar] [CrossRef]
- Finckh, M.R. Ecological benefits of diversification. In Rice Science: Innovations and Impact for Livelihood; Mew, T.W., Brar, D., Peng, S., Dawe, D., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2003; pp. 549–564. [Google Scholar]
- Barry, M.B.; Pham, J.L.; Noyer, J.L.; Courtois, B.; Billot, C.; Ahmadi, N. Implications for in situ genetic resource conservation from the ecogeographical distribution of rice genetic diversity in Maritime Guinea. Plant Genet. Resour. 2007, 5, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Bisht, I.S.; Mehta, P.S.; Bhandari, D.C. Traditional crop diversity and its conservation on-farm for sustainable agricultural production in Kumaon Himalaya of Uttaranchal state: A case study. Genet. Resour. Crop Evol. 2007, 54, 345–357. [Google Scholar] [CrossRef]
- Duc, G.; Bao, S.; Baum, M.; Redden, B.; Sadiki, M.; Suso, M.J.; Vishniakova, M.; Zong, X. Diversity maintenance and use of Vicia faba L. genetic resources. Field Crop. Res. 2010, 115, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). Coping with Climate Change—The Roles of Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2015. [Google Scholar]
- Platform for Agrobiodiversity Research (PAR). The Use of Agrobiodiversity by Indigenous and Traditional Agricultural Communities in: Adapting to Climate Change; Synthesis paper; PAR, Bioversity International: Rome, Italy, 2010. [Google Scholar]
- Bezancon, G.; Pham, J.L.; Deu, M.; Vigouroux, Y.; Sagnard, F.; Mariac, C.; Kapran, I.; Mamadou, A.; G´erard, B.; Ndjeunga, J.; et al. Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet. Resour. Crop. Evol. 2009, 56, 223–236. [Google Scholar] [CrossRef]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2010; ISBN 978-92-5-106534-1. [Google Scholar]
- Hajjar, R.; Jarvis, D.I.; Gemmill-Herren, B. The Utility of Crop Genetic Diversity in Maintaining Ecosystem Services. Agric. Ecosyst. Environ. 2008, 123, 261–270. [Google Scholar] [CrossRef]
- Frankel, O.H.; Brown, A.H.D.; Burdon, J.J. The Conservation of Plant Biodiversity; Cambridge University Press: Cambridge, UK, 1995; 299p. [Google Scholar]
- Thomas, M.; Dawson, J.C.; Goldringer, I.; Bonneuil, C. Seed exchanges, a key to analyze crop diversity dynamics in farmer-led on-farm conservation. Genet. Resour. Crop Evol. 2011, 58, 321–338. [Google Scholar] [CrossRef]
- Jarvis, D.I.; Hodgkin, T.; Brown, A.H.D.; Tuxill, J.; Lopez Noriega, I.; Smale, M.; Sthapit, B. Crop Genetic Diversity in the Field and on the Farm; Principles and Applications in Research Practices; Yale University Press: New Haven, CT, USA, 2016. [Google Scholar]
- Sthapit, B.; Gauchan, D.; Sthapit, S.; Ghimire, K.H.; Joshi, B.K.; De Santis, P.; Jarvis, D.I. Sourcing and Deploying New Crop Varieties in Mountain Production Systems. In Farmers and Plant Breeding: Current Approaches and Perspectives; Taylor and Francis: Abingdon, VA, USA, 2019; pp. 196–216. ISBN 9780429507335. [Google Scholar]
- Hunter, D.; Fanzo, J. Agricultural biodiversity, diverse diets and improving nutrition. In Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health; Fanzo, J., Hunter, D., Borelli, T., Mattei, F., Eds.; Earthscan by Routledge: Abingdon, UK, 2013; pp. 1–13. [Google Scholar]
- Hunter, D.; Guarino, L.; Spillane, C.; McKeown, P.C. (Eds.) Routledge Handbook of Agricultural Biodiversity, 1st ed.; Routledge: Abingdon, VA, USA, 2017. [Google Scholar]
- Aguilar-Støen, M.; Moe, S.R.; Camargo-Ricalde, S.L. Home gardens sustain crop diversity and improve farm resilience in Candelaria Loxicha, Oaxaca, Mexico. J. Hum. Ecol. 2009, 37, 55–77. [Google Scholar] [CrossRef]
- Johns, T.; Sthapit, B.R. Biocultural diversity in the sustainability of developing country food systems. Food Nutr. Bull. 2004, 25, 143–155. [Google Scholar] [CrossRef]
- Bellon, M.R.; Pham, J.L.; Jackson, M.T. Genetic conservation: A role for rice farmers. In Plant Conservation: The In Situ Approach; Hawkes, J.G., Ed.; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Brush, S.B. Farmers’ Bounty: Locating Crop Diversity in the Contemporary World; Yale University Press: New Haven, CT, USA, 2004. [Google Scholar]
- Brush, S.; Kesselli, R.; Ortega, R.; Cisneros, P.; Zimmerer, K.; Quiros, C. Potato diversity in the Andean center of crop domestication. Conserv. Biol. 1995, 9, 1189–1198. [Google Scholar] [CrossRef]
- Jarvis, D.I.; Zoes, V.; Nares, D.; Hodgkin, T. On-farm management of crop genetic diversity and the convention on biological diversity’s programme of work on agricultural biodiversity. Plant Genet. Resour. Newsl. 2004, 138, 5–17. [Google Scholar]
- Guzman, F.A.; Ayala, H.; Azurdia, C.; Duque, M.C.; Vicente, M.C. AFLP assessment of genetic diversity of Capsicum genetic resources in Guatemala: Home gardens as an option for conservation. Crop. Sci. 2005, 45, 363–370. [Google Scholar] [CrossRef]
