Urbanization and Long-Term Forest Dynamics in a Metropolitan Region of Southern Europe (1936–2018)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Settlement Maps
2.3. Forest Maps
2.4. Statistical Analysis
3. Results
3.1. Changes in Forest Cover over Time, 1936–2018
3.2. Urban Growth and Forest Cover in Metropolitan Rome
3.3. Urban Growth and Wood Types in Metropolitan Rome
3.4. Urban Growth and Wood Type Diversification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marucci, A.; Colantoni, A.; Zambon, I.; Egidi, G. Precision farming in hilly areas: The use of network RTK in GNSS technology. Agriculture 2017, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Vince, S.W. Forests at the Wildland-Urban Interface: Conservation and Management; Vince, S.W., Duryea, M.L., Macie, E.A., Hermansen, L.A., Eds.; CRC Press: Boca Raton, FL, USA, 2005; p. 293. [Google Scholar]
- Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environ. Impact Assess. Rev. 2017, 64, 37–46. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S., 3rd; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The Human Footprint and the Last of the Wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. Bioscience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Zipperer, W.C. Species composition and structure of regenerated and remnant forest patches within an urban landscape. Urban Ecosyst. 2002, 6, 271–290. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Oswald, H.; Piussi, P.; Radoglou, K. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 97–109. [Google Scholar] [CrossRef]
- Höchtl, F.; Lehringer, S.; Konold, W. “Wilderness”: What it means when it becomes a reality—A case study from the southwestern Alps. Landsc. Urban Plan. 2005, 70, 85–95. [Google Scholar] [CrossRef]
- Ciommi, M.; Chelli, F.M.; Carlucci, M.; Salvati, L. Urban Growth and Demographic Dynamics in Southern Europe: Toward a New Statistical Approach to Regional Science. Sustainability 2018, 10, 2765. [Google Scholar] [CrossRef] [Green Version]
- Bajocco, S.; Dragoz, E.; Gitas, I.; Smiraglia, D.; Salvati, L.; Ricotta, C. Mapping Forest Fuels through Vegetation Phenology: The Role of Coarse-Resolution Satellite Time-Series. PLoS ONE 2015, 10, e0119811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. Soil Matters? A Multivariate Analysis of Socioeconomic Constraints to Urban Expansion in Mediterranean Europe. Ecol. Econ. 2018, 146, 173–183. [Google Scholar] [CrossRef]
- Gambella, F.; Bianchini, L.; Cecchini, M.; Egidi, G.; Ferrara, A.; Salvati, L.; Colantoni, A.; Morea, D. Moving toward the north? The spatial shift of olive groves in Italy. Agric. Econ. 2021, 67, 129–135. [Google Scholar] [CrossRef]
- Di Feliciantonio, C.; Salvati, L.; Sarantakou, E.; Rontos, K. Class diversification, economic growth and urban sprawl: Evidences from a pre-crisis European city. Qual. Quant. 2017, 52, 1501–1522. [Google Scholar] [CrossRef]
- Nowak, D.J.; Walton, J.T.; Dwyer, J.F.; Kaya, L.G.; Myeong, S. The Increasing Influence of Urban Environments on US Forest Management. J. For. 2005, 103, 377–382. [Google Scholar]
- Salvati, L. Towards a Polycentric Region? The Socio-economic Trajectory of Rome, an ‘Eternally Mediterranean’ City. Tijdschr. Econ. Soc. Geogr. 2014, 105, 268–284. [Google Scholar] [CrossRef]
- Stewart, S.I.; Radeloff, V.C.; Hammer, R.B.; Hawbaker, T.J. Defining the Wildland-Urban Interface. J. For. 2007, 105, 201–207. [Google Scholar]
