Yield and Quality Performance of Traditional and Improved Bread and Durum Wheat Varieties under Two Conservation Tillage Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Site Description and Experimental Procedure
2.3. Soil Properties
2.4. Yield Components and Agronomic Traits
2.5. Technological Quality Evaluation
2.6. Data Analyses
3. Results
3.1. Environment Conditions and Soil Properties
3.2. Grain Yield and Agronomic Traits
3.3. Technological Quality
4. Discussion
4.1. Overall Varieties’ Performance under Conservation Soil Management
4.2. Minimum Tillage versus No-Tillage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carranza-Gallego, G.; Guzmán, G.; Soto, D.; Aguilera, E.; Villa, I.; Infante-Amate, J.; Herrera, A.; González de Molina, M. Modern Wheat Varieties as a Driver of the Degradation of Spanish Rainfed Mediterranean Agroecosystems throughout the 20th Century. Sustainability 2018, 10, 3724. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.; Veroz-Gonzalez, O.; Blanco-Roldan, G.; Marquez-Garcia, F.; Carbonell-Bojollo, R. A renewed view of conservation agriculture and its evolution over the last decade in Spain. Soil Tillage Res. 2015, 146, 204–212. [Google Scholar] [CrossRef]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
- Ghaley, B.; Rusu, T.; Sandén, T.; Spiegel, H.; Menta, C.; Visioli, G.; O’Sullivan, L.; Gattin, I.; Delgado, A.; Liebig, M. Assessment of benefits of conservation agriculture on soil functions in arable production systems in Europe. Sustainability 2018, 10, 794. [Google Scholar] [CrossRef]
- Murillo, J.; Moreno, F.; Girón, I.; Oblitas, M. Conservation tillage: Long term effect on soil and crops under rainfed conditions in south-west Spain (Western Andalusia). Span. J. Agric. Res. 2004, 2, 35–43. [Google Scholar] [CrossRef]
- Sombrero, A.; De Benito, A. Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil Tillage Res. 2010, 107, 64–70. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.; Fernández-Getino, A.; Zambrana, E.; Tenorio, J. Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Res. Manag. 2017, 31, 269–282. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Khorami, S.; Kazemeini, S.; Afzalinia, S.; Gathala, M. Changes in soil properties and productivity under different tillage practices and wheat genotypes: A short-term study in Iran. Sustainability 2018, 10, 3273. [Google Scholar] [CrossRef]
- Lampurlanés, J.; Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 2016, 189, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Herrera, J.; Verhulst, N.; Trethowan, R.; Stamp, P.; Govaerts, B. Insights into genotype× tillage interaction effects on the grain yield of wheat and maize. Crop Sci. 2013, 53, 1845–1859. [Google Scholar] [CrossRef]
- Taner, A.; Arisoy, R.Z.; Kaya, Y.; Gultekin, I.; Partigoc, F. The effects of various tillage systems on grain yield, quality parameters and energy indices in winter wheat production under the rainfed conditions. Fresenius Environ. Bull. 2015, 24, 1463–1473. [Google Scholar]
- Ficiciyan, A.; Loos, J.; Sievers-Glotzbach, S.; Tscharntke, T. More than yield: Ecosystem services of traditional versus modern crop varieties revisited. Sustainability 2018, 10, 2834. [Google Scholar] [CrossRef]