- Jarvis, D.I.; Fadda, C.; de Santis, P.; Thompson, J. (Eds.) Damage, Diversity and Genetic Vulnerability: The Role of Crop Genetic Diversity in the Agricultural Production System to Reduce Pest and Disease Damage. In Proceedings of the International Symposium, Rabat, Morocco, 15–17 February 2011; Bioversity International: Rome, Italy, 2011; p. 349. [Google Scholar]
- Sadiki Arbaoui, M.; Ghaouti, L.; Jarvis, D.I. Seed Exchange and Supply Systems and On-Farm Maintenance of Crop Genetic Diversity. In Proceedings of the Seed systems and crop genetic diversity on-farm, Proceedings of a Workshop, Pucallpa, Peru, 16–20 September 2003; Jarvis, D.I., Sevilla-Panizo, R., Chávez-Servia, J.L., Hodgkin, T., Eds.; IPGRI: Rome, Italy, 2003; pp. 83–87. [Google Scholar]
- Chentoufi, L.; Sahri, A.; Arbaoui, M.; Belqadi, L.; Birouk, A.; Roumet, P.; Muller, M.H. Anchoring Durum Wheat Diversity in the Reality of Traditional Agricultural Systems: Varieties, Seed Management, and Farmers’ Perception in Two Moroccan Regions. J. Ethnobiol. Ethnomed 2014, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sahri, A.; Chentoufi, L.; Arbaoui, M.; Ardisson, M.; Belqadi, L.; Birouk, A.; Roumet, P.; Muller, M.H. Towards a Comprehensive Characterization of Durum Wheat Landraces in Moroccan Traditional Agrosystems: Analysing Genetic Diversity in the Light of Geography, Farmers’ Taxonomy and Tetraploid Wheat Domestication History. BMC Evol. Biol. 2014, 14, 264. [Google Scholar] [CrossRef] [Green Version]
- Zarkti, H.; Ouabbou, H.; Udupa, S.M.; Gaboun, F.; Hilali, A. Agro-Morphological Variability in Durum Wheat Landraces of Morocco. Aust. J. Crop. Sci. 2012, 6, 1172–1178. [Google Scholar]
- Ouafi, L.; Alane, F.; Rahal-Bouziane, H.; Abdelguerfi, A. Agro-Morphological Diversity within Field Pea (Pisum sativum L.) Genotypes. Afr. J. Agric. Res. 2016, 11, 4039–4047. [Google Scholar] [CrossRef] [Green Version]
- Crawford, D. Ethnography and Demography: Moroccan Households and Cultural Change. Hesperis Tamuda 2020, 55, 469–491. [Google Scholar]
- Orabi, J.; Jahoor, A.; Backes, G. Genetic diversity and population structure of wild and cultivated barley from West Asia and North Africa. Plant Breed. 2009, 128, 606–614. [Google Scholar] [CrossRef]
- Bajracharya, J.; Brown, A.H.D.; Joshi, B.K.; Panday, D.; Baniya, B.K.; Sthapit, B.R.; Jarvis, D.I. Traditional seed management and genetic diversity in barley varieties in high-hill agro-ecosystems of Nepal. Genet. Resour. Crop. Evol. 2011, 59, 389–398. [Google Scholar] [CrossRef]
- Pasam, R.K.; Sharma, R.; Walther, A.; Özkan, H.; Graner, A.; Kilian, B. Genetic Diversity and Population Structure in a Legacy Collection of Spring Barley Landraces Adapted to a Wide Range of Climates. PLoS ONE 2014, 9, e116164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanston, J.S.; Newton, A.C. Mixtures of UK wheat as an efficient and environmentally friendly source for bioethanol. J. Ind. Ecol. 2005, 9, 109–126. [Google Scholar] [CrossRef]
- Reynolds, M.; Dreccer, F.; Trethowan, R. Drought-adaptive traits derived from wheat wild relatives and landraces. J. Exp. Bot. 2007, 58, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Finckh, M.R. Stripe rust, yield, and plant competition in wheat cultivar mixtures. Phytopathology 1992, 82, 905–913. [Google Scholar] [CrossRef]
- Reif, J.; Zhang, P.; Dreisigacker, S. Wheat genetic diversity trends during domestication and breeding. Appl. Genet. 2005, 110, 859–864. [Google Scholar] [CrossRef]
- van Frank, G.; Rivière, P.; Pin, S.; Baltassat, R.; Berthellot, J.-F.; Caizergues, F.; Dalmasso, C.; Gascuel, J.-S.; Hyacinthe, A.; Mercier, F.; et al. Genetic Diversity and Stability of Performance of Wheat Population Varieties Developed by Participatory Breeding. Sustainability 2020, 12, 384. [Google Scholar] [CrossRef] [Green Version]
- Raman, H.; Stodart, B.J.; Cavanagh, C.; Mackay, M.; Morell, M.; Milgate, A.; Martin, P.; Raman, H.; Stodart, B.J.; Cavanagh, C.; et al. Molecular diversity and genetic structure of modern and traditional landrace cultivars of wheat (Triticum aestivum L.). Crop. Pasture Sci. 2010, 61, 222–229. [Google Scholar] [CrossRef]
- Basheer-Salimia, R.; Shtaya, M.; Awad, M.; Abdallah, J.; Hamdan, Y. Genetic diversity of Palestine landraces of faba bean (Vicia faba) based on RAPD markers. Genet. Mol. Res. 2013, 12, 3314–3323. [Google Scholar] [CrossRef]
- Kehel, Z.; Garcia-Ferrer, A.; Nachit, M.M. Using Bayesian and Eigen approaches to study spatial genetic structure of Moroccan and Syrian durum wheat landraces. Am. J. Mol. Biol. 2013, 3, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Terzopoulos, P.J.; Bebeli, P.J. Genetic diversity analysis of Mediterranean faba bean (Vicia faba L.) with ISSR markers. Field Crop. Res. 2008, 108, 39–44. [Google Scholar] [CrossRef]