- Theobald, D.M.; Romme, W.H. Expansion of the US wildland-urban interface. Landsc. Urban Plan. 2007, 83, 340–354. [Google Scholar] [CrossRef]
- Dwyer, J.F.; Chavez, D.J. The challenges of managing public lands in the wildland-urban interface. In Forests at the Wildland-urban Interface; Vince, S.W., Duryea, M.L., Macie, E.A., Hermansen, L.A., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 269–283. [Google Scholar]
- Biasi, R.; Brunori, E.; Smiraglia, D.; Salvati, L. Linking traditional tree-crop landscapes and agro-biodiversity in central Italy using a database of typical and traditional products: A multiple risk assessment through a data mining analysis. Biodivers. Conserv. 2015, 24, 3009–3031. [Google Scholar] [CrossRef]
- Chelleri, L.; Schuetze, T.; Salvati, L. Integrating resilience with urban sustainability in neglected neighborhoods: Challenges and opportunities of transitioning to decentralized water management in Mexico City. Habitat Int. 2015, 48, 122–130. [Google Scholar] [CrossRef]
- Duvernoy, I.; Zambon, I.; Sateriano, A.; Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural Stud. 2018, 57, 25–35. [Google Scholar] [CrossRef]
- Perrin, C.; Nougarèdes, B.; Sini, L.; Branduini, P.; Salvati, L. Governance changes in peri-urban farmland protection following decentralisation: A comparison between Montpellier (France) and Rome (Italy). Land Use Policy 2018, 70, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Gambella, F.; Colantoni, A.; Egidi, G.; Morrow, N.; Prokopová, M.; Salvati, L.; Giménez-Morera, A.; Rodrigo-Comino, J. Uncovering the Role of Biophysical Factors and Socioeconomic Forces Shaping Soil Sensitivity to Degradation: Insights from Italy. Soil Syst. 2021, 5, 11. [Google Scholar] [CrossRef]
- Champion, T. Urbanization, Suburbanization, Counterurbanization and Reurbanization. Handb. Urban Stud. 2001, 160, 143–161. [Google Scholar]
- Carlucci, M.; Chelli, F.M.; Salvati, L. Toward a New Cycle: Short-Term Population Dynamics, Gentrification, and Re-Urbanization of Milan (Italy). Sustainability 2018, 10, 3014. [Google Scholar] [CrossRef] [Green Version]
- Ciommi, M.; Chelli, F.M.; Salvati, L. Integrating parametric and non-parametric multivariate analysis of urban growth and commuting patterns in a European metropolitan area. Qual. Quant. 2019, 53, 957–979. [Google Scholar] [CrossRef]
- Thompson, J.D. Plant Evolution in the Mediterranean. Plant Evol. Mediterr. 2007. [Google Scholar] [CrossRef] [Green Version]
- Sirami, C.; Nespoulous, A.; Cheylan, J.P.; Marty, P.; Hvenegaard, G.T.; Geniez, P.; Schatz, B.; Martin, J.L. Long-term anthropogenic and ecological dynamics of a Mediterranean landscape: Impacts on multiple taxa. Landsc. Urban Plan. 2010, 96, 214–223. [Google Scholar] [CrossRef]
- Cecchini, M.; Zambon, I.; Pontrandolfi, A.; Turco, R.; Colantoni, A.; Mavrakis, A.; Salvati, L. Urban sprawl and the ‘olive’ landscape: Sustainable land management for ‘crisis’ cities. Geojournal 2018, 84, 237–255. [Google Scholar] [CrossRef]
- Kosmas, C.; Karamesouti, M.; Kounalaki, K.; Detsis, V.; Vassiliou, P.; Salvati, L. Land degradation and long-term changes in agro-pastoral systems: An empirical analysis of ecological resilience in Asteroussia—Crete (Greece). Catena 2016, 147, 196–204. [Google Scholar] [CrossRef]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Recanatesi, F.; Clemente, M.; Grigoriadis, E.; Ranalli, F.; Zitti, M.; Salvati, L. A fifty-year sustainability assessment of Italian agro-forest districts. Sustainability 2016, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Bielsa, I.; Pons, X.; Bunce, B. Agricultural abandonment in the North Eastern Iberian Peninsula: The use of basic landscape metrics to support planning. J. Environ. Plan. Manag. 2005, 48, 85–102. [Google Scholar] [CrossRef]
