Effect of Oxygen-Inhibited Layer of Dental Adhesives on Bond Strength: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Selection
- Population (P): Studies involving human or bovine teeth undergoing bonding protocol for composite restoration;
- Intervention (I): Bonding protocol for enamel and dentin;
- Comparison (C): Oxygen inhibition layer strategies;
- Outcome (O): shear bond strength, micro-tensile bond strength, SEM analysis, surface free energy.
2.2. Literature Search
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Sample Size and Preparation
3.2. Overview of Studies
3.3. Bond Strength Outcomes According to Oxygen-Inhibited Layer Condition
3.4. Influence of Etching Mode and Oxygen-Inhibited Layer Modification
3.5. Surface Free Energy and Wettability
3.6. Failure Mode Analysis
3.7. Quality Assessment of Included Studies
3.8. Meta-Analysis
4. Discussion
4.1. Effect of the Presence or Absence of the Oxygen-Inhibited Layer
4.2. Effect of Increasing Curing Time
4.3. Effect of Substrate Evaluated
4.4. Effect of Surface Free Energy
4.5. Overall Interpretation
4.6. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsujimoto, A.; Iwasa, M.; Shimamura, Y.; Murayama, R.; Takamizawa, T.; Miyazaki, M. Enamel Bonding of Single-Step Self-Etch Adhesives: Influence of Surface Energy Characteristics. J. Dent. 2010, 38, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Sano, H.; Shono, T.; Sonoda, H.; Takatsu, T.; Ciucchi, B.; Carvalho, R.; Pashley, D.H. Relationship between Surface Area for Adhesion and Tensile Bond Strength—Evaluation of a Micro-Tensile Bond Test. Dent. Mater. 1994, 10, 236–240. [Google Scholar] [CrossRef]
- Ghivari, S.; Chandak, M.; Manvar, N. Role of Oxygen Inhibited Layer on Shear Bond Strength of Composites. J. Conserv. Dent. 2010, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-H.; Lee, I.-B. Effect of Glycerin on the Surface Hardness of Composites after Curing. Restor. Dent. Endod. 2011, 36, 483–489. [Google Scholar] [CrossRef]
- Koga, K.; Tsujimoto, A.; Ishii, R.; Iino, M.; Kotaku, M.; Takamizawa, T.; Tsubota, K.; Miyazaki, M. Influence of Oxygen Inhibition on the Surface Free-Energy and Dentin Bond Strength of Self-Etch Adhesives. Eur. J. Oral Sci. 2011, 119, 395–400. [Google Scholar] [CrossRef]
- Aromaa, M.K.; Vallittu, P.K. Delayed Post-Curing Stage and Oxygen Inhibition of Free-Radical Polymerization of Dimethacrylate Resin. Dent. Mater. 2018, 34, 1247–1252. [Google Scholar] [CrossRef]
- Chudyk, A.M.; Horrill, T.; Waldman, C.; Demczuk, L.; Shimmin, C.; Stoddard, R.; Hickes, S.; Schultz, A.S.H. Scoping Review of Models and Frameworks of Patient Engagement in Health Services Research. BMJ Open 2022, 12, e063507. [Google Scholar] [CrossRef]
- Finger, W.J.; Lee, K.S.; Podszun, W. Monomers with Low Oxygen Inhibition as Enamel/Dentin Adhesives. Dent. Mater. 1996, 12, 256–261. [Google Scholar] [CrossRef]
- Panchal, A.; Asthana, G. Oxygen Inhibition Layer: A Dilemma to Be Solved. J. Conserv. Dent. 2020, 23, 254–258. [Google Scholar] [CrossRef]