- Göl, Ş.; Doğanlar, S.; Frary, A. Relationship between geographical origin, seed size and genetic diversity in faba bean (Vicia faba L.) as revealed by SSR markers. Mol. Genet. Genom. 2017, 292, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, A.; Ahmad, Z.; Ahmad, Z. Genetic diversity in Pisum sativum and a strategy for indigenous biodiversity conservation. Pak. J. Bot. 2005, 37, 71–77. [Google Scholar]
- Cupic, T.; Tucak, M.; Popovic, S.; Bolaric, S.; Grljusic, S.; Kozumplik, V. Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. J. Food Agric. Environ. 2009, 7, 343–348. [Google Scholar]
- Gixhari, B.; Pavelková, M.; Ismaili, H.; Vrapi, H.; Jaupi, A.; Smýkal, P. Genetic diversity of Albanian pea (Pisum sativum L.) landraces assessed by morphological traits and molecular markers. Czech. J. Genet. Plant 2014, 50, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Javaid, A.; Ghafoor, A.; Rabbani, M.A. Analysis of genetic diversity among local and exotic Pisum sativum genotypes through RAPD and SSR markers. Pak. J. Bot. 2022, 54, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Touil, L.; Guesmi, F.; Fares, K.; Zagrouba, C.; Ferchichi, A. Genetic diversity of some Mediterranean populations of the cultivated alfalfa (Medicago sativa L.) using SSR markers. Pak. J. Biol. Sci. 2008, 11, 1923–1928. [Google Scholar] [CrossRef] [Green Version]
- Benabderrahim, M.A.; Hamza, H.; Mansour, H.; Ferchichi, A. A comparison of performance among exotic and local alfalfa (Medicago sativa L.) ecotypes under Tunisian conditions. Rom. Agric. Res. 2015, 32, 43–51. [Google Scholar]
- Bouizgaren, A.; Farissi, M.; Ghoulam, C.; Kallida, R.; Faghire, M.; Barakate, M.; al Feddy, M.N. Assessment of summer drought tolerance variability in Mediterranean alfalfa (Medicago sativa L.) cultivars under Moroccan fields conditions. Arch. Acker Pfl. Boden. 2013, 59, 147–160. [Google Scholar] [CrossRef]
- Prosperi, J.M.; Jenczewski, E.; Muller, M.H.; Fourtier, S.; Sampoux, J.P.; Ronfort, J. Alfalfa domestication history, genetic diversity and genetic resources. Legume Perspect. 2014, 4, 13–14. [Google Scholar]
- Bouizgaren, A.; Birouk, A.; Kerfal, S.; Hmama, H.; Jarvis, D. On-farm Conservation of Alfalfa Farmer’s Units of Diversity (FUD) in Morocco; International Symposium on Managing Biodiversity in Agricultural Ecosystems: Montreal, QC, Canada, 2011. [Google Scholar]
- Noeparvar, S.; Valizadeh, M.; Monirifar, H.; Haghighi, A.; Darbani, B. Genetic diversity among and within alfalfa populations native to Azerbaijan based on RAPD analysis. J. Biol. Res.-Thessal. 2008, 10, 159–169. [Google Scholar]
- Al-Farsi, S.M.; Nadaf, S.K.; Al-Sadi, A.M.; Ullah, A.; Farooq, M. Evaluation of indigenous Omani alfalfa landraces for morphology and forage yield under different levels of salt stress. Physiol. Mol. Biol. Plants 2020, 26, 1763–1772. [Google Scholar] [CrossRef]
- IAASTD. Agriculture at a Crossroads. In International Assessment of Agricultural Knowledge, Science and Technology for Development; McIntyre, B.D., Herren, H.R., Wakhungu, J., Watson, R.T., Eds.; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Keleman, A.; Garcia Rano, H.; Hellin, J. Maize diversity, poverty, and market access: Lessons from Mexico. Dev. Pract. 2009, 19, 187–199. [Google Scholar] [CrossRef]
- Kontoleon, A.; Pascual, U.; Smale, M. Introduction: Agrobiodiversity for economic development: What do we know? Agrobiodiversity conservation and economic development. In Environmental Economics; Kontoleon, A., Pascual, U., Smale, M., Eds.; Routledge: Oxfordshire, UK, 2009; pp. 1–24. [Google Scholar]
- Walters, S.A.; Bouharroud, R.; Mimouni, A.; Wifaya, A. The Deterioration of Morocco’s Vegetable Crop Genetic Diversity: An Analysis of the Souss-Massa Region. Agriculture 2018, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Henkrar, F.; El-Haddoury, J.; Ouabbou, H.; Nsarellah, N.; Iraqi, D.; Bendaou, N.; Udupa, S.M. Genetic Diversity Reduction in Improved Durum Wheat Cultivars of Morocco as Revealed by Microsatellite Markers. Sci. Agric. 2016, 73, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Kesavan, P.C.; Swaminathan, M.S. Strategies and models for agricultural sustainability in developing Asian countries. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 877–891. [Google Scholar] [CrossRef] [Green Version]
- De Boef, W.S.; Dempewolf, H.; Byakwell, J.M.; Engles, J.M.M. Integrating genetic resource conservation and sustainable development into strategies to increase the robustness of seed systems. J. Sustain. Agric. 2010, 34, 1–28. [Google Scholar] [CrossRef]
- Oude, L.A.; Carpentier, A. Damage Control Productivity: An input damage abatement approach. J. Agric. Econ. 2001, 52, 11–22. [Google Scholar]
