Seasonal Variations of Polyphenols Content, Sun Protection Factor and Antioxidant Activity of Two Lamiaceae Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Crude Ethanol Extracts
2.3. Reagents and Equipment
2.4. HPLC Analytical Chromatographic Methods
2.5. Solar Radiation and Precipitation Treatments
2.6. Total Polyphenol Content Determination
2.7. Rosmarinic Acid Quantification
2.8. Flavonoids Total Content Determination
2.9. Determination of Antioxidant Activity
- SA (%) = percentage of free radical scavenging activity
- Anegative control = negative control absorbance
- Asample = sample absorbance
2.10. In Vitro Determination of Sun Protection Factor (SPF)
- CF = 10 (correction factor)
- EE(λ) = erythematogenic effect
- I(λ) = Sun intensity
- ABS(λ) = absorbance
2.11. Statistical Analyses
3. Results
3.1. Seasonality Effects on Polyphenols, Flavonoids, and RA Content
3.2. Seasonality Effects on Antioxidant Activity
3.3. Seasonality Effects on SPF
3.4. Principal Components Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, D.A.; Camilo, C.J.; Nonato, C.F.A.; Rodrigues, F.F.G.; Menezes, I.R.A.; Ribeiro-filho, J.; Xiao, J.; Souza, M.M.A.; Costa, J.G.M. Influence of seasonal variation on phenolic content andin vitro anti-oxidant activity of Secondatia floribunda A. DC. (Apocynaceae). Food Chem. 2020, 315, 126277. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Krähmer, A.; Herwig, N.; Hadian, J.; Schulz, H.; Meiners, T. Metabolomics Approaches for Analyzing Effects of Geographic and Environmental Factors on the Variation of Root Essential Oils of Ferula assa-foetida L. J. Agric. Food Chem. 2020, 68, 9940–9952. [Google Scholar] [CrossRef] [PubMed]
- Beer, D.; Miller, N.; Joubert, E. Production of dihydrochalcone-rich green rooibos (Aspalathus linearis) extract taking into account seasonal and batch-to-batch variation in phenolic composition of plant mate-rial. S. Afr. J. Bot. 2017, 110, 138–143. [Google Scholar] [CrossRef]
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Guimarães, A.C.; Fronza, M.; Endringer, D.C.; Scherer, R. Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Ind. Crop. Prod. 2017, 95, 543–548. [Google Scholar] [CrossRef]
- Nenadis, N.; Llorens, L.; Koufogianni, A.; Díaz, L.; Font, J.; Gonzalez, J.A.; Verdaguer, D. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants. J. Photochem. Photobiol. B Biol. 2015, 153, 435–444. [Google Scholar] [CrossRef]
- Bundy, J.G.; Davey, M.P.; Viant, M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics 2009, 5, 3–21. [Google Scholar] [CrossRef]
- Ferraz, E.D.O.; Vieira, M.A.R.; Ferreira, M.I.; Junior, A.F.; Marques, M.O.M.; Minatel, I.O.; Albano, M.; Sambo, P.; Lima, G.P.P. Seasonality effects on chemical composition, antibacterial activity and essential oil yield of three species of Nectandra. PLoS ONE 2018, 13, e0204132. [Google Scholar] [CrossRef]
- Gobbo-neto, L.; Lopes, N.P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quim. Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- Matos, F.J.A. Farmácias Vivas; Edicões UFC: Fortaleza, Brazil, 2001. [Google Scholar]
- Matos-Rocha, T.; Cavalcanti, M.D.S.; Barbosa-Filho, J.; Lúcio, A.; Veras, D.; Feitosa, A.; Júnior, J.D.S.; De Almeida, R.; Marques, M.O.M.; Alves, L.; et al. In Vitro Evaluation of Schistosomicidal Activity of Essential Oil of Mentha x villosa and Some of Its Chemical Constituents in Adult Worms of Schistosoma mansoni. Planta Med. 2013, 79, 1307–1312. [Google Scholar] [CrossRef] [Green Version]
- Guedes, D.N.; Silva, D.; Barbosa-Filho, J.; Medeiros, I.A. Endothelium-dependent hypotensive and vasorelaxant effects of the essential oil from aerial parts of Mentha x villosa in rats. Phytomedicine 2004, 11, 490–497. [Google Scholar] [CrossRef]
