Examining the Spectroscopic and Thermographic Qualities of Er3+-doped Oxyfluoride Germanotellurite Glasses
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Examination
3.2. Absorption Spectra and Judd–Ofelt Calculations
3.3. Relaxation Dynamic of Excited States
3.4. Emission and Thermographic Qualities
3.5. NIR Spectra and Gain Cross-sections
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunji, R.M.; Mattos, G.R.S.; Bordon, C.D.S.; Garcia, J.A.M.; Gomez-Malag, L.A.; Kassab, L.R.P. Influence of the TiO2 nanoparticles on upconversion luminescence of Er3+-doped and Er3+/Yb3+-codoped GeO2-PbO glasses. J. Lumin. 2022, 251, 119240. [Google Scholar] [CrossRef]
- Leśniak, M.; Mach, G.; Starzyk, B.; Sadowska, K.; Ragin, T.; Zmojda, J.; Kochanowicz, M.; Kuwik, M.; Miluski, P.; Jimenez, G.L.; et al. The Effect of Fluorides (BaF2, MgF2, AlF3) on Structural and Luminescent Properties of Er3+-Doped Gallo-Germanate Glass. Materials 2022, 15, 5230. [Google Scholar] [CrossRef] [PubMed]
- Marcondes, L.M.; Ramos da Cunha, C.; Matinatti de Pietro, G.; Manzani, D.; Rocha Gonçalves, R.; Batista, G.; Castro Cassanjes, F.; Poirier, G. Multicolor tunable and NIR broadband emission from rare-earth-codoped tantalum germanate glasses and nanostructured glass-ceramics. J. Lumin. 2021, 239, 118357. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, Y.; Zhu, C.; Liu, S.; Liu, H.; Zhang, Y.; Yue, Y. Optical bandgap and luminescence in Er3+ doped oxyfluoro-germanate glass-ceramics. J. Non-Cryst. Solids 2021, 555, 120533. [Google Scholar] [CrossRef]
- Feng, L.; Wu, Y. Optical properties of Er3+-doped oxyfluoride glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 155, 125–129. [Google Scholar] [CrossRef]
- Zhang, F.F.; Zhang, W.J.; Yuan, J.; Chen, D.D.; Qian, Q.; Zhang, Q.Y. Enhanced 2.7 μm emission from Er3+ doped oxyfluoride tellurite glasses for a diodepump mid-Infrared laser. AIP Adv. 2014, 4, 047101. [Google Scholar] [CrossRef]
- Kesavulu, C.R.; Sreedhar, V.B.; Jayasankar, C.K.; Kiwan, J.; Shin, D.; Yi, S. Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application. Mat. Res. Bull. 2014, 51, 336–344. [Google Scholar] [CrossRef]
- Derkowska-Zielinska, B.; Lam Wong, Y.; Furniss, D.; Benson, T.M.; Seddon, A.B. Optical characterisation of Er3+-doped oxyfluoride glasses and nano-glass-ceramics. Mat. Lett. 2014, 136, 233–236. [Google Scholar] [CrossRef]
- Hazra, C.; Skripka, A.; Ribeiro, S.J.L.; Vetrone, F. Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations. Adv. Optical Mater. 2020, 8, 2001178. [Google Scholar] [CrossRef]
- Jin, M.; Xiang, J.; Chen, Y.; Chen, C.; Suo, H.; Zhang, Z.; Sun, J.; Zhao, X.; Gu, C. Optically thermometric sensitivities of Er3+/Yb3+ Co-doped hosts with different phonon energy. J. Lumin. 2022, 244, 118692. [Google Scholar] [CrossRef]
- Cheng, Y.; Gao, Y.; Lin, H.; Huang, F.; Wang, Y. Strategy design for ratiometric luminescence thermometry: Circumventing the limitation of thermally coupled levels. J. Mater. Chem. C 2018, 6, 7462. [Google Scholar] [CrossRef]
- Ryba-Romanowski, W. Effect of temperature and activator concetration on luminescence decay of Er-doped tellurite glasses. J. Lumin. 1990, 46, 163–172. [Google Scholar] [CrossRef]
- Dramićanin, M.D. Trends in luminescence thermometry. J. Appl. Phys. 2020, 128, 040902. [Google Scholar] [CrossRef]