- Bouizgaren, A.; Birouk, A.; Kerfal, S.; Hmama, H.; Jarvis, D. Conservation in Situ de La Biodiversité Des Populations Noyaux de Luzerne Locale Au Maroc. In La conservation In Situ de la Biodiversité Agricole: Un Défi Pour une Agriculture Durable; IPGRI: Rome, Italy, 2002. [Google Scholar]
- Chentoufi, L.; Sahri, A.; Roumet, P.; Muller, M.H. Diversité Agro-Morphologique et Gestion Variétale Par Les Agriculteurs Du Blé Dur (Triticum turgidum ssp. durum) Dans Le Pré-Rif Marocain. Rev. Maroc. Des Sci. Agron. Et Vétérinaires 2014, 2, 30–38. [Google Scholar]
- FAO GIEWS. Country Brief Morocco—Global Information and Early Warning System on Food and Agriculture; FAO: Rome, Italy, 2022. [Google Scholar]
- Sadiki, M.; Belqadi, L.; Mahdi, M.; Jarvis, D. Diversity of Farmer-Named Faba Bean (Vicia faba L.) Varieties in Morocco: A Scientific Basis for in Situ Conservation on-Farm in Local Ecosystems. In Proceedings of the CBD-IPGRI International Symposium on Managing Biodiversity in Agricultural Ecosystems, Montreal, QC, Canada, 8–10 November 2001. [Google Scholar]
- Hmimsa, Y.; Aumeeruddy-Thomas, Y.; Ater, M. Vernacular Taxonomy, Classification and Varietal Diversity of Fig (Ficus carica L.) among Jbala Cultivators in Northern Morocco. Hum. Ecol. 2012, 40, 301–313. [Google Scholar] [CrossRef]
- Masski, H.; Ait Hammou, A. Fish Names Variability Traces the Geo-Historical Dynamics of Moroccan Fishermen Communities. J. Ecol. Anthropol. 2016, 18, 8. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.J. Ethnobotany: A Methods Manual, 2nd edition; Routledge: Abingdon, USA, 2004; 292p. [Google Scholar]
- Jarvis, D.I.; Brown, A.H.D.; Cuong, P.H.; Collado-Panduro, L.; Latournerie-Moreno, L.; Gyawali, S.; Tanto, T.; Sawadogo, M.; Mar, I.; Sadiki, M.; et al. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc. Natl. Acad. Sci. USA 2008, 105, 5326–5331. [Google Scholar] [CrossRef]
- Global Diversity Foundation (GDF). GIS-Based Analysis of the Agdals of Igourdane (Ait Mhammed) and Oukaimeden (Oukaimeden) in the Moroccan High Atlas; Internal Report; Global Diversity Foundation: Canterbury, UK, 2021. [Google Scholar]
- BirdLife International. Mediterranean Basin Biodiversity Hotspot: Ecosystem Profile; Critical Ecosystem Partnership Fund: Arlington, VA, USA, 2017; 339p. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.; Nachtergaele, F.O.; van Velthuizen, H.T.; Chiozza, F.; Franceschini, G.; Henry, M.; Muchoney, D.; Tramberend, S. Global Agro-Ecological Zone V4—Model Documentation; FAO: Rome, Italy, 2021; ISBN 978-92-5-134426-2. [Google Scholar]
- Jarvis, D.I.; Campilan, D.M. Crop Genetic Diversity to Reduce Pests and Diseases On-Farm: Participatory Diagnosis Guidelines. Version I; Bioversity Technical Bulletin n.12; Bioversity International: Rome, Italy, 2006; p. 101. [Google Scholar]
- Barahona, C.; Levy, S. How to Generate Statistics and Influence Policy Using Participatory Methods in Research: Reflections on Work in Malawi 1999–2002; Working Paper 212; IDS: Brighton, UK, 2003. [Google Scholar]
- Chambers, R. Relaxed and Participatory Appraisal: Notes on Practical Approaches and Methods for Participants in PRA/PLA-related Familiarization Workshops; IDS Participation Group: Brighton, UK, 2002. [Google Scholar]
- Lope, D. Gender Relations as a Basis for Varietal Selection in Production Spaces in Yucatan, Mexico. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2004. [Google Scholar]
- Eyzaguirre, P.B.; Linares, O.F. (Eds.) Home Gardens and Agrobiodiversity; Smithsonian Books: Washington, DC, USA, 2004; 296p, ISBN 158834-112-7. [Google Scholar]
- Jarvis, D.I.; Fonteneau, A.; Nankya, R.; Turdieva, M.K.; Gauchan, D.; Tempelmann, K.; López Noriega, I. Diversity assessment tool for agrobiodiversity and resilience (DATAR)-Integrate intra-specific diversity of crop, livestock and aquatic resources in to agricultural development decision making. In Proceedings of the International Scientific and Practical Conference «Innovation in Use of Agrobiodiversity for Sustainable Agriculture Development», Tashkent, Uzbekistan, 25–26 September 2019. [Google Scholar]
- Sadiki, M.; Jarvis, D.; Rijal, D.; Bajracharya, J.; Hue, N.N.; Camacho, T.C.; Burgos-May, L.A.; Sawadogo, M.; Balma, D.; Lope, D.; et al. Variety names: An entry point to crop genetic diversity and distribution in agroecosystems? In Managing Biodiversity in Agricultural Ecosystems; Jarvis, D.I., Padoch, C., Cooper, D., Eds.; Columbia University Press: New York, NY, USA, 2007; pp. 34–76. [Google Scholar]
- Quiros, C.F.; Brush, S.B.; Douches, D.S.; Zimmerer, K.S.; Huestis, G. Biochemical and folk assessment of variability of Andean cultivated potatoes. Econ. Bot. 1990, 44, 254–266. [Google Scholar] [CrossRef]