- Busch, G. Future European agricultural landscapes-What can we learn from existing quantitative land use scenario studies? Agric. Ecosyst. Environ. 2006. [Google Scholar] [CrossRef]
- Bajocco, S.; Ceccarelli, T.; Smiraglia, D.; Salvati, L.; Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Indic. 2016, 60, 231–236. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Salvati, L. Horizontal vs vertical growth: Understanding latent patterns of urban expansion in large metropolitan regions. Sci. Total Environ. 2019, 654, 778–785. [Google Scholar] [CrossRef]
- Salvati, L.; Ciommi, M.T.; Serra, P.; Chelli, F.M. Exploring the spatial structure of housing prices under economic expansion and stagnation: The role of socio-demographic factors in metropolitan Rome, Italy. Land Use Policy 2019, 81, 143–152. [Google Scholar] [CrossRef]
- Lamonica, G.R.; Recchioni, M.C.; Chelli, F.M.; Salvati, L. The efficiency of the cross-entropy method when estimating the technical coefficients of input–output tables. Spat. Econ. Anal. 2020, 15, 62–91. [Google Scholar] [CrossRef]
- Bianchini, L.; Egidi, G.; Alhuseen, A.; Sateriano, A.; Cividino, S.; Clemente, M.; Imbrenda, V. Toward a Dualistic Growth? Population Increase and Land-Use Change in Rome, Italy. Land 2021, 10, 749. [Google Scholar] [CrossRef]
- Cavallo, A.; Marino, D. Understanding changing in traditional agricultural landscapes: Towards a framework. J. Agric. Sci. Technol. 2012, 2, 971–987. [Google Scholar]
- Attorre, F.; Bruno, M.; Francesconi, F.; Valenti, R.; Bruno, F. Landscape changes of Rome through tree-lined roads. Landsc. Urban Plan. 2000, 49, 115–128. [Google Scholar] [CrossRef]
- Salvati, L.; Petitta, M.; Ceccarelli, T.; Perini, L.; Di Battista, F.; Scarascia, M.E.V. Italy’s renewable water resources as estimated on the basis of the monthly water balance. Irrig. Drain. 2008, 57, 507–515. [Google Scholar] [CrossRef]
- Ferrara, C.; Salvati, L.; Tombolini, I. An integrated evaluation of soil resource depletion from diachronic settlement maps and soil cartography in peri-urban Rome, Italy. Geoderma 2014, 232, 394–405. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. Enhancing the Forest Science-Policy Interface in Europe: Urban Forestry Showing the Way. Scand. J. For. Res. 2010, 19, 123–128. [Google Scholar] [CrossRef]
- Badia-Perpinyà, A.; Pallares-Barbera, M. Spatial distribution of ignitions in Mediterranean periurban and rural areas: The case of Catalonia. Int. J. Wildl. Fire 2006, 15, 187–196. [Google Scholar] [CrossRef]
- Badia, A.; Serra, P.; Modugno, S. Identifying dynamics of fire ignition probabilities in two representative Mediterranean wildland-urban interface areas. Appl. Geogr. 2011, 31, 930–940. [Google Scholar] [CrossRef]
- Salvati, L.; Colantoni, A. Land use dynamics and soil quality in agro-forest systems: A country-scale assessment in Italy. J. Environ. Plan. Manag. 2015, 58, 175–188. [Google Scholar] [CrossRef]
- Meireles, C.; Goncalves, P.; Rego, F.; Silveira, S. Estudo da regeneração natural das espécies arbóreas autóctones na Reserva Natural da Serra da Malcata. Silva. Lusit. 2005, 13, 217–231. [Google Scholar]