- Łukaszewicz, M.; Lisiecki, R.; Klimesz, B.; Ryba-Romanowski, W. Multi-component tellurite glasses doped with erbium for multi-model temperature sensing and optical amplification. Mat. Res. Bull. 2020, 132, 110996. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, B.; Yu, H.; Zhang, J.; Sun, J.; Li, X.; Sun, M.; Tian, B.; Fu, S.; Zhong, H.; et al. Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures. J. Coll. Interface Scien. 2014, 420, 27–34. [Google Scholar] [CrossRef]
- Tong, L.; Li, X.; Zhang, J.; Xu, S.; Sun, J.; Zheng, H.; Zhang, Y.; Zhang, X.; Hua, R.; Xia, H.; et al. NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe. Opt. Express 2017, 25, 16047. [Google Scholar] [CrossRef]
- Sha, X.; Chen, B.; Zhang, X.; Zhang, J.; Xu, S.; Li, X.; Sun, J.; Zhang, Y.; Wang, X.; Zhang, Y.; et al. Pre-assessments of optical transition, gain performance and temperature sensing of Er3+ in NaLn(MoO4)2 (Ln = Y, La, Gd and Lu) single crystals by using their powder-formed samples derived from traditional solid state reaction. Opt. Las. Tech. 2021, 140, 107012. [Google Scholar] [CrossRef]
- Dramićanin, M.D. Sensing temperature via downshifting emissions of lanthanidedoped metal oxides and salts. A review. Methods Appl. Fluoresc. 2016, 4, 042001. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Lai, B.; Wang, J.; Du, G.; Su, Q. Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass. J. Lumin. 2010, 130, 2418–2423. [Google Scholar] [CrossRef]
- Leon-Luis, S.F.; Rodríguez-Mendoza, U.R.; Lalla, E.; Lavín, V. Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass. Sensor. Actuator. B Chem. 2011, 158, 208–213. [Google Scholar] [CrossRef]
- De Pablos-Martín, A.; Mather, G.C.; Munoz, F.; Bhattacharyya, S.; Hoche, T.; Jinschek, J.R.; Heil, T.; Duran, A.; Pascual, M.J. Design of oxy-fluoride glass-ceramics containing NaLaF4 nano-crystals. J. Non-Cryst. Solids 2010, 356, 3071–3079. [Google Scholar] [CrossRef]
- Meyneng, T.; Thomas, J.; Ledemi, Y.; Allix, M.; Veron, E.; Genevoisc, C.; Kashyap, R.; Messaddeq, Y. The role of fluorine in high quantum yield oxyfluoride glasses and glass-ceramics. J. Alloys Compd. 2022, 900, 163512. [Google Scholar] [CrossRef]
- Silva, O.B.; Rivera, V.A.G.; Ledemi, Y.; Messaddeq, Y.; Marega, E., Jr. Germanium concentration effects on the visible emission properties of Er3+ in tellurite glasses. J. Lumin. 2021, 232, 117808. [Google Scholar] [CrossRef]
- Feng, X.; Tanbe, S.; Hanada, T. Hydroxyl groups in Er-doped germanotellurite glasses. J. Non-Cryst. Solids 2001, 281, 48–54. [Google Scholar] [CrossRef]
- Feng, X.; Tanabe, S.; Hanada, T. Spectroscopic Properties and Thermal Stability of Er3+-Doped Germanotellurite Glasses for Broadband Fiber Amplifiers. J. Am. Ceram. Soc. 2001, 84, 165–171. [Google Scholar] [CrossRef]
- Sui, G.Z.; Li, X.P.; Cheng, L.H.; Zhang, J.S.; Sun, J.S.; Zhong, H.Y.; Tian, Y.; Fu, S.B.; Chen, B.J. Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses. Appl. Phys. B 2013, 110, 471–476. [Google Scholar] [CrossRef]