- Mazumdar, P.; Singh, S.; Das, D. Method for Assessing the Bond Strength of Dental Restorative Materials; An Overview. J. Pierre Fauchard Acad. 2021, 35, 73–77. [Google Scholar] [CrossRef]
- Yamaji, A.; Koga, K.; Tsujimoto, A.; Shimizu, Y.; Tsubota, K.; Takamizawa, T.; Miyazaki, M. Influence of Oxygen-Inhibited Layer on Dentin Bond Strength of Chemical-Cured Resin Composite. Eur. J. Oral. Sci. 2013, 121, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Suh, B.I. Oxygen-Inhibited Layer in Adhesion Dentistry. J. Esthet. Restor. Dent. 2004, 16, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Ikemura, K.; Endo, T.; Kadoma, Y. A Review of the Developments of Multi-Purpose Primers and Adhesives Comprising Novel Dithiooctanoate Monomers and Phosphonic Acid Monomers. Dent. Mater. J. 2012, 31, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, M.A.; Stangel, I.; Ellis, T.H.; Zhu, X.X. Oxygen Inhibition in Dental Resins. J. Dent. Res. 2005, 84, 725–729. [Google Scholar] [CrossRef]
- Eliades, G.C.; Caputo, A.A. The Strength of Layering Technique in Visible Light-Cured Composites. J. Prosthet. Dent. 1989, 61, 31–38. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Bouzrati-Zerelli, M.; Maier, M.; Fik, C.P.; Dietlin, C.; Morlet-Savary, F.; Fouassier, J.P.; Klee, J.E.; Lalevée, J. A Low Migration Phosphine to Overcome the Oxygen Inhibition in New High Performance Photoinitiating Systems for Photocurable Dental Type Resins. Polym. Int. 2017, 66, 504–511. [Google Scholar] [CrossRef]
- Sheth, V.H.; Shah, N.P.; Jain, R.; Bhanushali, N.; Bhatnagar, V. Development and Validation of a Risk-of-Bias Tool for Assessing in Vitro Studies Conducted in Dentistry: The QUIN. J. Prosthet. Dent. 2024, 131, 1038–1042. [Google Scholar] [CrossRef]
- Ouchi, H.; Tsujimoto, A.; Nojiri, K.; Hirai, K.; Takamizawa, T.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Effect of Oxygen Inhibition Layer of Universal Adhesives on Enamel Bond Fatigue Durability and Interfacial Characteristics With Different Etching Modes. Oper. Dent. 2017, 42, 636–645. [Google Scholar] [CrossRef]
- Yamaji, A.; Tsujimoto, A.; Asaoka, T.; Matsuyoshi, S.; Tsuchiya, K.; Takamizawa, T.; Miyazaki, M. Effect of Oxygen Inhibition in Two-Step Self-Etch Systems on Surface Free Energy and Dentin Bond Strength with a Chemically Cured Resin Composite. J. Oral Sci. 2014, 56, 201–207. [Google Scholar] [CrossRef]
- Mikhlin, D.; Fiuza, C.; França, R. The Effects on Microtensile Bond Strength in the Absence of Oxygen-Inhibited Layer and Method of Etching; University of Manitoba: Winnipeg, MB, Canada, 2019. [Google Scholar]
- Kim, J.S.; Choi, Y.H.; Cho, B.H.; Son, H.H.; Lee, I.B.; Um, C.M.; Kim, C.K. Effect of Light-Cure Time of Adhesive Resin on the Thickness of the Oxygen-Inhibited Layer and the Microtensile Bond Strength to Dentin. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 78, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Oyama, K.; Tsujimoto, A.; Otsuka, E.; Shimizu, Y.; Shiratsuchi, K.; Tsubota, K.; Takamizawa, T.; Miyazaki, M. Influence of Oxygen Inhibition on the Surface Free Energy and Enamel Bond Strength of Self-Etch Adhesives. Dent. Mater. J. 2012, 31, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Ueta, H.; Tsujimoto, A.; Barkmeier, W.W.; Oouchi, H.; Sai, K.; Takamizawa, T.; Latta, M.A.; Miyazaki, M. Influence of an Oxygen-Inhibited Layer on Enamel Bonding of Dental Adhesive Systems: Surface Free-Energy Perspectives. Eur. J. Oral Sci. 2016, 124, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Y.T.; Abouseedou, H.M.; Hamza, F.M.; AlQalam, M.M.; Naser, Y.M. Awareness of Oxygen Inhibited Layer Effects on Composite Resins and How to Prevent: A Survey-Based Study. J. Appl. Dent. Med. Sci. 2021, 7, 1. [Google Scholar]
- Alam, A.; Yamauti, M.; Chowdhury, A.F.M.A.; Wang, X.; Álvarez-Lloret, P.; Zuñiga-Heredia, E.E.; Cifuentes-Jiménez, C.; Dua, R.; Iijima, M.; Sano, H. Evaluating the Advancements in a Recently Introduced Universal Adhesive Compared to Its Predecessor. J. Dent. Sci. 2024, 19, 1609–1619. [Google Scholar] [CrossRef]
- Brianezzi, L.F.D.F.; Maenosono, R.M.; Bim Júnior, O.; Zabeu, G.S.; Palma-Dibb, R.G.; Ishikiriama, S.K. Does Laser Diode Irradiation Improve the Degree of Conversion of Simplified Dentin Bonding Systems? J. Appl. Oral Sci. 2017, 25, 381. [Google Scholar] [CrossRef]
- Brkanović, S.; Sever, E.K.; Vukelja, J.; Ivica, A.; Miletić, I.; Krmek, S.J. Comparison of Different Universal Adhesive Systems on Dentin Bond Strength. Materials 2023, 16, 1530. [Google Scholar] [CrossRef]
- Dall’oca, S.; Papacchini, F.; Goracci, C.; Cury, Á.H.; Suh, B.I.; Tay, F.R.; Polimeni, A.; Ferrari, M. Effect of Oxygen Inhibition on Composite Repair Strength over Time. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81B, 493–498. [Google Scholar] [CrossRef]
- Elbishari, H.; Elsubeihi, E.S.; Alkhoujah, T.; Elsubeihi, H.E. Substantial In-Vitro and Emerging Clinical Evidence Supporting Immediate Dentin Sealing. Jpn. Dent. Sci. Rev. 2021, 57, 101–110. [Google Scholar] [CrossRef]
- Endo, T.; Finger, W.J.; Hoffmann, M.; Kanehira, M.; Komatsu, M. The Role of Oxygen Inhibition of a Self-Etch Adhesive on Self-Cure Resin Composite Bonding. Am. J. Dent. 2007, 20, 157–160. [Google Scholar]
- Fujiwara, S.; Takamizawa, T.; Barkmeier, W.W.; Tsujimoto, A.; Imai, A.; Watanabe, H.; Erickson, R.L.; Latta, M.A.; Nakatsuka, T.; Miyazaki, M. Effect of Double-Layer Application on Bond Quality of Adhesive Systems. J. Mech. Behav. Biomed. Mater. 2018, 77, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, N.C.; Moecke, S.E.; Caneppele, T.M.; Perote, L.C.; Batista, G.R.; Huhtalla, M.F.; Torres, C.R. Bond Strength of Composite Resin Restoration Repair: Influence of Silane and Adhesive Systems. J. Contemp. Dent. Pract. 2019, 20, 880–886. [Google Scholar] [PubMed]
- Hirokane, E.; Takamizawa, T.; Kasahara, Y.; Ishii, R.; Tsujimoto, A.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Effect of Double-Layer Application on the Early Enamel Bond Strength of Universal Adhesives. Clin. Oral. Investig. 2021, 25, 907–921. [Google Scholar] [CrossRef]