- Spampinato, G.; Crisarà, R.; Cannavò, S.; Musarella, C.M. Phytotoponims of southern Calabria: A tool for the analysis of the landscape and its transformations. Atti Soc. Tosc. Sci. Nat. Mem. Ser. B 2017, 124, 61–72. [Google Scholar] [CrossRef]
- Tonini, M.; Parente, J.; Pereira, M.G. Global assessment of rural-urban interface in Portugal related to land cover changes. Nat. Hazards Earth Syst. Sci. 2018, 18, 1647–1664. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Wang, Y.; Luo, F.; Mai, G.; Pu, J. Peri-urban vegetated landscape pattern changes in relation to socioeconomic development. Ecol. Indic. 2014, 46, 477–486. [Google Scholar] [CrossRef]
- Cuadrado-Ciuraneta, S.; Durà-Guimerà, A.; Salvati, L. Not only tourism: Unravelling suburbanization, second-home expansion and “rural” sprawl in Catalonia, Spain. Urban Geogr. 2017, 38, 66–89. [Google Scholar] [CrossRef]
- Gavalas, V.S.; Rontos, K.; Salvati, L. Who becomes an unwed mother in Greece? Sociodemographic and geographical aspects of an emerging phenomenon. Popul. Space Place 2014, 20, 250–263. [Google Scholar] [CrossRef]
- Modugno, S.; Balzter, H.; Cole, B.; Borrelli, P. Mapping regional patterns of large forest fires in Wildland–Urban Interface areas in Europe. J. Environ. Manag. 2016, 172, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Salvati, L.; Mavrakis, A.; Colantoni, A.; Mancino, G.; Ferrara, A. Complex adaptive systems, soil degradation and land sensitivity to desertification: A multivariate assessment of Italian agro-forest landscape. Sci. Total Environ. 2015, 521, 235–245. [Google Scholar] [CrossRef]
- Serra, P.; Vera, A.; Tulla, A.F.; Salvati, L. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 2014, 55, 71–81. [Google Scholar] [CrossRef]
- Fors, H.; Nielsen, A.B.; Konijnendijk Van Den Bosch, C.C.; Jansson, M. From borders to ecotones-Private-public co-management of urban woodland edges bordering private housing. Urban For. Urban Green. 2018, 30, 46–55. [Google Scholar] [CrossRef]
- Whitman, E.; Rapaport, E.; Sherren, K. Modeling Fire Susceptibility to Delineate Wildland-Urban Interface for Municipal-Scale Fire Risk Management. Environ. Manag. 2013, 52, 1427–1439. [Google Scholar] [CrossRef] [PubMed]
- Salvati, L.; Serra, P. Estimating rapidity of change in complex urban systems: A multidimensional, local-scale approach. Geogr. Anal. 2016, 48, 132–156. [Google Scholar] [CrossRef]
- Antrop, M. Changing patterns in the urbanized countryside of Western Europe. Landsc. Ecol. 2000, 15, 257–270. [Google Scholar] [CrossRef]
- Arena, S.; Roda, I.; Chiacchio, F. Integrating Modelling of Maintenance Policies within a Stochastic Hybrid Automaton Framework of Dynamic Reliability. Appl. Sci. 2021, 11, 2300. [Google Scholar] [CrossRef]
- Blondel, J.; Aronson, J.; Bodiou, J.Y.; Boeuf, G. The Mediterranean Region: Biological Diversity in Space and Time; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M. Territorial disparities, natural resource distribution, and land degradation: A case study in southern Europe. GeoJournal 2007, 70, 185–194. [Google Scholar] [CrossRef]
- Salvati, L.; Gemmiti, R.; Perini, L. Land degradation in Mediterranean urban areas: An unexplored link with planning? Area 2012, 44, 317–325. [Google Scholar] [CrossRef]