- Manzani, D.; Da Silveira Petruci, J.F.; Nigoghossian, K.; Cardoso, A.A.; Ribeiro, S.J.L. A portable luminescent thermometer based on green upconversion emission of Er3+/Yb3+ co-doped tellurite glass. Sci. Rep. 2017, 7, 41596. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Lei, H.; Zeng, L.; Lin, F.; Liu, J.; Li, G.; Li, C.; Tang, J. Effect of fluorine substitution on the structure and spectral property of fluorotellurite glass for upconversion luminescence thermometry. J. Lumin. 2022, 247, 118906. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, B.; Hua, R.; Sun, J.; Cheng, L.; Zhong, H.; Li, X.; Zhang, J.; Zheng, Y.; Yu, T.; et al. Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor. J. Appl. Phys. 2011, 109, 053511. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Xu, S.; Li, X.; Zhang, J.; Sun, J.; Zhang, X.; Xia, H.; Hua, R. A universal approach for calculating the Judd–Ofelt parameters of RE3+ in powdered phosphors and its application for the b-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation. Phys.Chem.Chem.Phys. 2018, 20, 15876. [Google Scholar] [CrossRef]
- Luo, M.; Chen, B.; Li, X.; Zhang, J.; Xu, S.; Zhang, X.; Cao, Y.; Sun, J.; Zhang, Y.; Wang, X.; et al. Fluorescence decay route of optical transition calculation for trivalent rare earth ions and its application for Er3+-doped NaYF4 phosphor. Phys.Chem.Chem. Phys. 2020, 22, 25177. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.J. Probabilities for Radiative and Nonradiative Decays of Er3+ in LaF3. Phys. Rev. 1967, 157, 262. [Google Scholar] [CrossRef]
- Rodríguez-Mendoza, U.R.; Lalla, E.A.; Cáceres, J.M.; Rivera-López, F.; León-Luís, S.F.; Lavín, V. Optical characterization, 1.5 µm emissionand IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses. J. Lumin. 2011, 131, 1239–1248. [Google Scholar] [CrossRef]
- Reisfeld, R. Radiative and Non-Radiative Transitions of Rare-Earths Ions in Glasses. Struct. Bond. 1975, 22, 123–175. [Google Scholar] [CrossRef]
- Zatryb, G.; Klak, M.M. On the choice of proper average lifetime formula for an ensemble of emitters showing non-single exponential photoluminescence decay. J. Phys. Condens. Matter. 2020, 32, 415902. [Google Scholar] [CrossRef]
- Inokuti, M.; Hirayama, F. Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 1965, 43, 1978–1989. [Google Scholar] [CrossRef]
- Ermeneux, F.S.; Goutaudier, C.; Moncorge, R.; Sun, Y.; Cone, R.L.; Zannoni, E.; Cavalli, E.; Bettinelli, M. Multiphonon relaxation in YVO4 single crystals. Phys. Rev. B 2000, 61, 3915. [Google Scholar] [CrossRef]
- Reisfeld, R.; Eckstein, Y. Radiative and non-radiative transition probabilities and quantum yields for excited states of Er3+ in germanate and tellurite glasses. J. Non-Cryst. Solids 1974, 15, 125–140. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Pisarska, J.; Lisiecki, R.; Ryba-Romanowski, W. Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors. Sens. Actuators A 2016, 252, 54–58. [Google Scholar] [CrossRef]
- Kochanowicz, M.; Dorosz, D.; Zmojda, J.; Dorosz, J.; Miluski, P. Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+. J. Lumin. 2014, 151, 155–160. [Google Scholar] [CrossRef]
- Kostka, P.; Yatskivb, R.; Grym, J.; Zavadil, J. Luminescence, up-conversion and temperature sensing in Er-doped TeO2-PbCl2-WO3 glasses. J. Non. Cryst. Solids 2021, 553, 120283. [Google Scholar] [CrossRef]
- León-Luis, S.F.; Rodríguez-Mendoza, U.R.; Martin, I.R.; Lalla, E.; Lavin, V. Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors. Sens. Actuators B 2013, 176, 1167–1175. [Google Scholar] [CrossRef]
- Aull, B.F.; Jenssen, H.P. Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Section. IEEE J. Quant. Elec. 1982, 18, 925. [Google Scholar] [CrossRef]