- Khakiani, M.I.; Kumar, V.; Pandya, H.V.; Nathani, T.I.; Verma, P.; Bhanushali, N.V. Effect of Immediate Dentin Sealing on Polymerization of Elastomeric Materials: An Ex Vivo Randomized Controlled Trial. Int. J. Clin. Pediatr. Dent. 2019, 12, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.-Y.; Kim, Y.-J. Influence of Adhesive Layer Thickness of Dentin Adhesives on Microtensile Bond Strength of a Resin Composite to Dentin. Korean J. Dent. Mater. 2016, 43, 151–158. [Google Scholar] [CrossRef]
- Maaßen, M.; Wille, S.; Kern, M. Bond Strength of Adhesive Luting Systems to Human Dentin and Their Durability. J. Prosthet. Dent. 2021, 125, 182–188. [Google Scholar] [CrossRef]
- Phaneuf, M.; Haimeur, A.; França, R. Effect of Anaerobic Cure of Self-Etch Adhesive on Degree of Conversion and Shear Bond Strength. Clin. Oral. Investig. 2019, 23, 2227–2233. [Google Scholar] [CrossRef]
- Pheerarangsikul, N. The Effect of Different Adhesives Used as the Immediate Dentin Sealing on the Adhesion of the Resin Cement to Dentin. Master’s Thesis, Naresuan University, Phitsanulok, Thailand, 2020. [Google Scholar]
- Alejandro Guerrero Rodriguez, I.; Esmeralda Rodriguez Luis, O.; Elena Villarreal Garcia Professor, L.; Martha Lopez Villarreal Professor, S.; del Muro Casas, F.; Alejandra Rodriguez Guajardo, N.; Elisa Delgado Alcala, A.; Manuel Solis Soto, J.; Esmeralda Rodriguez Luis, O.; Elena Villarreal Garcia, L.; et al. Factors Influencing Adhesion Quality in Universal Adhesive Systems. Int. J. Appl. Dent. Sci. 2021, 7, 299–303. [Google Scholar] [CrossRef]
- Samimi, P.; Ghodrati, M.; Shirban, F.; Khoroushi, M. Comparison of the Dentin Bond Strength of Two Self-Etch Adhesives After Prolonged Air-Drying and Additional Light-Curing. J. Dent. 2017, 14, 292–298. [Google Scholar]
- Sanares, A.M.E.; Itthagarun, A.; King, N.M.; Tay, F.R.; Pashley, D.H. Adverse Surface Interactions between One-Bottle Light-Cured Adhesives and Chemical-Cured Composites. Dent. Mater. 2001, 17, 542–556. [Google Scholar] [CrossRef]
- Shade, A.M.; Wajdowicz, M.N.; Bailey, C.W.; Vandewalle, K.S. The Effect of Simplified Adhesives on the Bond Strength to Dentin of Dual-Cure Resin Cements. Oper. Dent. 2014, 39, 627–636. [Google Scholar] [CrossRef]
- Tang, C.; Mercelis, B.; Zhang, F.; Mocquot, C.; Nakanishi, K.; Yoshihara, K.; Peumans, M.; Van Meerbeek, B. Filler Mixed Into Adhesives Does Not Necessarily Improve Their Mechanical Properties. Oper. Dent. 2024, 49, 311–324. [Google Scholar] [CrossRef]
- Taschner, M.; Kümmerling, M.; Lohbauer, U.; Breschi, L.; Petschelt, A.; Frankenberger, R. Effect of Double-Layer Application on Dentin Bond Durability of One-Step Self-Etch Adhesives. Oper. Dent. 2014, 39, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Tekce, A.U.; Atalay, C.; Dursun, M.N.; Ertan, A.A.; Yazıcı, A.R. Does Double-Layer Application of a Universal Adhesive Affect Its Bonding to Different Tooth Substrates? Clin. Exp. Health Sci. 2021, 11, 794–800. [Google Scholar] [CrossRef]