- Múrcia, C.; Zenia, S. Diccionari Català-Amazic/Amazic-Català; Llibres de l’Índex: Barcelona, Spain, 2016; ISBN 9788494491108. [Google Scholar]
- Jabiot, I. “Beldi-Roumi”: Hétérogénéité d’une Qualification Ordinaire. Les Études Essais Du Cent. Jacques Berque 2015, 25, 3–15. [Google Scholar]
- Zirari, H. Entre alimentation (makla) et nutrition (taghdia): Arbitrages et réinvention au quotidien des pratiques alimentaires en contexte urbain. Hesperis Tamuda 2020, LV, 385–407. [Google Scholar]
- Belqadi, L. Diversité et Ressources Génétiques de Vicia faba L. Au Maroc: Variabilité, Conservation Ex Situ et in Situ et Valorisation. Ph.D. Thesis, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco, 2003. [Google Scholar]
- Bajracharya, J.; Rana, R.B.; Gauchan, D.; Sthapit, B.R.; Jarvis, D.I.; Witcombe, J.R. Rice landrace diversity in Nepal. Socio-economic and ecological factors determining rice landrace diversity in three agro-ecozones of Nepal based on farm surveys. Genet. Resour. Crop. Evol. 2010, 57, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Nugroho, H.Y.S.H.; Sallata, M.K.; Allo, M.K.; Wahyuningrum, N.; Supangat, A.B.; Setiawan, O.; Njurumana, G.N.; Isnan, W.; Auliyani, D.; Ansari, F.; et al. Incorporating Traditional Knowledge into Science-Based Sociotechnical Measures in Upper Watershed Management: Theoretical Framework, Existing Practices and the Way Forward. Sustainability 2023, 15, 3502. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, X.; Lu, F. Research Status and Trends of Agrobiodiversity and Traditional Knowledge Based on Bibliometric Analysis (1992–Mid-2022). Diversity 2022, 14, 950. [Google Scholar] [CrossRef]
- Peano, C.; Caron, S.; Mahfoudhi, M.; Zammel, K.; Zaidi, H.; Sottile, F. A Participatory Agrobiodiversity Conservation Approach in the Oases: Community Actions for the Promotion of Sustainable Development in Fragile Areas. Diversity 2021, 13, 253. [Google Scholar] [CrossRef]
- Molnár, Z.; Babai, D. Inviting Ecologists to Delve Deeper into Traditional Ecological Knowledge. Trends Ecol. Evol. 2021, 36, 679–690. [Google Scholar] [CrossRef]
- Vigouroux, Y.; Barnaud, A.; Scarcelli, N.; Thuillet, A.C. Biodiversity, adaptation, and evolution of cultivated crops. CR Biol. 2011, 334, 450–457. [Google Scholar] [CrossRef]
- Chakanda, R.; van Treuren, R.; Visser, B.; Berg, R.V.D. Analysis of genetic diversity in farmers’ rice varieties in Sierra Leone using morphological and AFLP® markers. Genet. Resour. Crop. Evol. 2012, 60, 1237–1250. [Google Scholar] [CrossRef]
- Nuijten, E.; Almekinders, C.J.M. Mechanisms Explaining Variety Naming by Farmers and Name Consistency of Rice Varieties in The Gambia. Econ. Bot. 2008, 62, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Sadiki, M.; Birouk, A.; Bouizgaren, A.; Belqadi, L.; Rh’rrib, K.; Taghouti, M.; Kerfal, S.; Lahbhili, M.; Bouhya, H.; Douiden, R.; et al. La Diversité Génétique in Situ Du Blé Dur, de l’orge, de La Luzerne et de La Fève: Options de Stratégie Pour Sa Conservation. In La Conservation In Situ de la Biodiversité Agricole: Un Défi Pour une Agriculture Durable; Birouk, A., Sadiki, M., Nassif, F., Saidi, S., Mellas, H., Bammoune, A., Jarvis, D., Eds.; IPGRI: Rome, Italy, 2002; pp. 37–117. [Google Scholar]
- Rh’rib, K.; Amri, A.; Sadiki, M. Caracterisation Agro Morphologique Des Populations Locales d’orge Des Sutes Tanant et Taounate. In La Conservation In Situ de la Biodiversité Agricole: Un Défi Pour une Agriculture Durable; Birouk, A., Sadiki, M., Nassif, F., Saidi, S., Mellas, H., Bammoune, A., Jarvis, D., Eds.; IPGRI: Rome, Italy, 2002; pp. 286–294. [Google Scholar]
- Taghouti, M.; Saidi, S. Perception et Désignation Des Entités de Blé Dur Gérées Par Les Agriculteurs. In La Conservation In Situ de la Biodiversité Agricole: Un Défi Pour une Agriculture Durable; Birouk, A., Sadiki, M., Nassif, F., Saidi, S., Mellas, H., Bammoune, A., Jarvis, D., Eds.; IPGRI: Rome, Italy, 2002; pp. 275–279. [Google Scholar]
- Benchekchou, Z. Analyse de La Structure de La Diversité Génétique de La Fève in Situ En Relation Avec Sa Gestion à La Ferme: Contribution Au Développement Des Bases Scientifiques Pour La Conservation in Situ de La Fève Au Maroc. In Mémoire de 3ème Cycle du Diplôme D’ingénieur D’état en Agronomie; Institut Agronomique et Vétérinaire Hassan II: Rabat, Morocco, 2004. [Google Scholar]
- Sagnard, F.; Barnaud, A.; Deu, M.; Barro, C.; Luce, C.; Billot, C.; Rami, J.F.; Bouchet, S.; Dembele, D.; Pomies, V.; et al. Multi-scale analysis of sorghum genetic diversity: Understanding the evolutionary processes for in situ conservation. (Special issue: Agrobiodiversites). Cah. Agric. 2008, 17, 114–121. [Google Scholar]