- Sousa, P.J.C.; Linard, C.F.B.M.; Azevedo-Batista, D.; Oliveira, A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. Antinociceptive effects of the essential oil of Mentha xvillosa leaf and its major constit-uent piperitenone oxide in mice. Braz. J. Med. Biol. Res. 2009, 42, 655–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, R.G.; Fonseca, C.S.; Silva, T.K.M.; Andrade, L.N.; França, M.E.; Barbosa-Filho, J.M.; Sousa, D.P.; Morares, M.O.; Pessoa, C.Ó.; Carvalho, A.A.; et al. Evaluation of the cytotoxic and antitumour effects of the essential oil from Mentha x villosa and its main compound, rotundifolone. J. Pharm. Pharmacol. 2015, 67, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Pan, M.-H.; Wu, Q.; Park, C.-H.; Juliani, H.R.; Ho, C.-T.; Simon, J.E. A Rapid LC/MS/MS Method for the Analysis of Nonvolatile Antiinflammatory Agents from Mentha spp. J. Food Sci. 2011, 76, C900–C908. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D. Chemical Compostion and Biological Activities of Men-tha Species. In Aromatic and Medicinal Plants–Back to Nature; El-Shemy, H.A., Ed.; InTech: Rijeka, Croatia, 2017; pp. 47–80. [Google Scholar]
- Hanafy, D.M.; Prenzler, P.D.; Burrows, G.E.; Ryan, D.; Nielsen, S.; Sawi, S.A.E.; Alfy, T.S.E.; Ab-delrahman, E.H.; Obied, H.K. Biophenols of mints: Antioxidant, acetylcholinesterase, butyrylcholines-terase and histone deacetylase inhibition activities targeting Alzheimer’s disease treatment. J. Funct. Foods 2017, 33, 345–362. [Google Scholar] [CrossRef]
- Hsu, K.-P.; Ho, C.-L. Antimildew Effects of Plectranthus amboinicus Leaf Essential Oil on Paper. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Manjamalai, A.; Alexander, T.; Berlin Grace, V.M. Bioactive evaluation of the essential oil of plectran-thus amboinicus by gc-ms analysis and its role as a drug for microbial infections and inflammation. Int. J. Pharm. Pharm. Sci. 2012, 4, 205–211. [Google Scholar]
- Shubha, J.; Bhatt, P. Plectranthus amboinicus leaves stimulate growth of probiotic L. plantarum: Evidence for ethnobotanical use in diarrhea. J. Ethnopharmacol. 2015, 166, 220–227. [Google Scholar] [CrossRef]
- Gurgel, A.P.A.D.; Da Silva, J.G.; Grangeiro, A.R.S.; Oliveira, D.C.; Lima, C.M.; Da Silva, A.C.; Oliveira, R.A.; Souza, I.A. In vivo study of the anti-inflammatory and antitumor activities of leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). J. Ethnopharmacol. 2009, 125, 361–363. [Google Scholar] [CrossRef]
- Oliveira, R.A.G.; Lima, E.O.; Vieira, W.L.; Freire, K.R.L.; Trajano, V.N.; Lima, I.O.; Souza, E.L.; Toledo, M.S.; Silva-Filho, R.N. Estudo da interferência de óleos essenciais sobre a atividade de alguns antibióticos usados na clínica. Rev. Bras. Farmacogn. 2006, 16, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Yulianto, W.; Andarwulan, N.; Giriwono, P.E.; Pamungkas, J. Bioactive compounds from torbangun (plectranthus amboinicus (lour.) spreng) chlo-roform fraction induce apoptosis in breast cancer (mcf-7 cells) in vitro. Tradit. Med. J. 2017, 22, 37–44. [Google Scholar] [CrossRef]
- Gurgel, A.P.A.D.; da Silva, J.G.; Grangeiro, A.R.S.; Xavier, H.S. Antibacterial Effects of Plectranthus amboinicus (Lour.) Spreng (Lamiaceae) in Methicillin Resistant Staphylococcus aureus (MRSA). Lat. Am. J. Pharm. 2009, 28, 460–464. [Google Scholar]
- Olszewska, M.A.; Gędas, A.; SImões, M. Antimicrobial polyphenol-rich extracts: Applications and limi-tations in the food industry. Food Res. Int. 2020, 134, 109214. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, S.; Kumar, N. Plectranthus amboinicus: A review on its pharmacological and, pharmacognostical studies. Am. J. Physiol. Biochem. Pharmacol. 2020, 10. [Google Scholar] [CrossRef]
- Balakrishnan, A. Therapeutic uses of peppermint—A review. J. Pharm. Sci. Res. 2015, 7, 474–476. [Google Scholar]
