Higher Effectiveness of New Common Bean (Phaseolus vulgaris L.) Germplasm Acquisition by Collecting Expeditions Associated with Molecular Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Genetic Characterization
2.3. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gepts, P.; Osborn, T.C.; Rashka, T.; Bliss, F.A. Phaseolin protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris L.): Evidence for multiple centers of domestication. Econ. Bot. 1986, 40, 451–468. [Google Scholar] [CrossRef]
- Schmutz, J.; McClean, P.E.; Jackson, S.A. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 2014, 46, 707–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gepts, P.; Bliss, F.A. Dissemination pathways of common bean (Phaseolus vulgaris; Fabaceae) deduced from phaseolin electrophoretic variability. II Europe and Africa. Econ. Bot. 1988, 42, 86–104. [Google Scholar] [CrossRef]
- Angioi, S.A.; Rau, D.; Attene, G.; Nanni, L.; Bellucci, E.; Logozzo, G.; Negri, V.; Spagnoletti Zeuli, P.L.; Papa, R. Beans in Europe: Origin and structure of the European landraces of Phaseolus vulgaris L. Theor. Appl. Genet. 2010, 121, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Gioia, T.; Logozzo, G.; Attene, G.; Bellucci, E.; Benedettelli, S.; Negri, V.; Papa, R.; Spagnoletti Zeuli, P. Evidence for introduction bottleneck and extensive inter-gene pool (Mesoamerica x Andes) hybridization in the European common bean (Phaseolus vulgaris L.) germplasm. PLoS ONE 2013, 8, 75974. [Google Scholar] [CrossRef] [PubMed]
- Rodino, A.P.; Santalla, M.; Montero, I.; Casquero, P.A.; De Ron, A.M. Diversity of common bean (Phaseolus vulgaris L.) germplasm from Portugal. Genet. Resour. Crop Evol. 2001, 48, 409–417. [Google Scholar] [CrossRef]
- Santalla, M.; Rodino, A.; de Ron, A.M. Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for common bean. Theor. Appl. Genet. 2002, 104, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Sicard, D.; Nanni, L.; Porfiri, O.; Bulfon, D.; Papa, R. Genetic diversity of Phaseolus vulgaris L. and P. coccineus L. landraces in central Italy. Plant Breed. 2005, 124, 464–473. [Google Scholar] [CrossRef]
- Raggi, L.; Tiranti, B.; Negri, V. Italian common bean landraces: Diversity and population structure. Genet. Resour. Crop Evol. 2013, 60, 1515–1530. [Google Scholar] [CrossRef]
- Bitocchi, E.; Rau, D.; Bellucci, E.; Rodriguez, M.; Murgia, M.L.; Gioia, T.; Santo, D.; Nanni, L.; Attene, G.; Papa, R. Beans (Phaseolus vulgaris L.) as a model for understanding crop evolution. Front. Plant Sci. 2017, 8, 722. [Google Scholar] [CrossRef]
- Blair, M.W.; González, L.F.; Kimani, M.; Butare, L. Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor. Appl. Genet. 2010, 121, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Blair, M.W.; Wang, S. Genetic diversity in Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeats markers. Theor. Appl. Genet. 2008, 117, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Logozzo, G.; Donnoli, R.; Macaluso, L.; Papa, R.; Knüpffer, H.; Spagnoletti Zeuli, P. Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genet. Resour. Crop Evol. 2007, 54, 1763–1779. [Google Scholar] [CrossRef]
