Atomic-Scale Structural Properties in NiCo2O4/CuFe2O4 Bilayer Heterostructures on (001)-MgAl2O4 Substrate Regulated by Film Thickness
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, Y.; VanDover, R.B.; Gyorgy, E.M.; Phillips, J.M.; Korenivski, V.; Werder, D.J.; Chen, C.H.; Cava, R.J.; Krajewski, J.J.; Peck, W.F.; et al. Structure and Magnetic Properties of Epitaxial Spinel Ferrite Thin Films. Appl. Phys. Lett. 1996, 68, 714–716. [Google Scholar] [CrossRef]
- Hcini, S.; Brahmi, M.; Dhaou, M.H.; Khirouni, K.; Mallah, A.; Mashary, F.S.A.; Albadri, A.E. Studies of Structural, Dielectric, and Optical Properties of CuCoFeO4 Spinel for High Frequency, Microwave, and Optoelectronic Applications. J. Mol. Struct. 2023, 1291, 135981. [Google Scholar] [CrossRef]
- Zhang, R.; Qin, C.; Bala, H.; Wang, Y.; Cao, J. Recent Progress in Spinel Ferrite (MFe2O4) Chemiresistive Based Gas Sensors. Nanomaterials 2023, 13, 2188. [Google Scholar] [CrossRef] [PubMed]
- Anandan, S.; Selvamani, T.; Prasad, G.G.; Asiri, A.M.; Wu, J.J. Magnetic and Catalytic Properties of Inverse Spinel CuFe2O4 Nanoparticles. J. Magn. Magn. Mater. 2017, 432, 437–443. [Google Scholar] [CrossRef]
- Yang, A.; Chen, Z.; Islam, S.M.; Vittoria, C.; Harris, V.G. Cation Engineering of Cu-ferrite Films Deposited by Alternating Target Laser Ablation Deposition. J. Appl. Phys. 2008, 103, 07E509. [Google Scholar] [CrossRef]
- Zheng, M.; Guan, P.F.; Fan, H.L. Mechanically Enhanced Magnetism in Flexible Semitransparent CuFe2O4/mica Epitaxial Heterostructures. Appl. Surf. Sci. 2022, 584, 152586. [Google Scholar] [CrossRef]
- Ati, A.A.; Abdalsalam, A.H.; Abbas, H.H. Influence of Annealing on Structural, Morphology, Magnetic and Optical Properties of PLD Deposited CuFe2O4 Thin Films. Inorg. Chem. Commun. 2022, 146, 110072. [Google Scholar] [CrossRef]
- Xu, X.S.; Mellinger, C.; Cheng, Z.G.; Chen, X.G.; Hong, X. Epitaxial NiCo2O4 Film as an Emergent Spintronic Material: Magnetism and Transport Properties. J. Appl. Phys. 2022, 132, 020901. [Google Scholar] [CrossRef]
- Liu, L.; Zhen, C.M.; Xu, L.; Shui, Z.Z.; Ma, L.; Zhao, D.W.; Hou, D.L. Semiconductor-Metal Transition in Vulcanized NiCo2O4 Film. J Phys. Chem. Solids 2023, 174, 111189. [Google Scholar] [CrossRef]
- Bitla, Y.; Chin, Y.Y.; Lin, J.C.; Van, C.N.; Liu, R.R.; Zhu, Y.M.; Liu, H.J.; Zhan, Q.; Lin, H.J.; Chen, C.T.; et al. Origin of Metallic Behavior in NiCo2O4 Ferrimagnet. Sci. Rep. 2015, 5, 15201. [Google Scholar] [CrossRef]
- Kim, J.; Park, Y.J.; Dho, J. Ferrimagnetic and Metallic Properties of (001) NiCo2O4 Films Fabricated at Various Oxygen Pressures. J. Magn. 2023, 28, 102–107. [Google Scholar] [CrossRef]
- Wu, C.F.; Zhen, C.M.; Zhang, X.Z.; Xu, X.S.; Xie, J.T.; Ma, L.; Zhao, D.W.; Hou, D.L. Sensitive Metallic Behavior in Epitaxial NiCo2O4 Films Regulated by the Film Thickness. J Phys. Chem. Solids 2022, 160, 110321. [Google Scholar] [CrossRef]
- Zhen, C.M.; Zhang, X.Z.; Wei, W.G.; Guo, W.Z.; Pant, A.; Xu, X.S.; Shen, J.; Ma, L.; Hou, D.L. Nanostructural Origin of Semiconductivity and Large Magnetoresistance in Epitaxial NiCo2O4/Al2O3 Thin Films. J. Phys. D 2018, 51, 145308. [Google Scholar] [CrossRef]