- Newton, A.; Akar, T.; Baresel, J.; Bebeli, P.; Bettencourt, E.; Bladenopoulos, K.; Czembor, J.; Fasoula, D.; Katsiotis, A.; Koutis, K. Cereal landraces for sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Moragues, M.; del Moral, L.F.G.; Moralejo, M.; Royo, C. Yield formation strategies of durum wheat landraces with distinct pattern of dispersal within the Mediterranean basin I: Yield components. Field Crops Res. 2006, 95, 194–205. [Google Scholar] [CrossRef]
- Ruiz, M.; Giraldo, P.; Royo, C.; Villegas, D.; Aranzana, M.J.; Carrillo, J.M. Diversity and Genetic Structure of a Collection of Spanish Durum Wheat Landraces. Crop Sci. 2012, 52, 2262–2275. [Google Scholar] [CrossRef] [Green Version]
- Kyzeridis, N.; Biesantz, A.; Limberg, P. Comparative trials with durum-wheat landraces and cultivars in different ecological environments in the Mediterranean region. J. Agron. Crop Sci. 1995, 174, 133–144. [Google Scholar] [CrossRef]
- Talas, F.; Longin, F.; Miedaner, T. Sources of resistance to Fusarium head blight within Syrian durum wheat landraces. Plant Breed. 2011, 130, 398–400. [Google Scholar] [CrossRef]
- Srivastava, J.; Damania, A. Use of collections in cereal improvement in semi-arid areas. In The Use of Plant Genetic Resources; Brown, A.H.D., Frankel, O.H., Marshall, D.R., Williams, J.T., Eds.; Cambridge University Press: Cambridge, UK, 1989; pp. 88–104. [Google Scholar]
- Ruiz, M.; Aguiriano, E.; Carrillo, J. Effects of N fertilization on yield for low-input production in Spanish wheat landraces (Triticum turgidum L. and Triticum monococcum L.). Plant Breed. 2008, 127, 20–23. [Google Scholar] [CrossRef]
- Carranza-Gallego, G.; Guzman, G.; Garcia-Ruiz, R.; de Molina, M.G.; Aguilera, E. Contribution of old wheat varieties to climate change mitigation under contrasting managements and rainfed Mediterranean conditions. J. Clean. Prod. 2018, 195, 111–121. [Google Scholar] [CrossRef]
- Genetic Resources Information System for Wheat and Triticale. Available online: http://www.wheatpedigree.net/ (accessed on 22 July 2019).
- Spanish Variety Register Catalogue. Available online: https://www.mapa.gob.es/app/regVar/BusRegVar.aspx?id=es (accessed on 22 July 2019).
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Subira, J.; Álvaro, F.; del Moral, L.F.G.; Royo, C. Breeding effects on the cultivar× environment interaction of durum wheat yield. Eur. J. Agron. 2015, 68, 78–88. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56; FAO: Rome, Italy, 1998; pp. 3–8. [Google Scholar]
- Payero, J. Introducction to growing degree days. In Agronomic Crops; Clemson University: Clemson, SC, USA, 2017. [Google Scholar]
- Pask, A.; Pietragalla, J.; Mullan, D.; Reynolds, M. Physiological Breeding II: A Field Guide to Wheat Phenotyping; Pask, A., Pietragalla, J., Mullan, D., Reynolds, M., Eds.; CIMMYT: México D.F., Mexico, 2012; pp. 72–77. [Google Scholar]
- Bremner, J. Nitrogen-total. In Methods of Soil Analysis Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; SSSA and ASA: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Loeppert, R.; Suarez, L. Carbonate and gypsum. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; SSSA and ASA: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Castellanos-Navarrete, A.; Chocobar-Guerra, A.; Cox, R.; Fonteyne, S.; Govaerts, B.; Jespers, N.; Kienle, F.; Sayre, K.; Verhulst, N. Infiltración: Guía útil para Comparar las Prácticas de Manejo de Cultivo; CIMMYT: México D.F., Mexico, 2013; pp. 1–7. [Google Scholar]