- Tsujimoto, A.; Barkmeier, W.; Takamizawa, T.; Latta, M.; Miyazaki, M. The Effect of Phosphoric Acid Pre-Etching Times on Bonding Performance and Surface Free Energy with Single-Step Self-Etch Adhesives. Oper. Dent. 2016, 41, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Watanabe, H.; Johnson, W.W.; Latta, M.A.; Miyazaki, M. Influence of Duration of Phosphoric Acid Pre-Etching on Bond Durability of Universal Adhesives and Surface Free-Energy Characteristics of Enamel. Eur. J. Oral. Sci. 2016, 124, 377–386. [Google Scholar] [CrossRef]
- Walter, R.; Swift, E.J.; Ritter, A.V.; Bartholomew, W.W.; Gibson, C.G. Dentin Bonding of an Etch-and-Rinse Adhesive Using Self- and Light-Cured Composites. Am. J. Dent. 2009, 22, 215–218. [Google Scholar]
- Zecin-Deren, A.; Sokolowski, J.; Szczesio-Wlodarczyk, A.; Piwonski, I.; Lukomska-Szymanska, M.; Lapinska, B. Multi-Layer Application of Self-Etch and Universal Adhesives and the Effect on Dentin Bond Strength. Molecules 2019, 24, 345. [Google Scholar] [CrossRef]


| Inclusion Criteria | Exclusion Criteria |
|---|---|
| Studies investigating the effect of the presence or absence of an oxygen-inhibiting layer of dental adhesives on bond strength. | Review articles, letters to the editor, clinical studies, and case reports. |
| In vitro studies | Studies not related to dental adhesives and oxygen-inhibited layers. |
| Studies published in the English language. | Articles not particularly related to the research topic. |
| Articles with open access. | |
| Articles published from January 2000 to August 2024. | |
| Studies conducted on extracted non-carious and intact human and bovine teeth specimens. |
| Author (Year) | Substrate | Adhesive Strategy | Composite Type | OIL Modification Method | Primary Outcome |
|---|---|---|---|---|---|
| Kim et al. (2006) [22] | Human dentin | Etch-and-rinse | Light-cured | Increased curing time/Mylar strip | μTBS |
| Koga et al. (2011) [5] | Bovine dentin | One-step self-etch | Light-cured | Ethanol | SBS |
| Oyama et al. (2012) [23] | Bovine enamel | One-step self-etch | Light-cured | Ethanol | SBS |
| Yamaji et al. (2013) [11] | Bovine dentin | One-step self-etch | Chemical-cured | Ethanol | SBS |
| Yamaji et al. (2014) [20] | Bovine dentin | Two-step self-etch | Chemical-cured | Ethanol | SBS |
| Ueta et al. (2016) [24] | Bovine enamel | Multi-strategy | Light-cured | Ethanol | SBS |
| Ouchi et al. (2017) [19] | Human enamel | Universal adhesive | Light-cured | Ethanol | Fatigue strength |
| Mikhlin et al. (2019) [21] | Glass slide | Etch-and-rinse/self-etch | Light-cured | Flowable layer | μTBS |
| Study (Year) | Bond Strength Test | Fatigue Test | Surface Free Energy/Contact Angle | Degree of Conversion | OIL Thickness Measurement | Failure Mode Analysis |
|---|---|---|---|---|---|---|
| Kim et al. (2006) [22] | μTBS | — | — | — | ✓ | ✓ |
| Koga et al. (2011) [5] | SBS | — | ✓ | — | — | ✓ |
| Oyama et al. (2012) [23] | SBS | — | ✓ | — | — | ✓ |
| Yamaji et al. (2013) [11] | SBS | — | ✓ | — | — | ✓ |
| Yamaji et al. (2014) [20] | SBS | — | ✓ | — | — | ✓ |
| Ueta et al. (2016) [24] | SBS | — | ✓ | — | — | ✓ |
| Ouchi et al. (2017) [19] | SBS | ✓ | — | — | — | ✓ |
| Mikhlin et al. (2019) [21] | μTBS | — | — | ✓ | — | — |
