Electrospun Polymeric Fiber Systems Inoculated with Cyanoacrylate Tissue Adhesive: A Novel Hemostatic Alternative during Open Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Manufacturing of Electrospun Substrate
2.2. Manufacturing of the Wound Dressing Support and Tensile Strength Test Systems
2.3. Production of Surgical Patches
2.4. Characterization and Functional Testing
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. FT-IR Analysis
3.3. Peeling Test
3.4. In Vivo Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobson, G.P. Trauma of Major Surgery, A global problem that is not going away. Int. J. Surg. 2020, 81, 47–54. [Google Scholar] [CrossRef]
- Berrios-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Committee, Centers for disease control and prevention guideline for the prevention of surgical site infections. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Baghdasarian, S.; Saleh, B.; Baidya, A.; Kim, H.; Ghovvati, M.; Sani, E.S.; Haghniaz, R.; Mahdu, S.; Kaneli, M.; Nashadi, I.; et al. Engineering a naturally derived hemostatic sealant for sealing internal organs. Mater. Today Bio 2022, 13, 100199. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.statista.com/statistics/1404242/worldwide-surgical-procedures-market-volume (accessed on 11 February 2024).
- Han, W.; Zhou, B.; Yang, K.; Xiong, X.; Luan, S.; Wang, Y.; Xu, Z.; Lei, P.; Luo, Z.; Gao, J.; et al. Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing. Bioact. Mater. 2020, 5, 768–778. [Google Scholar] [CrossRef]
- García, I.C.; Villalba, J.S.; Iovino, D.; Franchi, C.; Iori, V.; Pettinato, G.; Inversini, D.; Amico, F.; Ietto, G. Liver Trauma: Until When We Have to Delay Surgery? A Review. Life 2022, 12, 694. [Google Scholar] [CrossRef]
- El-Matbouly, M.; Jabbour, G.; El-Menyar, A.; Peralta, R.; Abdelrahman, H.; Zarour, A.; Al-Hassani, A.; Al-Thani, H. Blunt splenic trauma: Assessment, management and outcomes. Surgeon 2016, 14, 52–58. [Google Scholar] [CrossRef]
- Kozar, R.A.; Crandall, M.; Shanmuganathan, K.; Zarzaur, B.L.; Coburn, M.; Cribari, C.; Kaups, K.; Schuster, K.; Tominagaet, G.T. Organ injury scaling 2018 update: Spleen, liver, and kidney. J. Trauma Acute Care Surg. 2018, 85, 1119–1122. [Google Scholar] [CrossRef]
- Li, B.; Wang, M.; Wang, Y.; Zhou, L. Can intraoperative suturing reduce the incidence of posttonsillectomy hemorrhage? A systematic review and meta-analysis. Laryngoscope Investig. Otolaryngol. 2022, 7, 1206–1216. [Google Scholar] [CrossRef]
- Tranchart, H.; O’Rourke, N.; Van Dam, R.; Gaillard, M.; Lainas, P.; Sugioka, A.; Wakabayashi, G.; Dagher, I. Bleeding control during laparoscopic liver resection: A review of literature. J. Hepatobiliary Pancreat. Sci. 2015, 22, 371–378. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, H.; Min, N.; Wei, Y.; Li, X.; Li, X. Application and outlook of topical hemostatic materials: A narrative review. Ann. Transl. Med. 2021, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Leggat, P.A.; Smith, D.R.; Kedjarune, U. Surgical Applications of Cyanoacrylate Adhesives: A Review of Toxicity. ANZ J. Surg. 2007, 4, 209–213. [Google Scholar] [CrossRef]
- Bhagat, V.; Becker, M.L. Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules 2017, 18, 3009–3039. [Google Scholar] [CrossRef] [PubMed]
- Bre, L.P.; Zheng, Y.; Pego, A.P.; Wang, W. Taking tissue adhesives to the future: From traditional synthetic to new biomimetic approaches. Biomater. Sci. 2013, 1, 239–253. [Google Scholar] [CrossRef]
- Donnelly, E.F.; Johnston, D.S.; Pepper, D.C.; Dunn, D.J. Ionic and zwitterionic polymerization of n-alkyl2-cyanoacrylates. J. Polym. Sci. Polym. Lett. Ed. 1977, 15, 399–405. [Google Scholar] [CrossRef]
- Jiang, K.; Long, Y.-Z.; Chen, Z.-J.; Liu, S.-L.; Huang, Y.-Y.; Jiang, X.; Huang, Z.-Q. Airflow-directed in situ electrospinning of a medical glue of cyanoacrylate for rapid hemostasis in liver resection. Nanoscale 2014, 6, 7792–7798. [Google Scholar] [CrossRef]
- Campbell, B.; Anderson, Z.; Han, D.; Nebor, I.; Forbes, J.; Steckl, A.J. Electrospinning of cyanoacrylate tissue adhesives for human dural repair in endonasal surgery. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 660–667. [Google Scholar] [CrossRef]
- Petrie, E. Cyanoacrylate Adhesives in Surgical Applications: A Critical Review. Rev. Adhes. Adhes. 2014, 2, 254–311. [Google Scholar] [CrossRef]
- Schoenberg, J.E. Anionic Polymerization Inhibitor for Cyanoacrylate Adhesives. United. States Patent No. 4182823, 8 January 1980. Available online: https://patentimages.storage.googleapis.com/a2/34/bf/54aeab934bc641/US4182823.pdf (accessed on 11 February 2024).