- Dick, J.; Quick, J. A modified screening test for rapid estimation of gluten strength in early-generation durum wheat breeding lines. Cereal Chem. 1983, 60, 315–318. [Google Scholar]
- Singh, N.K.; Shepherd, K.W.; Cornish, G.B. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 1991, 14, 203–208. [Google Scholar] [CrossRef]
- Mcintosh, R.; Yamazaki, Y.; Dubcovsky, J.; Rogers, W.; Morris, C.; Appels, R.; Xia, X. Catalogue of gene symbols for wheat. Proteins 2013, 83. [Google Scholar]
- Wricke, G. Uber eine Methode zur Erfassung der okologischen Streubreite in Feldverzuchen. Z. Pflanzenzuchtg 1962, 47, 92–96. [Google Scholar]
- Gauch, H.; Zobel, R.W. Identifying mega-environments and targeting genotypes. Crop Sci. 1997, 37, 311–326. [Google Scholar] [CrossRef]
- Di Rienzo, J.; Casanoves, F.; Balzarini, M.; Gonzalez, L.; Tablada, M.; Robledo, C. InfoStat; University Argentina: Córdoba, Argentina, 2017. [Google Scholar]
- García, A.G. Cultivos Herbáceos Extensivos, 6th ed.; Mundi-Prensa Libros: Madrid, Spain, 1999; pp. 26–27. [Google Scholar]
- Lazaro, R.; Rodrigo, F.; Gutiérrez, L.; Domingo, F.; Puigdefábregas, J. Analysis of a 30-year rainfall record (1967–1997) in semi–arid SE Spain for implications on vegetation. J. Arid Environ. 2001, 48, 373–395. [Google Scholar] [CrossRef]
- Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Royo, C.; Abaza, M.; Blanco, R.; del Moral, L.F.G. Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Funct. Plant Biol. 2000, 27, 1051–1059. [Google Scholar] [CrossRef]
- Diacono, M.; Castrignanò, A.; Troccoli, A.; De Benedetto, D.; Basso, B.; Rubino, P. Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crops Res. 2012, 131, 49–62. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Castillo, J.E.; López-Bellido, F.J. Effects of long-term tillage, crop rotation and nitrogen fertilization on bread-making quality of hard red spring wheat. Field Crops Res. 2001, 72, 197–210. [Google Scholar] [CrossRef]
- Sanchez-Garcia, M.; Álvaro, F.; Martín-Sánchez, J.A.; Sillero, J.C.; Escribano, J.; Royo, C. Breeding effects on the genotype× environment interaction for yield of bread wheat grown in Spain during the 20th century. Field Crops Res. 2012, 126, 79–86. [Google Scholar] [CrossRef]
- Hoogendoorn, J.; Rickson, J.; Gale, M. Differences in leaf and stem anatomy related to plant height of tall and dwarf wheat (Triticum aestivum L.). J. Plant Physiol. 1990, 136, 72–77. [Google Scholar] [CrossRef]
- Gadea, M. Trigos Cultivados en Espania y Nuevas Variedades Recomendables; Ministerio de Agricultura: Madrid, Spain, 1958. [Google Scholar]
- Slafer, G.A.; Andrade, F.H. Changes in physiological attributes of the dry matter economy of bread wheat (Triticum aestivum) through genetic improvement of grain yield potential at different regions of the world. Euphytica 1991, 58, 37–49. [Google Scholar] [CrossRef]
- Lopes, M.; Reynolds, M.; Manes, Y.; Singh, R.; Crossa, J.; Braun, H. Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding. Crop Sci. 2012, 52, 1123–1131. [Google Scholar] [CrossRef]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef]