- Chakauya, E.; Tongoona, P.; Matibiri, E.A.; Grum, M. Genetic diversity assessment of sorghum landraces in Zimbabwe usingmicrosatellites and indigenous local names. Int. J. Bot. 2006, 2, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Kizito, E.B.; Chiwona-Karltun, L.; Egwang, T.; Fregene, M.; Westerbergh, A. Genetic diversity and variety composition of cassava on small scale farms in Uganda: An interdisciplinary study using genetic markers and farmer interviews. Genetica 2007, 130, 301–318. [Google Scholar] [CrossRef]
- Mujaju, C.; Chakauya, E. Morphological variation of sorghum landrace accessions on-farm in semi-arid areas of Zimbabwe. ANSInet, Asian Network for Scientific Information, Faisalabad, Pakistan. Int. J. Bot. 2008, 4, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Boster, J.S. Selection for Perceptual Distinctiveness: Evidence from Aguaruna cultivars of Manihot esculenta. Econ. Bot. 1985, 39, 310–325. [Google Scholar] [CrossRef]
- Busso, C.S.; Devos, K.M.; Ross, G.; Mortimore, M.; Adams, W.M.; Ambrose, M.J.; Alldrick, S.; Gale, M.D. Genetic diversity within and among landraces of pearl millet (Pennisetum glaucum) under farmer management in West Africa. Genet. Resour. Crop Evol. 2000, 47, 561–568. [Google Scholar] [CrossRef]
- Soleri, D.; Cleveland, D.A. Farmers’ genetic perceptions regarding their crop populations: An example with maize in the central valleys of Oaxaca, Mexico. Econ. Bot. 2001, 55, 106–128. [Google Scholar] [CrossRef]
- Zimmerer, K.S.; Douches, D.S. Geographical approaches to native crop research and conservation: The partitioning of allelic diversity in Andean potatoes. Econ. Bot. 1991, 45, 176–189. [Google Scholar] [CrossRef]
- Jaleta, M.; Tesfaye, K.; Kilian, A.; Yirga, C.; Habte, E.; Beyene, H.; Abeyo, B.; Badebo, A.; Erenstein, O. Misidentification by farmers of the crop varieties they grow: Lessons from DNA fingerprinting of wheat in Ethiopia. PLoS ONE 2020, 15, e0235484. [Google Scholar] [CrossRef] [PubMed]
- Maredia, M.K.; Reyes, B.A.; Manu-Aduening, J.; Dankyi, A.; Hamazakaza, P.; Muimui, K.; Rabbi, I.Y.; Kulakow, P.A.; Parkes, E.; Abdoulaye, T.; et al. Testing Alternative Methods of Varietal Identification Using DNA Fingerprinting: Results of Pilot Studies in Ghana and Zambia; (No. 1096-2016-88478); Michigan State University: East Lansing, MI, USA, 2016. [Google Scholar]
- Salick, J.; Cellinese, N.; Knapp, S. Indigenous diversity of Cassava: Generation, maintenance, use and loss among the Amuesha, Peruvian upper Amazon. Econ. Bot. 1997, 51, 6–19. [Google Scholar] [CrossRef]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an Evolved Concept of Landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.H.D.; Brubaker, C. Indicators for sustainable management of plant genetic resources: How well are we doing. In Managing Plant Genetic Diversity; Engles, J.M.M., Rao, V.R., Brown, A.H.D., Jackson, M.T., Eds.; International Plant Genetic Resources Institute: Rome, Italy; CABI Publishing: Wallingford, UK, 2002; pp. 249–262. [Google Scholar]
- Tahiri, A. Seed Systems in Morocco. In Proceedings of the Seed Systems and Crop Genetic Diversity On-Farm, Pucallpa, Peru, 16–20 September 2003; Jarvis, D., Sevilla-Panizo, R., Chávez-Servia, J.L., Hodgkin, T., Eds.; IPGRI: Rome, Italy, 2005. [Google Scholar]
- ONSSA (Office National de Sécurité Sanitaire des Produits Alimentaires). Homologation of Varieties. Available online: https://www.onssa.gov.ma/seed-and-seedlinds/varietys-homologation/?lang=en (accessed on 6 April 2023).
- Oliveira, H.R.; Campana, M.G.; Jones, H.; Hunt, H.V.; Leigh, F.; Redhouse, D.I.; Lister, D.L.; Jones, M.K. Tetraploid Wheat Landraces in the Mediterranean Basin: Taxonomy, Evolution and Genetic Diversity. PLoS ONE 2012, 7, e37063. [Google Scholar] [CrossRef] [Green Version]
- Hadado, T.T.; Rau, D.; Bitocchi, E.; Papa, R. Genetic Diversity of Barley (Hordeum vulgare L.) Landraces from the Central Highlands of Ethiopia: Comparison between the Belg and Meher Growing Seasons Using Morphological Traits. Genet. Resour. Crop. Evol. 2009, 56, 1131–1148. [Google Scholar] [CrossRef]
- Rhouma, H.B.; Taski-Ajdukovic, K.; Zitouna, N.; Sdouga, D.; Milic, D.; Trifi-Farah, N. Assessment of the Genetic Variation in Alfalfa Genotypes Using SRAP Markers for Breeding Purposes. Chil. J. Agric. Res. 2017, 77, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, S.S.; Al-Faifi, S.A.; Migdadi, H.M.; Khan, M.A.; El-Harty, E.H.; Ammar, M.H. Molecular Diversity Assessment Using Sequence Related Amplified Polymorphism (SRAP) Markers in Vicia faba L. Int. J. Mol. Sci. 2012, 13, 16457–16471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, L.; van Noordwijk, M.; Bengtsson, J.; Foster, W.; Lipper, L.; Pulleman, M.; Said, M.; Snaddon, J.; Vodouhe, R. Biodiversity and agricultural sustainagility: From assessment to adaptive management. Curr. Opin. Environ. Sustain. 2010, 2, 80–87. [Google Scholar] [CrossRef]