- Lee, M. Disordered Exchange is Biased. Nat. Phys. 2021, 17, 434–435. [Google Scholar] [CrossRef]
- Hassnain Jaffari, G.; Bah, M.; Ismat Shah, S. Strong Magnetic Coupling Between Antiferromagnetic and Ferromagnetic Phases in Polycrystalline Hollow Nanoparticles Composed of Spinel Solid Solution. J. Alloys Compd. 2021, 857, 157607. [Google Scholar] [CrossRef]
- Muzzi, B.; Albino, M.; Petrecca, M.; Innocenti, C.; de Julián Fernández, C.; Bertoni, G.; Ibarra, M.R.; Christensen, M.; Avdeev, M.; Marquina, C.; et al. Defect-engineering by Solvent Mediated Mild Oxidation as a Tool to Induce Exchange Bias in Metal Doped Ferrites. Small Methods 2023, 7, 2300647. [Google Scholar] [CrossRef]
- Beatriz, R.M.; Martín, T.A.; Skorikov, A.S.; Miguel, C.H.; Bals, S.; Salgueiriño, V. Interfaceless Exchange Vias in CoFe2O4 Nanocrystals. Nano Lett. 2023, 23, 1688–1695. [Google Scholar]
- Díez, J.M.; Cuñado, J.L.F.; Lapa, P.; Solís, R.; Arnay, I.; Pedraz, P.; Perna, P.; Bollero, A.; Miranda, R.; Schuller, I.K.; et al. Interfacial Exchange Phenomena Driven by Ferromagnetic Domains. Adv. Mater. Interfaces 2022, 9, 2200331. [Google Scholar] [CrossRef]
- Kim, J.V.; Stamps, R.L. Defect-modified Exchange Bias. Appl. Phys. Lett. 2001, 79, 2785–2787. [Google Scholar] [CrossRef]
- Khan, A.; Rajput, S.; Anas, M.; Malik, V.K.; Maitra, T.; Nath, T.K.; Taraphder, A. The Effect of Antisite Disorder on Magnetic and Exchange Bias Properties of Gd-substituted Y2CoMnO6 Double Perovskite. J. Phys. Condens. Matter. 2022, 34, 435801. [Google Scholar] [CrossRef] [PubMed]
- McKenna, K.P.; Hofer, F.; Gilks, D.; Lazarov, V.K.; Chen, C.; Wang, Z.; Ikuhara, Y. Atomic-scale Structure and Properties of Highly Stable Antiphase Boundary Defects in Fe3O4. Nat. Commun. 2014, 5, 5740. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lu, J.; Jin, L.; Rusz, J.; Kocevski, V.; Yanagihara, H.; Kita, E.; Mayer, J.; Dunin-Borkowski, R.E.; Xiang, H.; et al. Atomic Structure and Electron Magnetic Circular Dichroism of Individual Rock Salt Structure Antiphase Boundaries in Spinel Ferrites. Adv. Funct. Mater. 2021, 31, 2008306. [Google Scholar] [CrossRef]
- Mi, S.B.; Zhang, R.Y.; Lu, L.; Liu, M.; Wang, H.; Jia, C.L. Atomic-scale Structure and Formation of Antiphase Boundaries in α-Li0.5Fe2.5O4 Thin Films on MgAl2O4 (001) Substrates. Acta Mater. 2017, 127, 178–184. [Google Scholar] [CrossRef]
- Ahmed, S.; Pokle, A.; Bianchini, M.; Schweidler, S.; Beyer, A.; Brezesinski, T.; Janek, J.; Volz, K. Understanding the Formation of Antiphase Boundaries in Layered Oxide Cathode Materials and Their Evolution Upon Electrochemical Cycling. Matter 2021, 4, 3953–3966. [Google Scholar] [CrossRef]
- Lee, D.; Trang, T.T.T.; Heo, Y.U. Role of Dislocation Climb on Twin Boundary and Antiphase Boundary Formations in Inverse-Spinel MnAl2O4. J. Alloys Compd. 2023, 958, 170526. [Google Scholar] [CrossRef]