- Wiegand, C.; Cuellar, J. Duration of Grain Filling and Kernel Weight of Wheat as Affected by Temparature. Crop Sci. 1981, 21, 95–101. [Google Scholar] [CrossRef]
- Dias, A.; Lidon, F. Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J. Agron. Crop Sci. 2009, 195, 137–147. [Google Scholar] [CrossRef]
- Farooq, M.; Flower, K.; Jabran, K.; Wahid, A.; Siddique, K.H. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Iglesias, A.; Mougou, R.; Moneo, M.; Quiroga, S. Towards adaptation of agriculture to climate change in the Mediterranean. Reg. Environ. Chang. 2011, 11, 159–166. [Google Scholar] [CrossRef]
- Rodríguez, J.; Álvaro-Fuentes, J.; Gonzalo, J.; Gil, C.; Ramos-Miras, J.; Corbí, J.G.; Boluda, R. Assessment of the soil organic carbon stock in Spain. Geoderma 2016, 264, 117–125. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Pecetti, L. Developing a tall durum wheat plant type for semi-arid, Mediterranean cereal–livestock farming systems. Field Crops Res. 2003, 80, 157–164. [Google Scholar] [CrossRef]
- Ruiz, M.; Giraldo, P.; González, J.M. Phenotypic variation in root architecture traits and their relationship with eco-geographical and agronomic features in a core collection of tetraploid wheat landraces (Triticum turgidum L.). Euphytica 2018, 214, 54. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, B.S. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- López-Bellido, L.; Fuentes, M.; Castillo, J.; López-Garrido, F. Effects of tillage, crop rotation and nitrogen fertilization on wheat-grain quality grown under rainfed Mediterranean conditions. Field Crops Res. 1998, 57, 265–276. [Google Scholar] [CrossRef]
- Morris, C.F.; Paszczynska, B.; Bettge, A.D.; King, G.E. A critical examination of the sodium dodecyl sulfate (SDS) sedimentation test for wheat meals. J. Sci. Food Agric. 2007, 87, 607–615. [Google Scholar] [CrossRef]
- Payne, P.I.; Nightingale, M.A.; Krattiger, A.F.; Holt, L.M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 1987, 40, 51–65. [Google Scholar] [CrossRef]
- Rogers, W.; Payne, P.; Harinder, K. The HMW glutenin subunit and gliadin compositions of German-grown wheat varieties and their relationship with bread-making quality. Plant Breed. 1989, 103, 89–100. [Google Scholar] [CrossRef]
- Giraldo, P.; Rodriguez-Quijano, M.; Simon, C.; Vazquez, J.F.; Carrillo, J.M. Allelic variation in HMW glutenins in Spanish wheat landraces and their relationship with bread quality. Span. J. Agric. Res. 2010, 8, 1012–1023. [Google Scholar] [CrossRef]
- CERERE Project (EU H2020). Available online: http://cerere2020.eu/wp-content/uploads/2019/01/211205-2PA-Baking-traditional-varieties-RAS-EN.pdf (accessed on 22 July 2019).
- Ruiz, M.; Carrillo, J.M. Relationships between different prolamin proteins and some quality properties in durum wheat. Plant Breed. 1995, 114, 40–44. [Google Scholar] [CrossRef]
- Gathala, M.K.; Ladha, J.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice-wheat rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Hansen, N.C.; Lampurlanés, J.; Cantero-Martínez, C. Winter cereal root growth and aboveground–belowground biomass ratios as affected by site and tillage system in dryland Mediterranean conditions. Plant Soil 2014, 374, 925–939. [Google Scholar] [CrossRef]