- Jackson, L.E.; Pascual, U.; Hodgkin, T. Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric. Ecosyst. Environ. 2007, 121, 196–210. [Google Scholar] [CrossRef]
- Barnaud, A.; Trigueros, G.; McKey, D.; Joly, H.I. High outcrossing rates in fields with mixed sorghum landraces: How are landraces maintained? Heredity 2008, 101, 445–452. [Google Scholar] [CrossRef]
- Gollin, D.; Smale, M. Valuing Genetic Diversity: Crop Plants and Agroecosystems. Biodiversity in Agroecosystems; CRC Press: London, UK, 1999. [Google Scholar]
- Gepts, P. Plant genetic resources conservation and utilization: The accomplishments and future of a societal insurance policy. Crop. Sci. 2006, 46, 2278–2292. [Google Scholar] [CrossRef]
- Mavromatis, A.G.; Arvanitoyannis, I.S.; Chatzitheodorou, V.A.; Khan, E.M.; Korkovelos, A.E.; Goulas, C.K. Landraces versus commercial common bean cultivars under organic growing conditions: A comparative study based on agronomic performance and physiochemical traits. Eur. J. Hortic. Sci. 2007, 72, 214–219. [Google Scholar]
- Bonneuil, C.; Goffaux, R.; Bonnin, I.; Montalent, P.; Hamon, C.; Balfourier, F.; Goldringer, I. A new integrative indicator to assess crop genetic diversity. Ecol. Indic. 2012, 23, 280–289. [Google Scholar] [CrossRef]
- Zarkti, H.; Ouabbou, H.; Hilali, A.; Udupa, S.M. Detection of genetic diversity in Moroccan durum wheat accessions using agro-morphological traits and microsatellite markers. Afr. J. Agric. Res. 2010, 5, 1837–1844. [Google Scholar]
- Amezrou, R.; Gyawali, S.; Belqadi, L.; Chao, S.; Arbaoui, M.; Mamidi, S.; Rehman, S.; Sreedasyam, A.; Verma, R.P.S. Molecular and phenotypic diversity of ICARDA spring barley (Hordeum vulgare L.) collection. Genet. Resour. Crop. Evol. 2018, 65, 255–269. [Google Scholar] [CrossRef]
- Pressoir, G.; Berthaud, J. Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity 2004, 92, 88–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samberg, L.H.; Fishman, L.; Allendorf, F.W. Population genetic structure in a social landscape: Barley in a traditional Ethiopian agricultural system. Evol. Appl. 2013, 6, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Demissie, A.; Bjørnstad, A. Phenotypic diversity of Ethiopian barleys in relation to geographical regions, altitudinal range, and agro-ecological zones: As an aid to germplasm collection and conservation strategy. Hereditas 2004, 124, 17–29. [Google Scholar] [CrossRef]
- Teshome, A.; Brown, A.H.D.; Hodgkin, T. Diversity in landraces of cereal and legume crops. Plant Breed. Rev. 2001, 21, 221–261. [Google Scholar]
- Jensen, H.R.; Belqadi, L.; de Santis, P.; Sadiki, M.; Jarvis, D.I.; Schoen, D.J. A case study of seed exchange networks and gene flow for barley (Hordeum vulgare subsp. vulgare) in Morocco. Genet. Resour. Crop. Evol. 2013, 60, 1119–1138. [Google Scholar] [CrossRef]
Name of Douar/Hamlet (Hub) | Amazigh Tribe 1 | N° FGD | N° HHS | Elevation 2 (m) | Rainfall 3 (mm) | Tempe-rature 3 (°C) | Soil Type 4 | Accessi-bility by Road 5 | Distance Local Market 5 | Main Economic Activities 5 | Economic Conditions 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
Asni * (Al Haouz) | Rhirhaya | 0 | 45 | 1183 | 453 | 15 | Calcic Xerosols | Medium | Medium | Tourism, agriculture, livestock, trade | Good |
Talat N’Yaaqoub * (Al Haouz) | Goundafa | 0 | 15 | 1186 | 438 | 15 | Lithosols | Low | Near | Agriculture, livestock | Low |
Oukaimeden (Al Haouz) | Rhirhaya | 1 | 0 | 2599 | 581 | 9 | Lithosols | Medium | Far | Tourism, livestock, agriculture | Medium |
Amizmiz (Al Haouz) | Kdamoute | 0 | 5 | 931 | 438 | 16 | Calcic Xerosols | High | Near | Trade, agriculture, livestock | Good |
Anamer-Taourirt (Al Haouz) | Goundafa | 2 | 90 | 1633 | 509 | 12 | Lithosols | Low | Far | Agriculture, livestock | Low |
Ighrem (Al Haouz) | Goundafa | 0 | 5 | 1057 | 442 | 15 | Lithosols | Low | Far | Agriculture, livestock | Low |
Aagrab-Tnin Ourika * (Al Haouz) | Ourika | 0 | 35 | 850 | 365 | 17 | Calcic Xerosols | High | Near | Tourism, agriculture, trade, livestock | Good |
Ait Lkak (Al Haouz) | Ourika | 0 | 65 | 1901 | 543 | 11 | Lithosols | Medium | Far | Agriculture, livestock | Medium |
Tahannaout (Al Haouz) | Rhirhaya | 0 | 25 | 935 | 400 | 17 | Calcic Xerosols | High | Near | Trade, tourism, agriculture, livestock | Good |
Tabant * (Demnate) | Ait Bougmez | 2 | 70 | 1860 | 334 | 12 | Rendzinas | Medium | Near | Trade, tourism, agriculture, livestock | Good |
Ait Abbas (Demnate) | Ait Abbas | 0 | 85 | 1464 | 369 | 14 | Rendzinas | Low | Medium | Agriculture, livestock | Medium |
Iminifri (Demnate) | Oultana | 2 | 55 | 1005 | 474 | 16 | Calcic Xerosols | High | Near | Tourism, agriculture | Good |
Ait Boualli (Demnate) | Ftouaka | 0 | 15 | 1685 | 364 | 12 | Rendzinas | Low | Far | Livestock, agriculture, tourism | Low |
