Enhanced Activation in Phosphorous-Doped Silicon via Dual-Beam Laser Annealing
Abstract
:1. Introduction
2. Experiment
Materials and Annealing Experiment
3. Sample Analysis Methods
4. Results and Discussion
4.1. Analysis of Sheet Resistance
4.2. Analysis of Hall Effect Measurements
4.3. Analysis of Microstructure
4.4. Analysis of Dopant Concentration Profiles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radamson, H.H.; Zhu, H.; Wu, Z.; He, X.; Lin, H.; Liu, J.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; et al. State of the Art and Future Perspectives in Advanced CMOS Technology. Nanomaterials 2020, 10, 1555. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.-Y.; Hsieh, P.-Y.; Yang, C.-C.; Shen, C.-H.; Shieh, J.-M.; Yeh, W.-K.; Wu, M.-C. Single-Grain Gate-All-Around Si Nanowire FET Using Low-Thermal-Budget Processes for Monolithic Three-Dimensional Integrated Circuits. Micromachines 2020, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Son, K.; Cho, K.; Kim, S.; Park, S.; Jung, D.H.; Park, J.; Park, G.; Kim, S.; Shin, T.; Kim, Y.; et al. Signal Integrity Design and Analysis of 3-D X-point Memory Considering Crosstalk and IR Drop for Higher Performance Computing. IEEE Trans. Compon. Packaging Manuf. Technol. 2020, 10, 858–869. [Google Scholar] [CrossRef]
- Ando, T.; Fu, X.A. Materials: Silicon and Beyond. Sens. Actuator A Phys. 2019, 296, 340–351. [Google Scholar] [CrossRef]
- Ovanesyan, R.A.; Filatova, E.A.; Elliott, S.D.; Hausmann, D.M.; Smith, D.C.; Agarwal, S. Atomic Layer Deposition of Silicon-Based Dielectrics for Semiconductor Manufacturing: Current Status and Future Outlook. J. Vac. Sci. Technol. A 2019, 37, 060904. [Google Scholar] [CrossRef]
- Ryu, H.Y.; Lee, M.; Park, H.; Ko, D.H. Chemical Bonding States and Dopant Redistribution of Heavily Phosphorus-Doped Epitaxial Silicon Films: Effects of Millisecond Laser Annealing and Doping Concentration. Appl. Surf. Sci. 2020, 504, 144447. [Google Scholar] [CrossRef]
- Lee, M.; Ryu, H.Y.; Ko, E.; Ko, D.H. Effects of Phosphorus Doping and Postgrowth Laser Annealing on The Structural, Electrical, and Chemical Properties of Phosphorus-Doped Silicon Films. ACS Appl. Electron. Mater. 2019, 1, 288–301. [Google Scholar] [CrossRef]
- Chery, N.; Zhang, M.; Monflier, R.; Mallet, N.; Seine, G.; Paillard, V.; Poumirol, J.M.; Larrieu, G.; Royet, A.S.; Kerdilès, S.; et al. Study of Recrystallization and Activation Processes in Thin and Highly Doped Silicon-in-Insulator Layers by Nanosecond Laser Thermal Annealing. J. Appl. Phys. 2022, 131, 65301. [Google Scholar] [CrossRef]
- Zhan, X.; Su, Y.; Fu, Y.; Chen, J.; Xu, H. Phosphorous-Doped a-Si Film Crystallization using Heat-Assisted Femtosecond Laser Annealing. IEEE Trans. Semicond. Manuf. 2019, 33, 116–120. [Google Scholar] [CrossRef]
- Chang, R.D.; Lin, C.H. Activation and Deactivation of Phosphorus in Silicon-on-Insulator Substrates. Mater. Sci. Semicond. Process. 2016, 42, 219–222. [Google Scholar] [CrossRef]
