Figure 1.
Technical Route.
Figure 1.
Technical Route.
Figure 2.
Dimensional Drawing of ZK60 Magnesium Alloy Tensile Specimen.
Figure 2.
Dimensional Drawing of ZK60 Magnesium Alloy Tensile Specimen.
Figure 3.
(a) Secondary current model, (b) Phase-field model.
Figure 3.
(a) Secondary current model, (b) Phase-field model.
Figure 4.
Dimensional Drawing of ZK60 Magnesium Alloy Tensile Specimen with Complex Plastic Residual Strains.
Figure 4.
Dimensional Drawing of ZK60 Magnesium Alloy Tensile Specimen with Complex Plastic Residual Strains.
Figure 5.
(a) Immersion test, (b) Chromic acid cleaning, (c) Post-cleaning completion.
Figure 5.
(a) Immersion test, (b) Chromic acid cleaning, (c) Post-cleaning completion.
Figure 6.
Schematic diagram of ZEISSLSM900 laser confocal inspection.
Figure 6.
Schematic diagram of ZEISSLSM900 laser confocal inspection.
Figure 7.
(a) 2D Corrosion Model with Complex Plastic Residual Strains, (b) Computational Mesh for the 2D Corrosion Model.
Figure 7.
(a) 2D Corrosion Model with Complex Plastic Residual Strains, (b) Computational Mesh for the 2D Corrosion Model.
Figure 8.
DIC Results Figure: (a) Engineering Strain 0.04; (b) Engineering Strain 0.08; (c) Engineering Strain 0.12; (d) Engineering Strain 0.16.
Figure 8.
DIC Results Figure: (a) Engineering Strain 0.04; (b) Engineering Strain 0.08; (c) Engineering Strain 0.12; (d) Engineering Strain 0.16.
Figure 9.
True Stress-True Strain Curve.
Figure 9.
True Stress-True Strain Curve.
Figure 10.
Fitting Results of the Swift Hardening Model.
Figure 10.
Fitting Results of the Swift Hardening Model.
Figure 11.
Dynamic polarization curves of ZK60 Magnesium Alloy in Hank’s solution for different engineering strains.
Figure 11.
Dynamic polarization curves of ZK60 Magnesium Alloy in Hank’s solution for different engineering strains.
Figure 12.
Plastic residual stress-variation interface kinetic coefficient L fitting curve.
Figure 12.
Plastic residual stress-variation interface kinetic coefficient L fitting curve.
Figure 13.
DIC Results of Tensile Testing for ZK60 Magnesium Alloy Specimens with Complex Plastic Residual Strains: (a) Engineering Strain 0.02; (b) Engineering Strain 0.04; (c) Engineering Strain 0.06; (d) Engineering Strain 0.08.
Figure 13.
DIC Results of Tensile Testing for ZK60 Magnesium Alloy Specimens with Complex Plastic Residual Strains: (a) Engineering Strain 0.02; (b) Engineering Strain 0.04; (c) Engineering Strain 0.06; (d) Engineering Strain 0.08.
Figure 14.
2D Corrosion Morphology of ZK60 Magnesium Alloy with Different Plastic Residual Strains: (a) Before Corrosion; (b) Engineering Strain 0.02; (c) Engineering Strain 0.04; (d) Engineering Strain 0.06; (e) Engineering Strain 0.08.
Figure 14.
2D Corrosion Morphology of ZK60 Magnesium Alloy with Different Plastic Residual Strains: (a) Before Corrosion; (b) Engineering Strain 0.02; (c) Engineering Strain 0.04; (d) Engineering Strain 0.06; (e) Engineering Strain 0.08.
Figure 15.
3D Corrosion Morphology of ZK60 Magnesium Alloy with Different Plastic Residual Strains: (a) Before Corrosion; (b) Engineering Strain 0.02; (c) Engineering Strain 0.04; (d) Engineering Strain 0.06; (e) Engineering Strain 0.08.
Figure 15.
3D Corrosion Morphology of ZK60 Magnesium Alloy with Different Plastic Residual Strains: (a) Before Corrosion; (b) Engineering Strain 0.02; (c) Engineering Strain 0.04; (d) Engineering Strain 0.06; (e) Engineering Strain 0.08.
Figure 16.
(a) 80 s Plastic Residual Strain; (b) 1000 s Plastic Residual Strain.
Figure 16.
(a) 80 s Plastic Residual Strain; (b) 1000 s Plastic Residual Strain.
Figure 17.