- Negri, V.; Tosti, N. Phaseolus genetic diversity maintained on-farm in central Italy. Genet. Resour. Crop Evol. 2002, 49, 511–520. [Google Scholar] [CrossRef]
- Negri, V. Landraces in central Italy: Where and why they are conserved and perspectives for their on-farm conservation. Genet. Resour. Crop Evol. 2003, 50, 871–885. [Google Scholar] [CrossRef]
- Piergiovanni, A.R.; Taranto, G.; Losavio, F.P.; Pignone, D. Common bean (Phaseolus vulgaris L.) landraces from Abruzzo and Lazio regions (Central Italy). Genet. Resour. Crop Evol. 2006, 53, 313–322. [Google Scholar] [CrossRef]
- Casals, J.; Casañas, F.; Simó, J. Is it still necessary to continue to collect crop genetic resources in the Mediterranean area? A case study in Catalonia. Econ. Bot. 2017, 71, 330–341. [Google Scholar] [CrossRef]
- Rodino, A.P.; Santalla, M.; de Ron, A.M.; Singh, S.P. A core collection of common bean from the Iberian peninsula. Euphytica 2003, 131, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Zeven, A.C.; Waninge, J.; Van Hintum, T.; Singh, S.P. Phenotypic variation in a core collection of common bean (Phaseolus vulgaris L.) in the Netherlands. Euphytica 1999, 109, 93–106. [Google Scholar] [CrossRef]
- Eichenberger, K.; Gugerli, F.; Schneller, J.J. Morphological and molecular diversity of Swiss common bean cultivars (Phaseolus vulgaris L., Fabaceae) and their origin. Bot. Helv. 2000, 110, 61–77. [Google Scholar]
- Rodino, P.A.; Monteagudo, A.B.; De Ron, A.M.; Santalla, M. Ancestral landraces of common bean from the south of Europe and their agronomical value for breeding programs. Crop Sci. 2009, 49, 2087–2099. [Google Scholar] [CrossRef]
- Singh, S.P.; Nodari, R.; Gepts, P. Genetic diversity in cultivated common bean: I. Allozymes. Crop Sci. 1991, 31, 19–23. [Google Scholar] [CrossRef]
- Gill-Langarica, H.R.; Muruaga-Martínez, J.S.; Vargas-Vázquez, M.L.P.; Rosales-Serna, R.; Mayek-Pérez, N.; Rosales-Serna, R.; Mayek-Pérez, N. Genetic diversity analysis of common beans based on molecular markers. Genet. Mol. Biol. 2011, 34, 595–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, B.S.F.; Pappas, G.J., Jr.; Valdisser, P.A.M.R.; Coelho, G.R.C.; de Menezes, I.P.P.; Abreu, A.G.; Borba, T.O.C.; Sakamoto, T.; Brondani, C.; Barros, E.G.; et al. An operational SNP panel integrated to SSR marker for the assessment of genetic diversity and population structure of the common bean. Plant Mol. Biol. Rep. 2015, 33, 1697–1711. [Google Scholar] [CrossRef]
- Valdisser, P.A.M.R.; Pereira, W.J.; Filho, J.E.A.; Müller, B.S.F.; Coelho, G.R.C.; de Menezes, J.P.; Vianna, J.P.G.; Zucchi, M.I.; Lanna, A.C.; Coelho, A.S.G.; et al. In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 2017, 18, 423. [Google Scholar] [CrossRef] [PubMed]