- Chaghazardi, H.R.; Jahansouz, M.R.; Ahmadi, A.; Gorji, M. Effects of tillage management on productivity of wheat and chickpea under cold, rainfed conditions in western Iran. Soil Tillage Res. 2016, 162, 26–33. [Google Scholar] [CrossRef]
- Gürsoy, S.; Sessiz, A.; Malhi, S. Short-term effects of tillage and residue management following cotton on grain yield and quality of wheat. Field Crops Res. 2010, 119, 260–268. [Google Scholar] [CrossRef]
- Carr, P.M.; Horsley, R.D.; Poland, W.W. Tillage and seeding rate effects on wheat cultivars. Crop Sci. 2003, 43, 210–218. [Google Scholar] [CrossRef]
- Honsdorf, N.; Mulvaney, M.J.; Singh, R.P.; Ammar, K.; Burgueño, J.; Govaerts, B.; Verhulst, N. Genotype by tillage interaction and performance progress for bread and durum wheat genotypes on irrigated raised beds. Field Crops Res. 2018, 216, 42–52. [Google Scholar] [CrossRef]
Class | Variety | Growth Habit | |
---|---|---|---|
Bread wheat | landraces | Chamorro | winter |
Aragon-03 | winter | ||
intermediate | Yecora | spring | |
Marius | winter | ||
modern | Berdun | winter | |
Califa Sur | spring | ||
Durum wheat | landraces | Senatore Capelli | spring |
Jerez-36 | spring | ||
intermediate | Cocorit | spring | |
Vitron | spring | ||
modern | Don Pedro | spring | |
Avispa | spring |
SN (g kg−1) | N-NO3− (mg kg−1) | N-NH4+ (mg kg−1) | SOC (g kg−1) | C/N | P (mg kg−1) | K (mg kg−1) | Mg (mg kg−1) | Ca (g kg−1) | |
---|---|---|---|---|---|---|---|---|---|
Depth | |||||||||
0–15 cm | 0.53 a,† | 5.82 a | 6.63 | 4.91 a | 9.17 | 6.38 a | 250.84 a | 166.21 | 6.10 |
15–30 cm | 0.49 b | 3.56 b | 5.33 | 4.32 b | 8.88 | 2.91 b | 189.38 b | 165.03 | 6.40 |
Tillage | |||||||||
MT | 0.48 | 2.93 | 5.15 | 4.19 | 8.72 | 3.88 | 200.04 | 155.58 | 6.39 |
NT | 0.54 | 6.45 | 6.81 | 5.04 | 9.33 | 5.40 | 240.18 | 175.67 | 6.10 |
Depth × Tillage | |||||||||
MT 0–15 cm | 0.50 | 3.22 b | 5.67 | 4.43 | 8.84 | 5.40 a,b | 222.70 | 146.20 | 5.75 |
MT 15–30 cm | 0.46 | 2.64 b | 4.63 | 3.95 | 8.60 | 2.36c | 177.38 | 164.97 | 7.03 |
NT 0–15 cm | 0.56 | 8.43 a | 7.58 | 5.38 | 9.51 | 7.35a | 278.98 | 186.23 | 6.44 |
NT 15–30 cm | 0.51 | 4.48 b | 6.04 | 4.70 | 9.15 | 3.46bc | 201.38 | 165.10 | 5.76 |
Bread Wheat | Durum Wheat | |
---|---|---|
2015–2016/2016–2017/2017–2018 | 2015–2016/2016–2017/2017–2018 | |
GW (g m−2) | 316.20 a/126.66 b/336.18 a,† | 360.85 a/136.75 b/311.28 a |
TN (m−2) | 533.34 a/372.48 c/454.32 b | 369.00 a/263.64 c/302.64 b |
SN (m−2) | 507.48 a/344.52 b/421.86 b | 353.16 a/247.68 b/288.18 b |
GN (m−2) | 9383.46 a/4900.98 b/8940.84 a | 8535.83 a/3787.55 b/6722.21 a |
GS | 18.74 b/13.94 c/21.00 a | 24.42 a/15.56 b/23.77 a |
BW (g m−2) | 854.64 a/433.44 b/798.84 a | 903.96 a/425.10 b/737.28 a |
HI | 37.19 b/28.66 c/43.23 a | 39.41 b/31.92 c/41.68 a |
TKW (g) | 30.70 b/24.00 c/34.00 a | 37.10 b/31.70 c/39.80 a |
TW (kg hL−2) | 75.47 b/72.77 c/83.01 a | 79.12 b/77.11 c/84.99 a |
PH (cm) | 83.94 a/45.67 b/77.42 a | 88.28 a/52.15 c/79.03 b |
PL (cm) | 35.11 a/12.89 b/32.08 a | 40.34 a/17.50 b/36.44 a |
DH | 164.22 b/144.06 c/186.61 a | 163.81 b/141.08 c/186.11 a |
DM | 203.77 b/174.94 c/227.23 a | 203.51 b/175.04 c/225.73 a |