- Lima, T.C.; Silva, T.K.M.; Silva, F.L.; Barbosa-Filho, J.M.; Marques, M.O.M.; Santos, R.L.C.; Caval-canti, S.C.H.; Sousa, D.P. Larvicidal activity ofMenthaxvillosaHudson essential oil, rotundifoloneand derivatives. Chemosphere 2014, 104, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Fialova, S.; Veizerova, L.; Nosalova, V.; Drabikova, K.; Tekelova, D.; Grancai, D.; Sotnikova, R. Water Extract of Mentha x villosa: Phenolic Fingerprint and Effect on Ischemia-Reperfusion Injury. Nat. Prod. Commun. 2015, 10, 937–940. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, G.; Swamy, M.K.; Sinniah, U.R. Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules 2016, 21, 369. [Google Scholar] [CrossRef]
- Dalmagro, A.P.; Camargo, A.; Filho, H.H.D.S.; Valcanaia, M.M.; De Jesus, P.C.; Zeni, A.L.B. Seasonal variation in the antioxidant phytocompounds production from the Morus nigra leaves. Ind. Crop. Prod. 2018, 123, 323–330. [Google Scholar] [CrossRef]
- Henriques, A.C.R. Estudo dos Efeitos Antioxidante e Anti-Inflamatório do Chocolate Preto e da Pasta de Cacao; Master’s Thesis, Faculdade de Farmácia da Universidade de Coimbra, Coimbra, Portugal, 2017. [Google Scholar]
- Ko, H.C.; Lee, J.Y.; Jang, M.G.; Song, H.; Kim, S.-J. Seasonal variations in the phenolic compounds and antioxidant activity of Sasa quelpaertensis. Ind. Crop. Prod. 2018, 122, 506–512. [Google Scholar] [CrossRef]
- Sousa, C.M.D.M.; E Silva, H.R.; Vieira, G.M., Jr.; Ayres, M.C.C.; Da Costa, C.L.S.; Araújo, D.S.; Cavalcante, L.C.; Barros, E.D.S.; Araújo, P.B.D.M.; Brandão, M.S.; et al. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Química Nova 2007, 30, 351–355. [Google Scholar] [CrossRef]
- León-chan, R.G.; López-meyer, M.; Osuna-enciso, T.; Sañudo-barajas, A.; Heredia, J.B.; León-félix, J. Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environ. Exp. Bot. 2017, 139, 143–151. [Google Scholar] [CrossRef]
- Takshak, S.; Agrawal, S. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J. Photochem. Photobiol. B Biol. 2019, 193, 51–88. [Google Scholar] [CrossRef] [PubMed]
- Amoah, S.K.S.; Sandjo, L.P.; Kratz, J.M.; Biavatti, M.W. Rosmarinic Acid–pharmaceutical and clini-cal aspects. Planta Med. 2016, 82, 388–406. [Google Scholar] [PubMed] [Green Version]
- Psotova, J.; Svobodová, A.R.; Kolarova, H.; Walterova, D. Photoprotective properties of Prunella vulgaris and rosmarinic acid on human keratinocytes. J. Photochem. Photobiol. B Biol. 2006, 84, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-campillo, M.; Gabaldon, J.A.; Castillo, J.; Benavette-garcía, O.; Del bãno, M.J.; Alcaraz, M.; Vicente, V.; Alvarez, N.; Lozano, J.A. Rosmarinic acid, a photoprotective agent agaisnt UV and other ionizing radiations. Food Chem. Toxicol. 2009, 47, 386–392. [Google Scholar] [CrossRef]
- Blackman, B.K. Changing Responses to Changing Seasons: Natural Variation in the Plasticity of Flow-ering Time. Plant Physiol. 2017, 173, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Terto, M.V.C.; Gomes, J.M.; Araújo, D.I.A.F.; Silva, T.S.; Ferreira, J.M.; Souza, J.J.N.; Da Silva, M.S.; Tavares, J.F. Photoprotective Activity of Plectranthus amboinicus Extracts and HPLC Quantification of Rosmarinic Acid. Rev. Bras. Farm. 2020, 30, 183–188. [Google Scholar] [CrossRef]
- GOMES, J.M. Estudo Preliminar da Potencial Atividade Fotoprotetora e Antioxidante de Mentha X Villosa, Master’s Thesis, Universidade Federal da Paraíba, João Pessoa, Brazil, 2018, unpublished. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols content and other oxi-dation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999, 299, 152–177. [Google Scholar]
- Schmidt, P.C.; Ortega, G.G. Passionsblumenkraut. Bestimmung des Gesamt flavonoid gehaltes von Passiflorae herba. Dtsch. Apoth. Ztg. 1999, 133, 17–26. [Google Scholar]