- Ter-Gabrielyan, N.; Fromzel, V.; Ryba-Romanowski, W.; Lukasiewicz, T.; Dubinskii, M. Efficient, resonantly pumped, room-temperature Er3+:GdVO4 laser. Opt. Lett. 2012, 37, 1151–1153. [Google Scholar] [CrossRef] [PubMed]
- Němec, M.; Boháček, P.; Švejkar, R.; Šulc, J.; Jelínková, H.; Trunda, B.; Havlák, L.; Nikl, M.; Jurek, K. Er:GGAG crystal temperature influence on spectroscopic and laser properties. Opt. Mat. Express 2020, 10, 1249–1254. [Google Scholar] [CrossRef]
4I15/2 → 2S+1LJ | Energy [cm−1] | Oscillator Strength Pp [×10−6] | ||
---|---|---|---|---|
Pexp. | Ptheor. | ∆P | ||
4I15/2 | 6592 | 1.97 (ED), 0.72 (MD) | 1.98 | 0.01 |
4I11/2 | 10,241 | 1.03 | 1.01 | 0.02 |
4I9/2 | 12,496 | 0.48 | 0.55 | 0.07 |
4F9/2 | 15,293 | 3.32 | 3.24 | 0.08 |
4S3/2 | 18,379 | 0.63 | 0.71 | 0.08 |
2H11/2 | 19,164 | 16.80 | 16.81 | 0.01 |
4F7/2 | 20,474 | 2.66 | 2.98 | 0.32 |
4F3/2,5/2 | 22,169 | 1.07 | 1.36 | 0.29 |
4H9/2 | 24,583 | 0.96 | 1.08 | 0.12 |
Ω2 = 9.35 × 10−20 cm2,Ω4 = 2.46 × 10−20 cm2,Ω6 = 1.33 × 10−20 cm2 RMS = 3.21 × 10−7 |
SLJ | S’L’J’ | Wr [s−1] | β | τrad. [µs] |
---|---|---|---|---|
4I13/2 | 4I15/2 | 207.14 | 1.00 | 4828 |
4I11/2 | 4I15/2 | 295.43 | 0.89 | 3026 |
4I13/2 | 35.03 | 0.11 | ||
4I9/2 | 4I15/2 | 290.95 | 0.77 | 2631 |
4I13/2 | 87.41 | 0.23 | ||
4I11/2 | 1.66 | 0.00 | ||
4F9/2 | 4I15/2 | 2541.96 | 0.90 | 355 |
4I13/2 | 133.19 | 0.05 | ||
4I11/2 | 130.79 | 0.05 | ||
4I9/2 | 10.29 | 0.00 | ||
4S3/2 | 4I15/2 | 2002.67 | 0.67 | 334 |
4I13/2 | 822.40 | 0.27 | ||
4I11/2 | 63.15 | 0.02 | ||
4I9/2 | 108.27 | 0.04 | ||
4F9/2 | 1.16 | 0.00 | ||
2H11/2 | 4I15/2 | 17,255.60 | 0.96 | 55 |
4I13/2 | 269.57 | 0.01 | ||
4I11/2 | 157.15 | 0.01 | ||
4I9/2 | 238.10 | 0.01 | ||
4F9/2 | 64.42 | 0.01 | ||
4S3/2 | 0.07 | 0.00 |
Sample | Lifetime [µs] | |||
---|---|---|---|---|
4S3/2 | 4F9/2 | 4I11/2 | 4I13/2 | |
GTS: 0.5% Er | 27.1 | 2.5 | 159 | 3935 |
GTS: 1% Er | 14.8 | 2.2 | 142 | 3395 |
Glass | Temperature [K] | SA [K−1] | SR [%K−1] | Ref. |
---|---|---|---|---|
TeO2–ZnO–ZnF2–La2O3–Yb2O3–Er2O3 | 300 K | 0.0015 | 1.21 | [28] |
GeO2-PbO-Ga2O3-Er2O3 | 300 K | 0.0035 | 0.98 | [39] |
TeO2-GeO2-PbO-PbF2-BaO-LaF3-Er2O3 | 300 K | 0.0022 | 0.70 | [40] |
TeO2-PbCl2-WO3-Er2O3 | 300 K | 0.0030 | 1.20 | [41] |
TeO2-PbF2-AlF3-Er2O3 | 300 K | 0.0033 | 1.19 | [42] |
GeO2-TeO2-SrF2-Er2O3 | 300 K | 0.0008 | 0.67 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryba-Romanowski, W.; Komar, J.; Lisiecki, R. Examining the Spectroscopic and Thermographic Qualities of Er3+-doped Oxyfluoride Germanotellurite Glasses. Materials 2022, 15, 7651. https://doi.org/10.3390/ma15217651
Ryba-Romanowski W, Komar J, Lisiecki R. Examining the Spectroscopic and Thermographic Qualities of Er3+-doped Oxyfluoride Germanotellurite Glasses. Materials. 2022; 15(21):7651. https://doi.org/10.3390/ma15217651
Chicago/Turabian StyleRyba-Romanowski, Witold, Jarosław Komar, and Radosław Lisiecki. 2022. "Examining the Spectroscopic and Thermographic Qualities of Er3+-doped Oxyfluoride Germanotellurite Glasses" Materials 15, no. 21: 7651. https://doi.org/10.3390/ma15217651
APA StyleRyba-Romanowski, W., Komar, J., & Lisiecki, R. (2022). Examining the Spectroscopic and Thermographic Qualities of Er3+-doped Oxyfluoride Germanotellurite Glasses. Materials, 15(21), 7651. https://doi.org/10.3390/ma15217651