- Zargar, S.M.; Mahajan, R.; Nazir, M.; Nagar, P.; Kim, S.T.; Rai, V.; Masi, A.; Ahmad, S.M.; Shah, R.A.; Ganai, N.A.; et al. Common bean proteomics: Present status and future strategies. J. Proteomics 2017, 169, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Raatz, B.; Mukankusi, C.; Lobaton, J.D.; Male, A.; Chisale, V.; Amsalu, B.; Fourie, D.; Mukamuhirwa, F.; Muimui, K.; Mutari, B.; et al. Analyses of African common bean (Phaseolus vulgaris L.) germplasm using a SNP fingerprinting platform: Diversity, quality control and molecular breeding. Genet. Resour. Crop Evol. 2019, 66, 707–722. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Korol, A.B.; Fahima, T.; Beiles, A.; Nevo, E. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Mol. Ecol. 2002, 11, 2453–2465. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Korol, A.B.; Fahima, T.; Nevo, E. Microsatellites within genes: Structure, function and evolution. Mol. Biol. Evol. 2004, 21, 991–1007. [Google Scholar] [CrossRef]
- Martin, P.; Makepeace, K.; Hill, S.A.; Hood, D.W.; Moxon, E.R. Microsatellite instability regulates transcription factor binding and gene expression. Proc. Natl. Acad. Sci. USA 2005, 102, 3800–3804. [Google Scholar] [CrossRef] [Green Version]
- Blair, M.W.; Pedraza, F.; Buendia, H.F.; Gaitán-Solís, E.; Beebe, S.E.; Gepts, P.; Tohme, J. Development of genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2003, 107, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, G.; Mao, W.; Hu, Q.; Liu, N.; Ye, L.; Gong, Y. Genetic diversity and population structure of common bean (Phaseolus vulgaris) landraces from China revealed by a new set of EST-SSR markers. Biochem. Syst. Ecol. 2014, 57, 250–256. [Google Scholar] [CrossRef]
- Blair, M.W.; Lorigados, S.M. Diversity of common bean landraces, breeding lines, and varieties from Cuba. Crop Sci. 2016, 56, 1–9. [Google Scholar] [CrossRef]
- Garcia, R.A.V.; Rangel, P.N.; Brondani, C.; Martins, W.S.; Melo, L.C.; Carniero, M.S.; Borba, T.C.O.; Brondani, R.P.V. The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMC Genet. 2011, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.W.; Hurtado, N. EST-SSR markers from five sequenced cDNA libraries of common bean (Phaseolus vulgaris L.) comparing three bioinformatic alghoritms. Mol. Ecol. Resour. 2013, 13, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.W.; Hurtado, N.; Chavarro, C.M.; Muñoz-Torres, M.C.; Giraldo, M.C.; Pedraya, F.; Tomkins, J.; Wing, R. Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: An integration of the BMc series. BMC Plant Biol. 2011, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Horňáková, O.; Závodná, M.; Žáková, M.; Kraic, J.; Debre, F. Diversity of common bean landraces collected in the western and eastern Carpatien. Czech J. Genet. Plant Breed. 2003, 39, 73–83. [Google Scholar] [CrossRef]
- Dellaporta, S.L.; Woods, J.; Hicks, J.B. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1983, 1, 19–21. [Google Scholar] [CrossRef]
- Yu, K.; Park, S.J.; Poysa, V. Abundance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna). Genome 1999, 42, 27–34. [Google Scholar] [CrossRef]
- Yu, K.; Park, S.J.; Poysa, V.; Gepts, P. Integration of simple sequence repeat (SSR) markers into molecular linkage map of common bean (Phaseolus vulgaris L.). J. Hered. 2000, 91, 429–434. [Google Scholar] [CrossRef]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Wheeler, D.L. GenBank. Nucleic Acid Res. 2005, 33, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Rozen, S.; Skaletsky, H. Primer3 on the www for general users and for biologist programmers. Methods Mol. Biol. 2000, 132, 365–386. [Google Scholar] [PubMed]