- Marques, G.S.; Monteiro, R.P.M.; Leão, W.F.; Lyra, M.A.M.; Peixoto, M.S.; Rolim-neto, P.J.; Xavier, H.S.; Soares, L.A.L. Avaliação de procedimentos para quantificação espectrofotométrica de flavonoides totais em folhas de Bauhinia forficata LINK. Quim. Nova 2012, 35, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Garcez, F.R.; Garcez, W.S.; Hamerski, L.; Miguita, C.H. Fenilpropanóides e outros constituintes bioativos de Nectandra megapotamica. Quim. Nova 2009, 32, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Mansur, J.S.; Breder, M.N.R.; Mansur, M.C.A.; Azulay, R.D. Determinação do fator de proteção solar por espectrofotometria. An. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Woźniak, M.; Mrówczyńska, L.; Waśkiewicz, A.; Rogoziński, T.; Ratajczak, I. The role of seasonality on the chemical composition, antioxidant activity and cytotoxicity of Polish propolis in human erythrocytes. Rev. Bras. Farm. 2019, 29, 301–308. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Valentim, I.B.; Rocha, T.S.; Santos, J.C.; Pires, K.S.; Tanabe, E.L.; Borbely, K.S.; Borbely, A.U.; Goulart, M.O.F. Schinus terebenthifolius Raddi extracts: from sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant. Ind. Crop. Prod. 2020, 152, 112503. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.D.; Morte, A.N.D.B.; Silva, L.C.R.C.E.; Chinalia, F.A. Sunscreen protection factor enhancement through supplementation with Rambutan (Nephelium lappaceum L.) ethanolic extract. J. Photochem. Photobiol. B Biol. 2020, 205, 111837. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.D.; Costa, R.Y.S.; Guedes, A.A.S.; Silva, L.C.R.C.E.; Chinalia, F.A. Guava-fruit extract can improve the UV-protection efficiency of synthetic filters in sun cream formulations. J. Photochem. Photobiol. B Biol. 2019, 201, 111639. [Google Scholar] [CrossRef]
- Anvisa. RDC nº 30, de 01 de Junho de 2012; Brasil, Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA), Diário Oficial da União, DF: Brasília, Brazil.
- Dolzhenko, Y.; Bertea, C.M.; Occhipinti, A.; Bossi, S.; Maffei, M.E. UV-B modulates the interplay be-tween terpenoids and flavonoids in peppermint (Mentha piperita L.). J. Photochem. Photobiol. B Biol. 2010, 100, 67–75. [Google Scholar] [CrossRef]
- Takshak, S.; Agrawal, S.B. Interactive effects of supplemental ultraviolet-B radiation and indole-3- acetic acid on Coleus forskohlii Briq.: Alterations in morphological-, physiological-, and biochemical character-istics and essential oil content. Ecotoxicol. Environ. Saf. 2018, 147, 313–326. [Google Scholar] [CrossRef]
- Takshak, S.; Agrawal, S. The role of supplemental ultraviolet-B radiation in altering the metabolite profile, essential oil content and composition, and free radical scavenging activities of Coleus forskohlii, an indigenous medicinal plant. Environ. Sci. Pollut. Res. 2015, 23, 7324–7337. [Google Scholar] [CrossRef]
- Gomes, A.F.; Almeida, M.P.; Leite, M.F.; Schwaiger, S.; Stuppner, H.; Halabalaki, M.; Amaral, J.G.; David, J.M. Seasonal variation in the chemical composition of two chemotypes of Lippia alba. Food Chem. 2019, 273, 186–193. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Medeiros Gomes, J.; Cahino Terto, M.V.; Golzio do Santos, S.; Sobral da Silva, M.; Fechine Tavares, J. Seasonal Variations of Polyphenols Content, Sun Protection Factor and Antioxidant Activity of Two Lamiaceae Species. Pharmaceutics 2021, 13, 110. https://doi.org/10.3390/pharmaceutics13010110
de Medeiros Gomes J, Cahino Terto MV, Golzio do Santos S, Sobral da Silva M, Fechine Tavares J. Seasonal Variations of Polyphenols Content, Sun Protection Factor and Antioxidant Activity of Two Lamiaceae Species. Pharmaceutics. 2021; 13(1):110. https://doi.org/10.3390/pharmaceutics13010110
Chicago/Turabian Stylede Medeiros Gomes, Juliana, Márcio Vinícius Cahino Terto, Sócrates Golzio do Santos, Marcelo Sobral da Silva, and Josean Fechine Tavares. 2021. "Seasonal Variations of Polyphenols Content, Sun Protection Factor and Antioxidant Activity of Two Lamiaceae Species" Pharmaceutics 13, no. 1: 110. https://doi.org/10.3390/pharmaceutics13010110
APA Stylede Medeiros Gomes, J., Cahino Terto, M. V., Golzio do Santos, S., Sobral da Silva, M., & Fechine Tavares, J. (2021). Seasonal Variations of Polyphenols Content, Sun Protection Factor and Antioxidant Activity of Two Lamiaceae Species. Pharmaceutics, 13(1), 110. https://doi.org/10.3390/pharmaceutics13010110