- Gluschenkov, O.; Liu, Z.; Niimi, H.; Mochizuki, S.; Fronheiser, J.; Miao, X.; Li, J.; Demarest, J.; Zhang, C.; Niu, C.; et al. FinFET Performance with Si: P and Ge: Group-III-Metal Metastable Contact Trench Alloys. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 17.2.1–17.2.4. [Google Scholar] [CrossRef]
- Rosseel, E.; Dhayalan, S.K.; Hikavyy, A.Y.; Loo, R.; Profijt, H.B.; Kohen, D.; Kubicek, S.; Chiarella, T.; Yu, H.; Horiguchi, N.; et al. Selective Epitaxial Growth of High-P Si: P for Source/Drain Formation in Advanced Si nfets. ECS Trans. 2016, 75, 347. [Google Scholar] [CrossRef]
- Wu, H.; Gluschenkov, O.; Tsutsui, G.; Niu, C.; Brew, K.; Durfee, C.; Prindle, C.; Kamineni, V.; Mochizuki, S.; Lavoie, C.; et al. Parasitic Resistance Reduction Strategies for Advanced CMOS Finfets Beyond 7nm. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 35.4.1–35.4.4. [Google Scholar] [CrossRef]
- Malka, D. A Four Green TM/Red TE Demultiplexer Based on Multi Slot-Waveguide Structures. Materials 2020, 13, 3219. [Google Scholar] [CrossRef] [PubMed]
- Malka, D.; Cohen, M.; Zalevsky, Z.; Turkiewicz, J. Optical Micro-Multi-Racetrack Resonator Filter Based on SOI WaveGuide. In Proceedings of the 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI), Eilat, Israel, 3–5 December 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Cristiano, F.; Shayesteh, M.; Duffy, R.; Huet, K.; Mazzamuto, F.; Qiu, Y.; Quillec, M.; Henrichsen, H.H.; Nielsen, P.F.; Petersen, D.H.; et al. Defect Evolution and Dopant Activation in Laser Annealed Si and Ge. Mater. Sci. Semicond. Process. 2016, 42, 188–195. [Google Scholar] [CrossRef]
- Prucnal, S.; Rebohle, L.; Skorupa, W. Doping by Flash Lamp Annealing. Mater. Sci. Semicond. Process. 2017, 62, 115–127. [Google Scholar] [CrossRef]
- Shima, A.; Hiraiwa, A. Ultra-Shallow Junction Formation by Non-Melt Laser Spike Annealing and its Application to Complementary Metal Oxide Semiconductor Devices in 65-nm Node. Jpn. J. Appl. Phys. 2006, 45, 5708. [Google Scholar] [CrossRef]
- Tabata, T.; Karim, H.; Rozé, F.; Mazzamuto, F.; Sermage, B.; Kopalidis, P.; Roh, D. Dopant Redistribution and Activation in Ga Ion-Implanted High Ge Content SiGe by Explosive Crystallization during UV Nanosecond Pulsed Laser Annealing. ECS J. Solid State Sci. Technol. 2021, 10, 023005. [Google Scholar] [CrossRef]
- Kim, J.H.; Ji, H.M.; Nguyen, M.C.; Nguyen, A.H.T.; Kim, S.W.; Baek, J.Y.; Kim, J.; Choi, R. Low-Temperature Dopant Activation using Nanosecond Ultra-Violet Laser Annealing for Monolithic 3D Integration. Thin Solid Films 2021, 735, 138864. [Google Scholar] [CrossRef]
- Lim, S.Q.; Williams, J.S. Electrical and Optical Doping of Silicon by Pulsed-Laser Melting. Micro 2022, 2, 1–22. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Shen, M.; Wang, X.; Zhou, S.; Hawryluk, A.; Hebb, J.; Owen, D. Laser Spike Annealing and its Application to Leading-Edge Logic Devices. In Proceedings of the 2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors, Las Vegas, NV, USA, 30 September–3 October 2008; pp. 57–63. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.; Yu, G.; Hong, A.; Lu, J.P.; Liu, X.; Yu, L.; Chen, Y. Laser Spike Anneal Macro & Micro Non-Uniformity Investigation using Modulated Optical Reflectance and Four-Point-Probe. In Proceedings of the 2010 International Workshop on Junction Technology Extended Abstracts, Shanghai, China, 10–11 May 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Taiwo, R.A.; Shin, J.-H.; Son, Y.-I. Comprehensive Analysis of Phosphorus-Doped Silicon Annealed by Continuous-Wave Laser Beam at High Scan Speed. Materials 2022, 15, 7886. [Google Scholar] [CrossRef]
- Huet, K.; Aubin, J.; Raynal, P.E.; Curvers, B.; Verstraete, A.; Lespinasse, B.; Mazzamuto, F.; Sciuto, A.; Lombardo, S.F.; La Magna, A.; et al. Pulsed Laser Annealing for Advanced Technology Nodes: Modeling and Calibration. Appl. Surf. Sci. 2020, 505, 144470. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Y.; Wang, X. Two-Beam Laser Annealing with Improved Temperature Performance. U.S. Patent TWI517253B; filed 27 January 2012, and issued 11 January 2016,
- Wang, Y.; Chen, S.; Shen, M.; Wang, X.; Zhou, S.; Hebb, J.; Owen, D. Dual Beam Laser Spike Annealing Technology. In Proceedings of the 2010 International Workshop on Junction Technology Extended Abstracts, Shanghai, China, 10–11 May 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Mileham, J.; Le, V.; Shetty, S.; Hebb, J.; Wang, Y.; Owen, D.; Binder, R.; Giedigkeit, R.; Waidmann, S.; Richter, I.; et al. Impact of Dual Beam Laser Spike Annealing Parameters on Nickel Silicide Formation Characteristics. In Proceedings of the 2010 18th International Conference on Advanced Thermal Processing of Semiconductors (RTP), Gainesville, FL, USA, 28 September–1 October 2010; pp. 130–135. [Google Scholar] [CrossRef]
- Huang, S.M.; Yu, S.H.; Chou, M. Two-Carrier Transport-Induced Extremely Large Magnetoresistance in High Mobility Sb2Se3. J. Appl. Phys. 2017, 121, 15107. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liu, X.; Wu, H.; Wang, P.; Yan, D.; Cheng, B.; Shi, Y.; Watanabe, K.; Taniguchi, T.; et al. Direct Evidence for Charge Compensation-Induced Large Magnetoresistance in Thin WTe2. Nano Lett. 2019, 19, 3969–3975. [Google Scholar] [CrossRef] [PubMed]
- Berencén, Y.; Prucnal, S.; Liu, F.; Skorupa, I.; Hübner, R.; Rebohle, L.; Zhou, S.; Schneider, H.; Helm, M.; Skorupa, W. Room-Temperature Short-Wavelength Infrared Si Photodetector. Sci. Rep. 2017, 7, 43688. [Google Scholar] [CrossRef]
- Berencén, Y.; Prucnal, S.; Möller, W.; Hübner, R.; Rebohle, L.; Böttger, R.; Glaser, M.; Schönherr, T.; Yuan, Y.; Wang, M.; et al. CMOS-Compatible Controlled Hyperdoping of Silicon Nanowires. Adv. Mater. Interfaces 2018, 5, 1800101. [Google Scholar] [CrossRef]
- Das, D.; Patra, C. Superior Phosphorous Doping in Nanocrystalline Silicon Thin Films and their Application as Emitter Layers in Silicon Heterojunction Solar Cells. Energy Fuels 2023, 37, 6062–6077. [Google Scholar] [CrossRef]