Ait Oumdiss (Demnate) | Ftouaka | 0 | 39 | 1286 | 437 | 16 | Lithosols | Low | Far | Agriculture, livestock | Low |
Zaouiat Ahansal * (Azilal) | Ihanesalen | 0 | 55 | 1563 | 309 | 12 | Rendzinas | Medium | Medium | Tourism, livestock | Low |
Bernat (Azilal) | Ait Messat & Ait Attab | 0 | 60 | 1651 | 406 | 13 | Rendzinas | High | Near | Agriculture, livestock | Medium |
Tamda Noumercid (Azilal) | Ait Messat & Ait Attab | 2 | 35 | 1279 | 468 | 15 | Rendzinas | High | Near | Agriculture, livestock, trade | Medium |
Ait M’hamed * (Azilal) | Ait Messat & Ait Attab | 2 | 0 | 1704 | 401 | 13 | Rendzinas | High | Near | Agriculture, livestock, trade | Good |
Wabzaza (Azilal) | Ait Messat & Ait Attab | 0 | 30 | 1599 | 390 | 14 | Rendzinas | Low | Far | Livestock | Low |
Talha (Azilal) | Ait Messat & Ait Attab | 0 | 50 | 1272 | 470 | 16 | Rendzinas | High | Near | Agriculture, livestock, trade | Medium |
Tissa (Azilal) | Ait Messat & Ait Attab | 0 | 25 | 1598 | 440 | 13 | Rendzinas | Medium | Medium | Agriculture, livestock | Good |
Crop | Hub | n° Hamlets | n° HH | Total Area (ha) | % Area Landrace | Mean Crop Area HH | Community Richness | % Landrace | Community Evenness | Divergence | Average HH Richness | Average HH Evenness |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Barley | Al Haouz | 8 | 48 | 164.79 | 87.65 | 3.43 | 4 | 50.00 | 0.4995 | 0.96 | 1.04 | 0.02 |
Azilal | 6 | 44 | 194.10 | 99.95 | 4.41 | 3 | 66.67 | 0.0051 | - * | 1.05 | 0.01 | |
Demnate | 5 | 46 | 672.78 | 99.99 | 14.63 | 2 | 50.00 | 0.0001 | 1.00 | 1.00 | 0.00 | |
All Hubs | 19 | 138 | 1031.67 | 97.85 | 7.48 | 9 | 55.56 | 0.5268 | 0.85 | 1.47 | 0.08 | |
Wheat | Al Haouz | 4 | 12 | 71.87 | 11.30 | 5.99 | 3 | 33.33 | 0.3685 | 1.00 | 1.00 | 0.00 |
Azilal | 6 | 43 | 128.90 | 76.49 | 3.00 | 5 | 60.00 | 0.5103 | 0.94 | 1.07 | 0.03 | |
Demnate | 5 | 33 | 211.67 | 71.90 | 6.41 | 3 | 33.33 | 0.4401 | 0.94 | 1.06 | 0.02 | |
All Hubs | 15 | 88 | 412.44 | 62.78 | 4.69 | 11 | 45.45 | 0.7855 | 0.65 | 2.27 | 0.28 | |
Fava bean | Al Haouz | 7 | 44 | 2.85 | 98.68 | 0.06 | 10 | 80.00 | 0.4612 | 0.40 | 1.75 | 0.28 |
Azilal | 2 | 9 | 3.18 | 84.25 | 0.35 | 3 | 66.67 | 0.5977 | 0.91 | 1.11 | 0.06 | |
Demnate | 1 | 1 | 0.01 | 100.00 | 0.01 | 1 | 100.00 | 0.0000 | - * | 1.00 | 0.00 | |
All Hubs | 10 | 54 | 6.04 | 91.10 | 0.11 | 14 | 78.57 | 0.7685 | 0.49 | 2.90 | 0.39 | |
Pea | Al Haouz | 7 | 44 | 0.72 | 43.18 | 0.02 | 6 | 50.00 | 0.7303 | 0.97 | 1.05 | 0.02 |
Azilal | 4 | 16 | 7.70 | 34.36 | 0.48 | 4 | 25.00 | 0.5358 | 0.83 | 1.19 | 0.09 | |
All Hubs | 11 | 60 | 8.42 | 35.12 | 0.14 | 9 | 44.44 | 0.5699 | 0.52 | 2.00 | 0.27 | |
Alfalfa | Al Haouz | 6 | 37 | 4.90 | 69.08 | 0.13 | 8 | 50.00 | 0.7739 | 0.95 | 1.08 | 0.04 |
Azilal | 6 | 26 | 100.47 | 99.98 | 3.86 | 2 | 50.00 | 0.0004 | - * | 1.08 | 0.03 | |
Demnate | 4 | 23 | 35.42 | 96.44 | 1.54 | 2 | 50.00 | 0.0686 | 0.68 | 1.04 | 0.02 | |
All Hubs | 16 | 86 | 140.79 | 98.01 | 1.64 | 12 | 50.00 | 0.4317 | 0.65 | 1.81 | 0.15 |
Pearson—Al Haouz | Pearson—Azilal | Pearson—Demnate | |
---|---|---|---|
INDEX-Barley | −0.0829 | −0.2608 | - |
INDEX-Wheat | 0.6764 | 0.6728 | 0.5916 |
INDEX-Fava bean | −0.1745 | 0.2570 | 0.6325 |
INDEX-Pea | −0.0473 | 0.5984 | - |
INDEX-Alfalfa | 0.5700 | 0.4614 | 0.6325 |
INDEX-TOT | 0.1894 | 0.5827 | 0.8497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernis-Fonteneau, A.; Aakairi, M.; Saadani-Hassani, O.; Castangia, G.; Ait Babahmad, R.; Colangelo, P.; D’Ambrosio, U.; Jarvis, D.I. Farmers’ Variety Naming and Crop Varietal Diversity of Two Cereal and Three Legume Species in the Moroccan High Atlas, Using DATAR. Sustainability 2023, 15, 10411. https://doi.org/10.3390/su151310411
Bernis-Fonteneau A, Aakairi M, Saadani-Hassani O, Castangia G, Ait Babahmad R, Colangelo P, D’Ambrosio U, Jarvis DI. Farmers’ Variety Naming and Crop Varietal Diversity of Two Cereal and Three Legume Species in the Moroccan High Atlas, Using DATAR. Sustainability. 2023; 15(13):10411. https://doi.org/10.3390/su151310411
Chicago/Turabian StyleBernis-Fonteneau, Agnès, Meryem Aakairi, Omar Saadani-Hassani, Giandaniele Castangia, Rachid Ait Babahmad, Paolo Colangelo, Ugo D’Ambrosio, and Devra I. Jarvis. 2023. "Farmers’ Variety Naming and Crop Varietal Diversity of Two Cereal and Three Legume Species in the Moroccan High Atlas, Using DATAR" Sustainability 15, no. 13: 10411. https://doi.org/10.3390/su151310411
APA StyleBernis-Fonteneau, A., Aakairi, M., Saadani-Hassani, O., Castangia, G., Ait Babahmad, R., Colangelo, P., D’Ambrosio, U., & Jarvis, D. I. (2023). Farmers’ Variety Naming and Crop Varietal Diversity of Two Cereal and Three Legume Species in the Moroccan High Atlas, Using DATAR. Sustainability, 15(13), 10411. https://doi.org/10.3390/su151310411