GF (day) | 38.98 a/30.85 b/40.52 a | 39.54 a/33.91 b/39.63 a |
GFR (mg GDD−1) | 0.049 a/0.043 b/0.051 a | 0.057 a/0.054 b/0.059 a |
GPC (%) | 10.87 b/14.13 a/9.29 c | 9.69 b/12.69 a/7.46 c |
SDSS (mm) | 72.72 a/80.61 a/45.78 b | 42.89 a/42.99 a/26.93 b |
Bread Wheat | Durum Wheat | |
---|---|---|
MT/NT | MT/NT | |
GW (g m−2) | 245.10/274.26 | 264.58/274.67 |
TN (m−2) | 435.66/471.12 | 304.86/318.66 |
SN (m−2) | 411.66/437.58 | 288.00/304.68 |
GN (m−2) | 7619.46/7864.02 | 6055.11/5969.70 |
GS | 18.22/17.57 | 21.43/20.23 |
BW (g m−2) | 669.18/722.04 | 682.68/694.92 |
HI | 35.67/37.05 | 37.59/37.26 |
TKW (g) | 28.70 b/30.40 a,† | 36.70/35.70 |
TW (kg hL−2) | (75.16/75.78) (72.72/72.96) (84.61 a/81.42 b) | 80.13/80.69 |
PH (cm) | (82.80/85.08) (42.89/48.46) (78.61/76.22) | (89.20/87.36) (49.62/54.68) (82.61 a/75.44 b) |
PL (cm) | 26.01/27.38 | (40.27/40.41) (16.09/18.91) (38.17/34.72) |
DH | 164.98/164.94 | (163.33/164.28) (141.56/140.61) (185.56/186.67) |
DM | (203.78/203.78) (174.89/175.22) (226.17/228.39) | 199.88b/200.81 a |
GF (day) | 36.00/37.06 | (40.17/39.28) (33.00/35.00) (39.33/40.00) |
GFR (mg GDD−1) | 0.046 b/0.049 a | (0.057/0.058) (0.056 a/0.052 b) (0.057/0.062) |
GPC (%) | 11.51/11.35 | 10.08/9.81 |
SDSS (mm) | 66.36/66.38 | 37.82/37.38 |
MT | NT | NT + MT | ||||
---|---|---|---|---|---|---|
Wheat Species | Wi Value | Genotype | Wi Value | Genotype | Wi Value | Genotype |
Bread wheat | 285 | Yecora | 958 | Chamorro | 223 | Chamorro |
541 | Aragon-03 | 2998 | Berdun | 735 | Berdun | |
619 | Chamorro | 3695 | Yecora | 1348 | Aragon-03 | |
1651 | Berdun | 6296 | Aragon-03 | 1498 | Yecora | |
5990 | Marius | 22481 | Califa Sur | 2529 | Califa Sur | |
9168 | Califa Sur | 39046 | Marius | 10122 | Marius | |
Durum wheat | 271 | Jerez-36 | 732 | Vitron | 42 | Vitron |
462 | Don Pedro | 1354 | Cocorit | 467 | Jerez-36 | |
834 | Cocorit | 2271 | Don Pedro | 519 | Cocorit | |
1249 | Vitron | 2895 | Senatore Capelli | 651 | Don Pedro | |
3217 | Senatore Capelli | 3375 | Jerez-36 | 2874 | Senatore Capelli | |
4052 | Avispa | 9110 | Avispa | 5615 | Avispa |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, M.; Zambrana, E.; Fite, R.; Sole, A.; Tenorio, J.L.; Benavente, E. Yield and Quality Performance of Traditional and Improved Bread and Durum Wheat Varieties under Two Conservation Tillage Systems. Sustainability 2019, 11, 4522. https://doi.org/10.3390/su11174522
Ruiz M, Zambrana E, Fite R, Sole A, Tenorio JL, Benavente E. Yield and Quality Performance of Traditional and Improved Bread and Durum Wheat Varieties under Two Conservation Tillage Systems. Sustainability. 2019; 11(17):4522. https://doi.org/10.3390/su11174522
Chicago/Turabian StyleRuiz, Magdalena, Encarna Zambrana, Rosario Fite, Aida Sole, Jose Luis Tenorio, and Elena Benavente. 2019. "Yield and Quality Performance of Traditional and Improved Bread and Durum Wheat Varieties under Two Conservation Tillage Systems" Sustainability 11, no. 17: 4522. https://doi.org/10.3390/su11174522
APA StyleRuiz, M., Zambrana, E., Fite, R., Sole, A., Tenorio, J. L., & Benavente, E. (2019). Yield and Quality Performance of Traditional and Improved Bread and Durum Wheat Varieties under Two Conservation Tillage Systems. Sustainability, 11(17), 4522. https://doi.org/10.3390/su11174522