- Bassam, B.J.; Caetano-Anolles, G.; Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 1991, 196, 80–83. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Felsenstein, J. PHYLIP (Phylogeny Inference Package), 3.6 ed.; Distributed by the author; Department of Genome Sciences, University of Washington: Seattle, WA, USA, 2005. [Google Scholar]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acid Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Neel, J.V. “Private” genetic variants and the frequency of mutation among South American Indians. Proc. Natl. Acad. Sci. USA 1973, 70, 3311–3315. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 1985, 16, 393–430. [Google Scholar] [CrossRef]
- Earl, D.A.; vonHoldt, B.M. Structure Harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef] [PubMed]
- Tiranti, B.; Negri, V. Selective microenvironmental effects play a role in shaping genetic diversity and structure in a Phaseolus vulgaris L. landrace: Implications for on-farm conservation. Mol. Ecol. 2007, 16, 4942–4955. [Google Scholar] [CrossRef] [PubMed]
- Klaedtke, S.M.; Caproni, L.; Klauck, J.; de la Grandville, P.; Dutartre, M.; Stassart, P.M.; Chable, V.; Negri, V.; Raggi, L. Short-term local adaptation of historical common bean (Phaseolus vulgaris L.) varieties and implications for in situ management of bean diversity. Int. J. Mol. Sci. 2017, 18, 493. [Google Scholar] [CrossRef] [PubMed]
- Wells, W.C.; Isom, W.H.; Waines, J.G. Outcrossing rates of six common bean lines. Crop Sci. 1998, 28, 177–178. [Google Scholar] [CrossRef]
- Ibarra-Pérez, F.; Ehdale, B.; Waines, J.G. Estimation of outcrossing rate in common bean. Crop Sci. 1997, 37, 60–65. [Google Scholar] [CrossRef]
- Madakbas, S.Y.; Sarikamis, G.; Basak, H.; Karadavut, U.; Özmen, C.Y.; Dasci, M.G.; Cayan, S. Genetic characterization of green bean (Phaseolus vulgaris L.) accessions from Turkey with SCAR and SSR markers. Biochem. Genet. 2016, 54, 495–505. [Google Scholar] [CrossRef]
- Leitão, S.T.; Dinis, M.; Veloso, M.M.; Šatovič, Z.; Vaz Patto, M.C. Establishing the bases for introducing the unexplored Portuguese common bean germplasm into the breeding world. Front. Plant Sci. 2017, 8, 1296. [Google Scholar] [CrossRef]
- Hanai, L.R.; Campos, T.; Camargo, L.E.A.; Benchimol, L.L.; Souza, A.P.; Melotto, M.; Carbonell, A.M.; Chioratto, A.F.; Consoli, L.; Formighieri, E.F.; et al. Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic source. Genome 2007, 50, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.H.; Grima-Pettenati, J.; Feuillet, C. Characterization of a bean (Phaseolus vulgaris L.) malic-enzyme gene. Eur. J. Biochem. 1994, 224, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Khlestina, E.K.; Huang, X.Q.; Quenum, F.J.-B.; Chebotar, S.; Röder, M.S.; Börner, A. Genetic diversity in cultivated plant-loss or stability? Theor. Appl. Genet. 2004, 108, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Khlestina, E.K.; Varshney, R.V.; Röder, M.S.; Graner, A.; Börner, A. A comparative assessment of genetic diversity in cultivated barley collected in different decades of the last century in Austria, Albania and India by using genomic and genic simple sequence repeat (SSR) markers. Plant Genet. Resour. 2006, 4, 125–133. [Google Scholar] [CrossRef]