Corrosion Results Figure: (a) t = 1.3006 × 106 s, c; (b) t = 1.3006 × 106 s, φ; (c) t = 1.0002 × 107 s, c; (d) t = 1.0002 × 107 s, φ; (e) t = 1 × 108 s, c; (f) t = 1 × 108 s, φ; (g) t = 1.6 × 108 s, c; (h) t = 1.6 × 108 s, φ; (i) t = 2.3456 × 108 s, c; (j) t = 2.3456 × 108 s, φ.
Figure 17.
Corrosion Results Figure: (a) t = 1.3006 × 106 s, c; (b) t = 1.3006 × 106 s, φ; (c) t = 1.0002 × 107 s, c; (d) t = 1.0002 × 107 s, φ; (e) t = 1 × 108 s, c; (f) t = 1 × 108 s, φ; (g) t = 1.6 × 108 s, c; (h) t = 1.6 × 108 s, φ; (i) t = 2.3456 × 108 s, c; (j) t = 2.3456 × 108 s, φ.
Figure 18.
(a) 2D model for residual strain corrosion at strain concentration zones, (b) Finite element mesh for the 2D residual strain corrosion model at strain localization zones.
Figure 18.
(a) 2D model for residual strain corrosion at strain concentration zones, (b) Finite element mesh for the 2D residual strain corrosion model at strain localization zones.
Figure 19.
1000 s Plastic Residual Strain.
Figure 19.
1000 s Plastic Residual Strain.
Figure 20.
Corrosion Results with Residual Plastic Strain: (a) t = 1 × 103 s, c; (b) t = 1 × 103 s, φ; (c) t = 1.297 × 106 s, c; (d) t = 1.297 × 106 s, φ; (e) t = 1.0009 × 107 s, c; (f) t = 1.0009 × 107 s, φ; (g) t = 5.0005 × 107 s, c; (h) t = 5.0005 × 107 s, φ; (i) t = 1.0001 × 108 s, c; (j) t = 1.0001 × 108 s, φ; (k) t = 1.3322 × 108 s, c; (l) t = 1.3322 × 108 s, φ.
Figure 20.
Corrosion Results with Residual Plastic Strain: (a) t = 1 × 103 s, c; (b) t = 1 × 103 s, φ; (c) t = 1.297 × 106 s, c; (d) t = 1.297 × 106 s, φ; (e) t = 1.0009 × 107 s, c; (f) t = 1.0009 × 107 s, φ; (g) t = 5.0005 × 107 s, c; (h) t = 5.0005 × 107 s, φ; (i) t = 1.0001 × 108 s, c; (j) t = 1.0001 × 108 s, φ; (k) t = 1.3322 × 108 s, c; (l) t = 1.3322 × 108 s, φ.
Figure 21.
Corrosion Results without Residual Plastic Strain: (a) t = 1 × 103 s, c; (b) t = 1 × 103 s, φ; (c) t = 1.297 × 106 s, c; (d) t = 1.297 × 106 s, φ; (e) t = 1.0009 × 107 s, c; (f) t = 1.0009 × 107 s, φ; (g) t = 5.0005 × 107 s, c; (h) t = 5.0005 × 107 s, φ; (i) t = 1.0001 × 108 s, c; (j) t = 1.0001 × 108 s, φ; (k) t = 1.3322 × 108 s, c; (l) t = 1.3322 × 108 s, φ.
Figure 21.
Corrosion Results without Residual Plastic Strain: (a) t = 1 × 103 s, c; (b) t = 1 × 103 s, φ; (c) t = 1.297 × 106 s, c; (d) t = 1.297 × 106 s, φ; (e) t = 1.0009 × 107 s, c; (f) t = 1.0009 × 107 s, φ; (g) t = 5.0005 × 107 s, c; (h) t = 5.0005 × 107 s, φ; (i) t = 1.0001 × 108 s, c; (j) t = 1.0001 × 108 s, φ; (k) t = 1.3322 × 108 s, c; (l) t = 1.3322 × 108 s, φ.
Figure 22.
SEM Morphology of ZK60 Magnesium Alloy with Different Plastic Residual Strains.
Figure 22.
SEM Morphology of ZK60 Magnesium Alloy with Different Plastic Residual Strains.
Table 1.
Chemical composition of ZK60 magnesium alloy.
Table 1.
Chemical composition of ZK60 magnesium alloy.
Element | Mg | Zn | Cr | Mn |
---|
wt.% | Balance | 5.5~6.5 | 0.3~0.8 | 0.3~0.8 |
Table 2.