- Cao, K.Y.; Tian, F.H.; Huang, S.; Zhang, Y.; Zhao, Q.Z.; Yao, K.K.; Dai, Z.Y.; Li, J.N.; Yu, Z.H.; Zhou, C.; et al. Tuning the Exchange Bias Effect Via Thermal Treatment Temperature in Bulk Ni50Mn42In3Sb5 Heusler Alloys. Appl. Phys. Express 2021, 14, 105502. [Google Scholar] [CrossRef]
- Panigrahi, B.; Raja, M.M.; Murapaka, C.; Halder, A. Bias-field-free Microwave Operation in NiFe/FeMn Exchange Biased Bilayers by Varying FeMn Thickness. J. Supercond. Nov. Magn. 2023, 36, 1075–1083. [Google Scholar] [CrossRef]
- Sun, H.D.; Jing, C.; Su, Y.; Cai, F.Q.; Yang, S.Y.; Zhou, T.; Zhang, Y.L.; Li, Z. Spontaneous Exchange Bias and Magnetic Characteristics in Ni50Mn35Sn10V5 Heusler Alloy. Solid State Commun. 2023, 373–374, 115339. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, X.; Wang, M.; Shen, F.; Zhang, J.; Chen, Y.; Feng, H.L.; Xu, J.; Peng, Y.; Li, W.; et al. Giant Exchange-bias-like Effect at Low Cooling Fields Induced by Pinned Magnetic Domains in Y2NiIrO6 Double Perovskite. Adv. Mater. 2023, 35, 2209759. [Google Scholar] [CrossRef]
- Pal, K.; Das, I. The Impact of Oxygen Deficiency on Giant Exchange Bias in Perovskite Oxide: SrFe0.5Co0.5O3−δ (δ = 0.37). J. Alloys Compd. 2023, 960, 170794. [Google Scholar] [CrossRef]
- Pennycook, S.J.; Nellist, P.D. Z-Contrast Scanning Transmission Electron Microscopy. In Impact of Electron and Scanning Probe Microscopy on Materials Research; Rickerby, D.G., Valdrè, G., Valdrè, U., Eds.; Springer: Berlin, Germany, 1999; pp. 161–207. [Google Scholar]
- Liu, K.; Zhang, R.Y.; Lu, L.; Mi, S.B.; Liu, M.; Wang, H.; Jia, C.L. Formation of Antiphase Boundaries in CuFe2O4 Films Induced by Rough MgAl2O4 (001) Substrates. Thin Solid Films 2019, 680, 55–59. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Yang, C.P.; Liu, B.; Liu, G.J.; Diao, F.Y.; Yang, H.W.; Wang, Y.Q. Effect of film thickness and strain state on the structure, magnetic and transport properties of La0.9Sr0.1CoO3 films. Solid State Ion 2018, 319, 28–33. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Shao, S.; Saghayezhian, M.; Li, J.; Fittipaldi, R.; Vecchione, A.; Siwakoti, P.; Zhu, Y.; Zhang, J.; et al. Designing Antiphase Boundaries by Atomic Control of Heterointerfaces. Proc. Natl. Acad. Sci. USA 2018, 115, 9485–9490. [Google Scholar] [CrossRef] [PubMed]
- Joanna, B.G.; Marta, R.; Adam, C.; Edward, K.; Katarzyna, Z. Surface and Interface Properties of TiO2/CuO Thin Film Bilayers Deposited by rf Reactive Magnetron Sputtering. Appl. Surf. Sci. 2023, 616, 156394. [Google Scholar]
- Aouadi, K.; Nouveau, C.; Besnard, A.; Tlili, B.; Montagne, A.; Chafra, M. The Effect of Bilayer Periods and Their Thickness in Magnetron Sputtering Protective Multilayer Coatings for Tribological Applications. J. Mater. Eng. Perform. 2021, 30, 2526–2535. [Google Scholar] [CrossRef]
- Mendil, J.; Trassin, M.; Bu, Q.; Schaab, J.; Baumgartner, M.; Murer, C.; Dao, P.T.; Vijayakumar, J.; Bracher, D.; Bouillet, C.; et al. Magnetic Properties and Domain Structure of Ultrathin Yttrium Iron Garnet/Pt Bilayers. Phys. Rev. Mater. 2019, 3, 034403. [Google Scholar] [CrossRef]