- Kennedy, N.; Duffy, R.; Eaton, L.; O’Connell, D.; Monaghan, S.; Garvey, S.; Connolly, J.; Hatem, C.; Holmes, J.D.; Long, B. Phosphorus Monolayer Doping (MLD) of Silicon on Insulator (SOI) Substrates. Beilstein J. Nanotechnol. 2018, 9, 2106–2113. [Google Scholar] [CrossRef]
- Taiwo, R.A.; Shin, J.-H.; Son, Y.-I. Evaluating Suitability of Green Laser Annealing in Developing Phosphorous-Doped Silicon for Semiconductor Devices. Mater. Sci. Semicond. Process. 2023, 168, 107865. [Google Scholar] [CrossRef]
Experiment No. | CW Laser Power (W) | Scan Speed (mm/s) |
---|---|---|
S1 | 220 | 70 |
S2 | 240 | 70 |
S3 | 260 | 70 |
S4 | 280 | 70 |
S5 | 300 | 70 |
S6 | 320 | 70 |
S7 | 340 | 70 |
Experiment No. | CW Laser Power (W) | Pulsed Laser Average Power (W) | Total Power (W) | Scan Speed (mm/s) |
---|---|---|---|---|
D1 | 200 | 20 | 220 | 70 |
D2 | 220 | 20 | 240 | 70 |
D3 | 240 | 20 | 260 | 70 |
D4 | 260 | 20 | 280 | 70 |
D5 | 280 | 20 | 300 | 70 |
D6 | 300 | 20 | 320 | 70 |
D7 | 320 | 20 | 340 | 70 |
Experiment No. | Laser Power (W) | Activated Ratio (%) | ||
---|---|---|---|---|
S3 | 260 | 2.01 × | 1.78 × | 40.2 |
S4 | 280 | 2.06 × | 1.82 × | 41.2 |
S5 | 300 | 2.17 × | 1.92 × | 43.4 |
S6 | 320 | 3.16 × | 2.80 × | 63.2 |
S7 | 340 | 3.73 × | 3.30 × | 75.0 |
D3 | 260 | 2.26 × | 2.00 × | 45.2 |
D4 | 280 | 2.48 × | 2.20 × | 49.6 |
D5 | 300 | 3.39 × | 3.00 × | 67.8 |
D6 | 320 | 3.95 × | 3.50 × | 79.0 |
D7 | 340 | 4.24 × | 3.75 × | 85.0 |
Experiment No. | Laser Power (W) | Resistivity at (0.0009 Wb/cm2) Ωcm) | Sheet Resistance (Ω/sq) | Hole Carrier Concentration ) | Electron Carrier Concentration | Hole Carrier Mobility (cm2/V∙s) | Electron CarrierMobility (cm2/V∙s) |
---|---|---|---|---|---|---|---|
S3 | 260 | −17.20 | 2072.50 | 0.78 | 1.78 | 85.00 | 41.00 |
S4 | 280 | −15.30 | 1999.67 | 0.80 | 1.82 | 75.00 | 25.00 |
S5 | 300 | −10.80 | 1786.83 | 0.89 | 1.92 | 60.00 | 20.00 |
S6 | 320 | −1.07 | 797.90 | 1.20 | 2.80 | 15.00 | 5.70 |
S7 | 340 | 0.14 | 43.40 | 3.20 | 3.30 | 3.70 | 1.20 |
D3 | 260 | −10.00 | 2050.00 | 0.80 | 2.00 | 39.00 | 21.00 |
D4 | 280 | −5.25 | 1964.17 | 0.90 | 2.20 | 34.00 | 20.16 |
D5 | 300 | −2.00 | 1158.00 | 0.96 | 3.00 | 5.50 | 3.15 |
D6 | 320 | −1.00 | 691.90 | 2.30 | 3.50 | 3.20 | 2.50 |
D7 | 340 | −0.14 | 43.42 | 3.70 | 3.75 | 1.60 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiwo, R.A.; Son, Y.; Shin, J.; Salawu, Y.A. Enhanced Activation in Phosphorous-Doped Silicon via Dual-Beam Laser Annealing. Materials 2024, 17, 4316. https://doi.org/10.3390/ma17174316
Taiwo RA, Son Y, Shin J, Salawu YA. Enhanced Activation in Phosphorous-Doped Silicon via Dual-Beam Laser Annealing. Materials. 2024; 17(17):4316. https://doi.org/10.3390/ma17174316
Chicago/Turabian StyleTaiwo, Rasheed Ayinde, Yeongil Son, Joonghan Shin, and Yusuff Adeyemi Salawu. 2024. "Enhanced Activation in Phosphorous-Doped Silicon via Dual-Beam Laser Annealing" Materials 17, no. 17: 4316. https://doi.org/10.3390/ma17174316
APA StyleTaiwo, R. A., Son, Y., Shin, J., & Salawu, Y. A. (2024). Enhanced Activation in Phosphorous-Doped Silicon via Dual-Beam Laser Annealing. Materials, 17(17), 4316. https://doi.org/10.3390/ma17174316