- Agency for Toxic Substances and Disease Registry. Medical Management Guidelines for Sulfur Dioxide, CAS # 7446-09-5. Available online: https://duckduckgo.com/?t=ffab&q=Agency+for+Toxic+Substances+and+Disease+Registry%2C+Medical+Management+Guidelines+for+Sulfur+Dioxide%2C+CAS+%23+7446-09-5.&ia=web (accessed on 11 February 2024).
- Batista, M.P.; Gonçalves, V.S.S.; Gaspar, F.B.; Nogueira, I.D.; Matias, A.A.; Gurikov, P. Novel alginate-chitosan aerogel fibres for potential wound healing applications. Macromolecules 2020, 156, 773–782. [Google Scholar] [CrossRef]
- Sghayyar, H.N.M.; Lim, S.S.; Ahmed, I.; Lai, J.Y.; Cheong, X.Y.; Chong, Z.W.; Albert, F.X.L.; Loh, H.-S. Fish biowaste gelatin coated phosphate-glass fibres for wound-healing application. Eur. Polym. J. 2020, 122, 109386. [Google Scholar] [CrossRef]
- Juncos Bombin, A.D.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C 2020, 114, 110994. [Google Scholar] [CrossRef] [PubMed]
- Altun, E.; Bayram, C.; Gultekinoglu, M.; Matharu, R.; Delbusso, A.; Homer-Vanniasinkam, S.; Edirisinghe, M. Pressure-Spun Fibrous Surgical Sutures for Localized Antibacterial Delivery: Development, Characterization, and In Vitro Evaluation. ACS Appl. Mater. Interfaces 2023, 15, 45561–45573. [Google Scholar] [CrossRef] [PubMed]
- Brako, F.; Luo, C.; Matharu, R.K.; Ciric, L.; Harker, A.; Edirisinghe, M.; Craig, D.Q.M. A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application. Pharmaceutics 2020, 12, 373. [Google Scholar] [CrossRef]
- Conn, R.E.; Kolstad, J.J.; Borzelleca, J.F.; Dixler, D.S.; Filer, L.J., Jr.; LaDu, B.N.; Pariza, M.W. Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food Chem. Toxicol. 1995, 33, 273–283. [Google Scholar] [CrossRef]
- Datta, R.; Henry, M. Lactic acid: Recent advances in products, processes and technologies—A review. J. Chem. Technol. Biotechnol. 2006, 81, 1119–1129. [Google Scholar] [CrossRef]
- Burger, C.; Kabir, K.; Rangger, C.; Mueller, M.; Minor, T.; Tolba, R.H. Polylactide (LTS) causes less inflammation responses than Polydioxanone (PDS): A meniscus repair model in sheep. Arch. Ortop. Trauma. Surg. 2006, 126, 695–705. [Google Scholar] [CrossRef]
- Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019, 49, 347–380. [Google Scholar] [CrossRef]
- Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric Biomaterials for Tissue Engineering Applications. Int. J. Polym. Sci. 2011, 184623, 1–2. [Google Scholar] [CrossRef]
- Aworinde, A.K.; Adeosun, S.O.; Oyawale, F.A.; Akinlabi, E.T.; Akinlabi, S.A. Comparative effects of organic and inorganic bio-fillers on the hydrofobicity of polylactic acid. Results Eng. 2020, 5, 100098. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, P.; Gill, E.L.; Wang, W.; Huang, Y.Y.S. Advances and innovations in electrospinning technology. In Biomedical Applications of Electrospinning and Electrospraying; Kasoju, N., Ye, H., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2021; Chapter 2; pp. 45–81. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nano fibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1168. [Google Scholar] [CrossRef]
- Taylor, G.I. Electrically driven jets. Proc. R. Soc. 1969, 313, 453–475. [Google Scholar] [CrossRef]
- Sill, T.J.; Von Recum, H.A. Electrospinning: Applications in drug delivery and tissue Engineering. Biomaterials 2008, 29, 1989–2006. [Google Scholar] [CrossRef]