Composition and proportion of Hank’s solution (mol/L).
Table 2.
Composition and proportion of Hank’s solution (mol/L).
NaCl | KCl | CaCl2 | Na2HPO4·7H2O |
0.137 | 0.00537 | 0.00126 | 0.00034 |
NaHCO3 | KH2PO4 | C6H12O6 | MgSO4·7H2O |
0.00417 | 0.00044 | 0.00555 | 0.00081 |
Table 3.
Physical Parameters Table.
Table 3.
Physical Parameters Table.
Parameters | Value | Unit |
---|
Young’s modulus E | 40,000 | MPa |
Poisson’s ratio μ | 0.35 | 1 |
Interfacial characteristic thickness lc | 0.1 | mm |
Free energy density curvature A | 53.5 | N/mm2 |
Height of the double well potential w | 33.3 | N/mm2 |
Average concentration of metal csolid | 72,500 | mol/m3 |
Average saturation concentration csat | 2600 | mol/m3 |
Energy threshold coefficient ks | 0.2 | 1 |
Surface energy density Gc | 0.0002992 | mJ/mm2 |
Table 4.
DIC Measurement Results.
Table 4.
DIC Measurement Results.
Tensile Displacement (mm) | Strain (1) |
---|
0.2 | 0.022342 |
0.4 | 0.047290 |
0.6 | 0.070757 |
0.8 | 0.093166 |
Table 5.
Fitting Parameters Table of the Swift Hardening Model.
Table 5.
Fitting Parameters Table of the Swift Hardening Model.
Swift Model Parameters | Fitted Value |
---|
| 120 (MPa) |
N | 0.152 |
Table 6.
Fitting Results of Potentiodynamic Polarization Curve Parameters.
Table 6.
Fitting Results of Potentiodynamic Polarization Curve Parameters.
Engineering Strain (1) | Icorr (A/cm2) | Ecorr (V) |
---|
0.00 | 1.841 × 103 | −1.551 |
0.04 | 1.875 × 103 | −1.611 |
0.08 | 1.911 × 103 | −1.664 |
0.12 | 1.946 × 103 | −1.669 |
0.16 | 1.968 × 103 | −1.705 |
Table 7.
Fitted Parameters from Potentiodynamic Polarization Curves.
Table 7.
Fitted Parameters from Potentiodynamic Polarization Curves.
Tensile Displacement (mm) | a (V) | b (V) |
---|
0.0 | 1.06604 | 0.29408 |
0.2 | 1.05269 | 0.28934 |
0.4 | 1.03017 | 0.28135 |
0.6 | 1.00718 | 0.27320 |
0.8 | 0.98400 | 0.26498 |
Table 8.
Corrosion Results from Secondary Current Distribution Module.
Table 8.
Corrosion Results from Secondary Current Distribution Module.
Plastic Residual Strain (1) | 15-Day Corrosion Interface Moving Position (mm) |
---|
0.000000 | 0.0639 |
0.022342 | 0.0687 |
0.047290 | 0.0779 |
0.070757 | 0.0919 |
0.093166 | 0.1014 |
Table 9.
Phase-Field Corrosion Simulation Results.
Table 9.
Phase-Field Corrosion Simulation Results.
15-Day Phase-field Interface Shift Position (mm) | L (m·s/kg) |
---|
0.038 | 0.00001 |
0.059 | 0.00002 |
0.070 | 0.00003 |
0.080 | 0.00004 |
0.083 | 0.00005 |
0.101 | 0.00010 |
0.116 | 0.00015 |
0.126 | 0.00020 |
Table 10.
DIC Results of Tensile Testing for ZK60 Magnesium Alloy Specimens with Complex Plastic Residual Strains.
Table 10.
DIC Results of Tensile Testing for ZK60 Magnesium Alloy Specimens with Complex Plastic Residual Strains.
Tensile Displacement (mm) | Strain (1) |
---|
0.4 | 0.004 |
0.8 | 0.038 |
1.2 | 0.085 |
1.6 | 0.150 |
Table 11.
Surface Roughness after Immersion Corrosion.
Table 11.
Surface Roughness after Immersion Corrosion.
Strain (1) | Sq (μm) | Sa (μm) |
---|
0.004 | 67.17 | 50.52 |
0.038 | 79.02 | 60.62 |
0.080 | 92.49 | 69.41 |
0.150 | 123.16 | 97.29 |