- Plieninger, T.; Schaich, H.; Kizos, T. Land-use legacies in the forest structure of silvopastoral oak woodlands in the Eastern Mediterranean. Reg. Environ. Chang. 2011, 11, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Petit, C.C.; Lambin, E.F. Impact of data integration technique on historical land-use/land-cover change: Comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc. Ecol. 2002, 17, 117–132. [Google Scholar] [CrossRef]
- Orrù, P.F.; Zoccheddu, A.; Sassu, L.; Mattia, C.; Cozza, R.; Arena, S. Machine learning approach using MLP and SVM algorithms for the fault prediction of a centrifugal pump in the oil and gas industry. Sustainability 2020, 12, 4776. [Google Scholar] [CrossRef]
- Luckenbill-Edds, L. The Educational Pipeline for Women in Biology: No Longer Leaking? Bioscience 2002, 52, 513–521. [Google Scholar] [CrossRef] [Green Version]
Indicator | 1936 | 1971 | 2020 |
---|---|---|---|
Land surface (km2) | 5354 | ||
Resident population | 2,775,380 | 3,761,067 | 4,227,588 |
Population density (inhabitants km−2) | 518 | 702 | 790 |
Population growth (% by year) | 2.8 | 0.5 | 0.2 |
Suburban/urban population (%) | 26.9 | 35.5 | 47.9 |
Urban population density (inhabitants km−2) | 1460 | 1852 | 1860 |
Urban population annual growth (%) | 3.2 | −0.1 | −0.2 |
Suburban population density (inhab. km−2) | 152 | 256 | 362 |
Suburban population annual growth (%) | 1.8 | 1.5 | 1.4 |
Year | Forests in Total Landscape (%) | Forest Type Area (% in Total Forest Stock) | |||
---|---|---|---|---|---|
Chestnut | Beech | Conifers | Mixed Broadleaf | ||
1936 | 18.3 | 13.8 | 10.1 | 1.7 | 74.4 |
1974 | 19.7 | 10.2 | 8.5 | 1.7 | 79.6 |
2018 | 19.9 | 18.5 | 9.8 | 3.0 | 68.7 |
Year | <0.5 | 0.6–5 | 5.1–10.0 | >10 |
---|---|---|---|---|
1936 | 89.1 | 9.3 | 0.5 | 1.1 |
1974 | 62.5 | 29.8 | 3.2 | 4.5 |
2018 | 54.4 | 25.5 | 8.5 | 11.6 |
Year | <0.5 | 0.6–5 | 5.1–10.0 | >10 |
---|---|---|---|---|
Chestnut | ||||
1936 | 81.5 | 14.6 | 0.5 | 3.4 |
1974 | 64.6 | 28.1 | 0.2 | 7.1 |
2018 | 49.0 | 28.3 | 7.3 | 15.4 |
Beech | ||||
1936 | 99.5 | 0.3 | 0.0 | 0.2 |
1974 | 94.0 | 5.3 | 0.0 | 0.7 |
2018 | 82.9 | 13.9 | 2.4 | 0.8 |
Conifers | ||||
1936 | 91.3 | 4.3 | 0.9 | 3.5 |
1974 | 66.0 | 29.0 | 0.9 | 4.1 |
2018 | 71.1 | 17.1 | 7.2 | 4.6 |
Mixed Broadleaf | ||||
1936 | 89.0 | 9.7 | 0.5 | 0.8 |
1974 | 58.7 | 32.9 | 4.0 | 4.6 |
2018 | 51.2 | 26.1 | 10.0 | 12.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, L.; Marucci, A.; Sateriano, A.; Di Stefano, V.; Alemanno, R.; Colantoni, A. Urbanization and Long-Term Forest Dynamics in a Metropolitan Region of Southern Europe (1936–2018). Sustainability 2021, 13, 12164. https://doi.org/10.3390/su132112164
Bianchini L, Marucci A, Sateriano A, Di Stefano V, Alemanno R, Colantoni A. Urbanization and Long-Term Forest Dynamics in a Metropolitan Region of Southern Europe (1936–2018). Sustainability. 2021; 13(21):12164. https://doi.org/10.3390/su132112164
Chicago/Turabian StyleBianchini, Leonardo, Alvaro Marucci, Adele Sateriano, Valerio Di Stefano, Riccardo Alemanno, and Andrea Colantoni. 2021. "Urbanization and Long-Term Forest Dynamics in a Metropolitan Region of Southern Europe (1936–2018)" Sustainability 13, no. 21: 12164. https://doi.org/10.3390/su132112164
APA StyleBianchini, L., Marucci, A., Sateriano, A., Di Stefano, V., Alemanno, R., & Colantoni, A. (2021). Urbanization and Long-Term Forest Dynamics in a Metropolitan Region of Southern Europe (1936–2018). Sustainability, 13(21), 12164. https://doi.org/10.3390/su132112164