- Feng, M.; Ahlm, N.J.; Kane, A.M.; Chiu, I.; Sasaki, D.Y.; Shafer, P.; Mehta, A.; Takamura, Y. Strain and Thickness-dependent Magnetic Properties of Epitaxial La0.67Sr0.33CoO3/La0.67Sr0.33MnO3 Bilayers. J. Appl. Phys. 2022, 132, 195301. [Google Scholar] [CrossRef]
- Jana, A.K.; Raja, M.M.; Chelvane, J.A.; Ghosal, P.; Jammalamadaka, S.N. Ferromagnetic Thickness Variation Exchange Bias in IrMn (111)/Fe2CoSi Hybrid Structure. J. Supercond. Nov. Magn. 2022, 35, 1313–1319. [Google Scholar] [CrossRef]
- Chen, Z.L.; Liu, X.; Jiang, J.W.; Li, R.; Wang, Y.; Guo, L.; Xu, Y.D.; Mi, W.B. Modulating Exchange Bias, Anisotropic Magnetoresistance, and Planar Hall Resistance of Flexible Co/MnN Epitaxial Bilayers on Mica by Bending Strain. ACS Appl. Mater. Interfaces 2023, 15, 6209–6216. [Google Scholar] [CrossRef]
- Margulies, D.T.; Parker, F.T.; Rudee, M.L.; Spada, F.E.; Chapman, J.N.; Aitchison, P.R.; Berkowitz, A.E. Origin of the Anomalous Magnetic Behavior in Single Crystal Fe3O4 Films. Phys. Rev. Lett. 1997, 79, 5162–5167. [Google Scholar] [CrossRef]
- Eerenstein, W.; Palstra, T.T.M.; Hibma, T.; Celotto, S. Origin of the Increased Resistivity in Epitaxial Fe3O4 Films. Phys. Rev. B 2002, 66, 201101. [Google Scholar] [CrossRef]
- Wu, J.; Guzman, R.; Zhang, Y.; Chen, H.; Chen, Y.; Bao, S.; Yi, D.; Nan, C.-W.; Zhou, W.; Chen, C.; et al. Lateral Magnetic Anisotropy Modulated by Antiphase Domain Boundaries in PrBaCo2O5+δ thin films. Acta Mater. 2023, 247, 118760. [Google Scholar] [CrossRef]
- Vronka, M.; Straka, L.; Graef, M.D.; Heczko, O. Antiphase Boundaries, Magnetic Domains, and Magnetic Vortices in Ni–Mn–Ga Single Crystals. Acta Mater. 2020, 184, 179–186. [Google Scholar] [CrossRef]
- Sarkar, T.; Reddy, V.R.; Elizabeth, S.; Kumar, P.S.A. Antiphase Boundary in Antiferromagnetic Multiferroic LuMn0.5Fe0.5O3: Anomalous Ferromagnetism, Exchange Bias Effect and Large Vertical Hysteretic Shift. J. Phys. Condens. Matter 2018, 30, 315801. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.K.; Sofin, R.G.S.; Nolan, A.; Shvets, I.V. Antiphase Boundaries Induced Exchange Coupling in Epitaxial Fe3O4 Thin Films. J. Magn. Magn. Mater. 2005, 286, 463–467. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Zhang, R.; Li, J.; Zhang, S. Atomic-Scale Structural Properties in NiCo2O4/CuFe2O4 Bilayer Heterostructures on (001)-MgAl2O4 Substrate Regulated by Film Thickness. Materials 2024, 17, 871. https://doi.org/10.3390/ma17040871
Liu K, Zhang R, Li J, Zhang S. Atomic-Scale Structural Properties in NiCo2O4/CuFe2O4 Bilayer Heterostructures on (001)-MgAl2O4 Substrate Regulated by Film Thickness. Materials. 2024; 17(4):871. https://doi.org/10.3390/ma17040871
Chicago/Turabian StyleLiu, Kun, Ruyi Zhang, Jiankang Li, and Songyou Zhang. 2024. "Atomic-Scale Structural Properties in NiCo2O4/CuFe2O4 Bilayer Heterostructures on (001)-MgAl2O4 Substrate Regulated by Film Thickness" Materials 17, no. 4: 871. https://doi.org/10.3390/ma17040871
APA StyleLiu, K., Zhang, R., Li, J., & Zhang, S. (2024). Atomic-Scale Structural Properties in NiCo2O4/CuFe2O4 Bilayer Heterostructures on (001)-MgAl2O4 Substrate Regulated by Film Thickness. Materials, 17(4), 871. https://doi.org/10.3390/ma17040871