- Sardos, J.; Christelová, P.; Čížková, J.; Paofa, J.; Sachter-Smith, G.L.; Janssens, S.B.; Rauka, G.; Ruas, M.; Daniells, J.W.; Doležel, J.; et al. Collection of new diversity of wild and cultivated bananas (Musa spp.) in the autochtomous region of Bougainville, Papua New Guinea. Genet. Resour. Crop Evol. 2018, 65, 2267–2286. [Google Scholar] [CrossRef]
- Van Treuren, R.; de Groot, E.C.; Boukema, I.W.; van de Wiel, C.C.M.; van Hintum, T.J.L. Marker-assisted reduction of redundancy in a genbank collection of cultivated lettuce. Plant Genet. Resour. 2010, 8, 95–105. [Google Scholar] [CrossRef]
- Jomová, K.; Benková, M.; Kraic, J. Enrichment of chickpea genetic resources collection monitored by microsatellites. Czech J. Genet. Plant Breed. 2009, 45, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Wambugu, P.W.; Ndjiondjop, M.-N.; Henry, R.J. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief. Funct. Genomics 2018, 17, 198–206. [Google Scholar] [CrossRef]
- Cuevas, H.E.; Prom, L.K. Assessment of molecular diversity and population structure of the Ethiopian sorghum [Sorghum bicolour (L.) Moench] germplasm collection maintained by the USDA-ARS National Plant Germplasm System using SSR markers. Genet. Resour. Crop Evol. 2013, 60, 1817–1830. [Google Scholar] [CrossRef]
- Jiménez, O.R.; Korpelainen, H. Microsatellite markers reveal promising genetic diversity and seed trait associations in common bean landraces (Phaseolus vulgaris L.) from Nicaragua. Plant Genet. Resour. 2012, 10, 108–118. [Google Scholar] [CrossRef]
- De Ron, A.M.; Rodiño, A.P.; Santalla, M.; González, A.M.; Lema, M.J.; Martin, I.; Kigel, J. Seedling emergence and phenotypic response of common bean germplasm to different temperatures under controlled conditions and in open field. Front. Plant Sci. 2016, 7, 1087. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, M.R.; Leone, M.; Sunseri, F.; Bacchi, M.; Sorgonà, A. Root phenotyping for drought tolerance in bean landraces from Calabria (Italy). J. Agron. Crop Sci. 2015, 202, 1–12. [Google Scholar] [CrossRef]
- Celmeli, T.; Sari, H.; Canci, H.; Sari, D.; Adak, A.; Eker, T.; Toker, C. The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 2018, 8, 166. [Google Scholar] [CrossRef]
- Caproni, L.; Raggi, L.; Tissi, C.; Howlett, S.; Torricelli, R.; Negri, V. Multi-environmental evaluation and genetic characterization of common bean breeding lines for organic farming systems. Sustainability 2018, 10, 777. [Google Scholar] [CrossRef]
Sub-Population | Locus | Na | Ne | I | Ho | He | uHe | PIC | F |
---|---|---|---|---|---|---|---|---|---|
Cultivars | BNG4 | 12 | 4.988 | 1.805 | 0.494 | 0.800 | 0.804 | 0.770 | 0.382 |
BNG5 | 2 | 1.096 | 0.186 | 0.023 | 0.088 | 0.088 | 0.084 | 0.738 | |
BNG6 | 3 | 1.123 | 0.259 | 0.000 | 0.110 | 0.111 | 0.107 | 1.000 | |
BNG91 | 3 | 1.881 | 0.797 | 0.046 | 0.468 | 0.471 | 0.408 | 0.902 | |