| Study (Year) | Composite Curing Mode | Etching Mode | OIL Condition | Bond Strength (MPa) | Fatigue Strength (MPa) | Surface Free Energy (mN/m) |
|---|---|---|---|---|---|---|
| Kim et al. (2006) [22] | Light-cured | Total-etch (H3PO4) | Present | 37.4–57.4 | Not reported | Not assessed |
| Absent | 35.1–36.7 | |||||
| Koga et al. (2011) [5] | Light-cured | Self-etch | Present | 17.5–18.4 | Not reported | 35.5–37.6 |
| Absent | 13.2–13.6 | 41.2–46.5 | ||||
| Oyama et al. (2012) [23] | Light-cured | Self-etch | Present | 15.8–17.7 | Not reported | 37.4–38.0 |
| Absent | 12.8–14.4 | 43.1–43.7 | ||||
| Yamaji et al. (2013) [11] | Chemical-cured | Self-etch | Present | 4.8–5.2 | Not reported | 35.4–38.1 |
| Absent | 7.6–8.0 | 44.2–46.5 | ||||
| Yamaji et al. (2014) [20] | Chemical-cured | Self-etch | Present | 9.7–11.8 | Not reported | 41.1–42.6 |
| Absent | 11.3–12.5 | 47.5–50.0 | ||||
| Ueta et al. (2016) [24] | Light-cured | Total-etch/self-etch | Present | 25.4–38.8 | Not reported | 60.1–64.4 |
| Absent | 19.8–35.8 | 52.4–55.2 | ||||
| Ouchi et al. (2017) [19] | Light-cured | Pre-etch/no pre-etch | Present | 40.6–44.3 | 20.3–22.2 | Not assessed |
| Absent | 34.1–36.6 | 16.0–18.1 | ||||
| Mikhlin et al. (2019) [21] | Light-cured | Total-etch/self-etch | Present | 18.8–39.6 | Not reported | Not assessed |
| Absent | 11.9–34.8 |
| Study (Year) | Overall QUIN Score (%) | Risk of Bias Category | Key Methodological Limitations |
|---|---|---|---|
| Kim et al. (2006) [22] | 66.6 | Moderate | No sample size calculation; no blinding |
| Koga et al. (2011) [5] | 52.0 | Moderate | No randomization; no blinding |
| Oyama et al. (2012) [23] | 52.0 | Moderate | No randomization; limited reporting |
| Yamaji et al. (2013) [11] | 52.0 | Moderate | No blinding; no sample size calculation |
| Yamaji et al. (2014) [20] | 58.3 | Moderate | No blinding; limited operator details |
| Ueta et al. (2016) [24] | 52.0 | Moderate | No randomization; no blinding |
| Ouchi et al. (2017) [19] | 62.5 | Moderate | Partial randomization; no blinding |
| Mikhlin et al. (2019) [21] | 45.8 | High | Poor reporting; no randomization or blinding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Patangia, A.; Mishra, L.; Kumar, M.; Saczuk, K.; Lapinska, B. Effect of Oxygen-Inhibited Layer of Dental Adhesives on Bond Strength: A Systematic Review. Materials 2026, 19, 113. https://doi.org/10.3390/ma19010113
Patangia A, Mishra L, Kumar M, Saczuk K, Lapinska B. Effect of Oxygen-Inhibited Layer of Dental Adhesives on Bond Strength: A Systematic Review. Materials. 2026; 19(1):113. https://doi.org/10.3390/ma19010113
Chicago/Turabian StylePatangia, Arpita, Lora Mishra, Manoj Kumar, Klara Saczuk, and Barbara Lapinska. 2026. "Effect of Oxygen-Inhibited Layer of Dental Adhesives on Bond Strength: A Systematic Review" Materials 19, no. 1: 113. https://doi.org/10.3390/ma19010113
APA StylePatangia, A., Mishra, L., Kumar, M., Saczuk, K., & Lapinska, B. (2026). Effect of Oxygen-Inhibited Layer of Dental Adhesives on Bond Strength: A Systematic Review. Materials, 19(1), 113. https://doi.org/10.3390/ma19010113