- Llorens, E.; del Valle, L.J.; Puiggali, J. Electrospun scaffolds of polylactide with a different enantiomeric content and loaded with anti-inflammatory and antibacterial drug. Macromol. Res. 2015, 23, 636–648. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Lai, P.; Shang, L. Bio-inspired adhesive hydrogel for biomedicine—Principles and design strategies. Smart Med. 2024, 1, e20220024. [Google Scholar] [CrossRef]
- Singer, A.J.; Quinn, J.M.; Hollander, J.E. The cyanoacrylate topical skin adhesives. Am. J. Emerg. Med. 2008, 26, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, M.; Barros, A.A.; Aroso, I.M.; Autorino, R.; Lima, E.; Silva, J.M.; Reis, R.L. Use of hemostatic agents for surgical bleeding in laparoscopic partial nephrectomy: Biomaterials perspective. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 3009–3123. [Google Scholar] [CrossRef] [PubMed]
- Sailhan, V.; Rosy, E.; Giral, L.; Schué, F. Highly Pure Alkyl 2-Cyanoacrylate. Patent Number US6057472A, 2 May 2000. [Google Scholar]
- Guertin, D.L.; Wiberlei, S.E.; Bauer, W.H.; Goldenson, J. Infrared Absorption Spectra of Branched-Chain Fatty Acids. Anal. Chem. 1956, 28, 1194–1195. [Google Scholar] [CrossRef]
- Sinclair, R.G.; McKay, A.F.; Jones, R.N. The Infrared Absorption Spectra of Saturated Fatty Acids and Esters. J. Am. Chem. Soc. 1952, 74, 2570–2575. [Google Scholar] [CrossRef]
- Brown, J.K.; Sheppard, N.; Simpson, D.M. The interpretation of the infra-red and Raman spectra of the n-paraffins. Philos. Trans. Roy. Soc. Ser. A Math. Phys. Sci. 1954, 247, 35–58. [Google Scholar] [CrossRef]
- Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C67663&Units=SI&Type=IR-SPEC&Index=2#IR-SPEC (accessed on 11 February 2024).
- Brown, J.K.; Shepperd, N.; Simpson, D.M. The interpretation of the vibrational spectra of the n-paraffins. Discuss. Faraday Soc. 1950, 9, 261–274. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosa, V.P.; Ilie-Ene, A.; Tripon, S.C.; Mesaros, A.; Fechete, R.; Tosa, N.; Csapai, A.; Dindelegan, G.C.; Popa, C.O. Electrospun Polymeric Fiber Systems Inoculated with Cyanoacrylate Tissue Adhesive: A Novel Hemostatic Alternative during Open Surgery. Materials 2024, 17, 4318. https://doi.org/10.3390/ma17174318
Tosa VP, Ilie-Ene A, Tripon SC, Mesaros A, Fechete R, Tosa N, Csapai A, Dindelegan GC, Popa CO. Electrospun Polymeric Fiber Systems Inoculated with Cyanoacrylate Tissue Adhesive: A Novel Hemostatic Alternative during Open Surgery. Materials. 2024; 17(17):4318. https://doi.org/10.3390/ma17174318
Chicago/Turabian StyleTosa, Victor P., Alexandru Ilie-Ene, Septimiu C. Tripon, Amalia Mesaros, Radu Fechete, Nicoleta Tosa, Alexandra Csapai, George C. Dindelegan, and Catalin O. Popa. 2024. "Electrospun Polymeric Fiber Systems Inoculated with Cyanoacrylate Tissue Adhesive: A Novel Hemostatic Alternative during Open Surgery" Materials 17, no. 17: 4318. https://doi.org/10.3390/ma17174318
APA StyleTosa, V. P., Ilie-Ene, A., Tripon, S. C., Mesaros, A., Fechete, R., Tosa, N., Csapai, A., Dindelegan, G. C., & Popa, C. O. (2024). Electrospun Polymeric Fiber Systems Inoculated with Cyanoacrylate Tissue Adhesive: A Novel Hemostatic Alternative during Open Surgery. Materials, 17(17), 4318. https://doi.org/10.3390/ma17174318