PDX1 | 2 | 1.993 | 0.691 | 0.046 | 0.498 | 0.501 | 0.374 | 0.908 | |
PHPVPK | 5 | 2.978 | 1.233 | 0.057 | 0.664 | 0.668 | 0.604 | 0.913 | |
PVGLND5 | 8 | 3.893 | 1.664 | 0.036 | 0.743 | 0.748 | 0.718 | 0.952 | |
PVGSR1 | 3 | 1.382 | 0.507 | 0.000 | 0.276 | 0.278 | 0.249 | 1.000 | |
PVME1 | 14 | 4.348 | 1.999 | 0.149 | 0.770 | 0.774 | 0.756 | 0.806 | |
YU-1 | 3 | 1.332 | 0.452 | 0.011 | 0.249 | 0.251 | 0.223 | 0.954 | |
YU-2 | 2 | 1.284 | 0.380 | 0.000 | 0.221 | 0.222 | 0.197 | 1.000 | |
YU-3 | 2 | 1.987 | 0.690 | 0.023 | 0.497 | 0.500 | 0.373 | 0.954 | |
Mean ± SE | 4.917 ± 1.203 | 2.357 ± 0.393 | 0.889 ± 0.182 | 0.074 ± 0.040 | 0.449 ± 0.074 | 0.451 ± 0.075 | 0.405 ± 0.072 | 0.876 ± 0.050 | |
Landraces | BNG4 | 12 | 5.138 | 1.890 | 0.779 | 0.805 | 0.810 | 0.781 | 0.033 |
BNG5 | 2 | 1.097 | 0.188 | 0.000 | 0.089 | 0.089 | 0.085 | 1.000 | |
BNG6 | 3 | 1.344 | 0.495 | 0.012 | 0.256 | 0.258 | 0.237 | 0.955 | |
BNG91 | 3 | 2.205 | 0.932 | 0.047 | 0.547 | 0.550 | 0.488 | 0.915 | |
PDX1 | 2 | 1.897 | 0.666 | 0.116 | 0.473 | 0.476 | 0.361 | 0.754 | |
PHPVPK | 5 | 2.145 | 0.856 | 0.070 | 0.534 | 0.537 | 0.425 | 0.869 | |
PVGLND5 | 11 | 6.013 | 2.003 | 0.070 | 0.834 | 0.839 | 0.814 | 0.916 | |
PVGSR1 | 2 | 1.877 | 0.660 | 0.000 | 0.467 | 0.470 | 0.358 | 1.000 | |
PVME1 | 17 | 10.604 | 2.547 | 0.151 | 0.906 | 0.911 | 0.898 | 0.833 | |
YU-1 | 2 | 1.933 | 0.676 | 0.023 | 0.483 | 0.486 | 0.366 | 0.952 | |
YU-2 | 2 | 1.615 | 0.569 | 0.000 | 0.381 | 0.383 | 0.308 | 1.000 | |
YU-3 | 2 | 1.897 | 0.666 | 0.047 | 0.473 | 0.476 | 0.361 | 0.902 | |
Mean ± SE | 5.250 ± 1.483 | 3.147 ± 0.806 | 1.012 ± 0.209 | 0.109 ± 0.062 | 0.521 ± 0.068 | 0.524 ± 0.069 | 0.457 ± 0.072 | 0.844 ± 0.077 | |
Grand mean ± SE | 5.083 ± 0.934 | 2.752 ± 0.446 | 0.950 ± 0.135 | 0.092 ± 0.036 | 0.485 ± 0.050 | 0.487 ± 0.050 | 0.431 ± 0.050 | 0.860 ± 0.045 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šajgalík, M.; Ondreičková, K.; Hauptvogel, P.; Mihálik, D.; Glasa, M.; Kraic, J. Higher Effectiveness of New Common Bean (Phaseolus vulgaris L.) Germplasm Acquisition by Collecting Expeditions Associated with Molecular Analyses. Sustainability 2019, 11, 5270. https://doi.org/10.3390/su11195270
Šajgalík M, Ondreičková K, Hauptvogel P, Mihálik D, Glasa M, Kraic J. Higher Effectiveness of New Common Bean (Phaseolus vulgaris L.) Germplasm Acquisition by Collecting Expeditions Associated with Molecular Analyses. Sustainability. 2019; 11(19):5270. https://doi.org/10.3390/su11195270
Chicago/Turabian StyleŠajgalík, Michal, Katarína Ondreičková, Pavol Hauptvogel, Daniel Mihálik, Miroslav Glasa, and Ján Kraic. 2019. "Higher Effectiveness of New Common Bean (Phaseolus vulgaris L.) Germplasm Acquisition by Collecting Expeditions Associated with Molecular Analyses" Sustainability 11, no. 19: 5270. https://doi.org/10.3390/su11195270
APA StyleŠajgalík, M., Ondreičková, K., Hauptvogel, P., Mihálik, D., Glasa, M., & Kraic, J. (2019). Higher Effectiveness of New Common Bean (Phaseolus vulgaris L.) Germplasm Acquisition by Collecting Expeditions Associated with Molecular Analyses. Sustainability, 11(19), 5270. https://doi.org/10.3390/su11195270