A New Bioactive Complex between Zn(II) and a Fluorescent Symmetrical Benzanthrone Tripod for an Antibacterial Textile
Abstract
:1. Introduction
2. Experimental Part
2.1. Synthesis of Zn(II) Complex [Zn(BT)(NO3)2]
2.2. Analysis
2.3. Purification of Cotton Fabric and Treatment with BT and [Zn(BT)(NO3)2]
2.4. Colour Measurements
- K: is constant of the light absorption of the cotton fabric,
- S: is constant of the light scattering of the cotton fabric,
- R: is the reflectance of the cotton fabric, expressed in fractional form in the spectral range 400–700 nm.
2.5. Test Organisms
2.6. Antimicrobial Activity Assay
2.7. Antibacterial Activity Test of Textile Samples
2.8. Preparation of Cotton Fabrics for Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Syntesis and Spectral Characterisations of [Zn(BT)(NO3)2]
3.2. Spectral Analysis of [Zn(BT)(NO3)2]
3.3. X-ray Photoelectron Spectroscopy (XPS) Characterisation
3.4. Colour Characterization of the Cotton Fabrics Treated with BT and [Zn(BT)(NO3)2]
3.5. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bharathi, D.; Siddlingeshwar, B.; Shivraj, A.; Thomas, A.; Kirilova, E.M.; Nikolajeva, I. Solvatochromic study of 3-N-(N′-methylacetamidino) benzanthrone and its interaction with dopamine by the fluorescence quenching mechanism. Luminescence 2018, 33, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Grabchev, I.; Moneva, I.; Wolarz, E.; Bauman, D.; Stoyanov, S. Spectral properties of 3-benzanthrone derivative dyes in isotropic solvents, polymer film and liquid crystal. Z. Naturforsch. A 2001, 56, 291–296. [Google Scholar] [CrossRef]
- Bojinov, V.; Grabchev, I. Synthesis of ethyl 3-aryl-1-methyl-8-oxo-8H-antra[9,1-gh] quinoline-2carboxylates as dyes for potential application in liquid crystal displays. Org. Lett. 2003, 5, 2185–2187. [Google Scholar] [CrossRef] [PubMed]
- Grabchev, I.; Moneva, I. Synthesis and properties of benzanthrone derivatives as luminophore dyes for liquid crystals. Dye Pigment 1998, 38, 155–164. [Google Scholar] [CrossRef]
- Grabchev, I.; Bojinov, V.; Moneva, I. Functional properties of azomethine substituted benzanthrone dyes for use in nematic liquid cristals. J. Mol. Struct. 1998, 471, 19–25. [Google Scholar] [CrossRef]
- Grabchev, I.; Moneva, I.; Wolarz, E.; Bauman, D. Fluorescent 3-oxy Benzanthrone Dyes in Liquid Crystalline Media. Dye Pigment 2003, 58, 1–6. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.-H.; Jin, W.J. DNA Binding Studies of a Solvatochromic Fluorescence Probe 3-Methoxybenzanthrone. Spectrochim. Acta A 1999, 55, 2719–2727. [Google Scholar] [CrossRef]
- Ryzhova, O.; Vus, K.; Trusova, V.; Kirilova, E.; Kirilov, G.; Gorbenko, G.; Kinnunen, P. Novel benzanthrone probes for membrane and protein studies. Methods Appl. Fluoresc. 2016, 4, 034007. [Google Scholar] [CrossRef]
- Trusova, V.; Kirilova, O.E.; Kalina, I.; Kirilov, G.; Zhytniakivska, O.; Fedorov, P.; Gorbenko, G. Novel benzanthrone aminoderivatives probes for membrane studies. J. Fluoresc. 2012, 22, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Gorbenko, G.; Trusova, V.; Kirilova, E.; Kirilov, G.; Kalnina, I.; Vasilev, A.; Kaloyanova, S.; Deligeorgiev, V. New fluorescent probes for detection and characterization of amyloid fibrils. Chem. Phys. Lett. 2010, 495, 275–279. [Google Scholar] [CrossRef]
- Kirilova, E.M.; Puckins, A.I.; Romanovska, E.; Fleisher, M.; Belyakov, S.V. Novel amidine derivatives of benzanthrone: Effect of bromine atom on the spectral parameters. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 202, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Staneva, D.; Becheva, R. Synthesis and functional properties of new optical pH sensor based on benzo[de]anthracen-7-one immobilized on the viscose. Dye Pigment 2007, 74, 148–153. [Google Scholar] [CrossRef]
- Staneva, D.; Becheva, R.; Chovelon, J.-M. Optical sensor for aliphatic amines based on the simultaneous colorimetric and fluorescence responses of smart textile. J. Appl. Polym. Sci. 2007, 106, 1950–1956. [Google Scholar] [CrossRef]
- Staneva, D.; Becheva, R.; Chovelon, J.-M. Fluorescent benzo[de]anthracen-7-one pH-sensor in aqueous solution and immobilized on viscose fabrics. J. Photochem. Photobiol. A Chem. 2006, 183, 159–164. [Google Scholar] [CrossRef]
- Staneva, D.; Grabchev, I. Heterogeneous sensors for ammonia, amines and metal ions based on a dendrimer modified fluorescent viscose fabric. Dye Pigment 2018, 155, 164–170. [Google Scholar] [CrossRef]
- Staneva, D.; Vasileva-Tonkova, E.; Grabchev, I. pH sensor potential and antimicrobial activity of a new PPA dendrimer modified with benzanthrone fluorophores in solution and on viscose fabric. J. Photochem. Photobiol. A Chem. 2019, 375, 24–29. [Google Scholar] [CrossRef]
- Staneva, D.; Vasileva-Tonkova, E.; Makki, M.; Sobahi, T.; Abdulrahman, R.M.; Asiri, A.M.; Grabchev, I. Synthesis, photophysical and antimicrobial activity of new water soluble ammonium quaternary benzanthrone in solution and in polylactide film. J. Photochem. Photobiol. B Biol. 2015, 143, 44–51. [Google Scholar] [CrossRef]
- Makki, T.; Staneva, D.; Vasileva-Tonkova, E.; Sobahi, T.; Abdеl-Rahman, R.; Asiri, A.M.; Grabchev, I. Antimicrobial activity of fluorescent benzanthrone in aqueous solution and in polylactic acid film. Int. J. Pharm. Biol. Chem. Sci. 2014, 3, 66–74. [Google Scholar]
- Staneva, D.; Grabchev, I.; Vasileva-Tonkova, E.; Kukeva, R.; Stoyanova, R. Synthesis, characterization and in vitro antimicrobial activity of a new fluorescent tris-benzo[de]anthracen-7-one and its Cu(II) complex. Tetrahedron 2016, 72, 2440–2446. [Google Scholar] [CrossRef]
- Xu, Q.B.; Xie, L.; Diao, H.; Li, F.; Zhang, Y.Y.; Fu, F.Y.; Liu, X. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr. Polym. 2017, 177, 187–193. [Google Scholar] [CrossRef]
- Gugliuzza, A.; Drioli, E. A review on membrane engineering for innovation in wearable fabrics and protective textiles. J. Membr. Sci. 2013, 446, 350–375. [Google Scholar] [CrossRef]
- Ramachandram, B.; Saroja, G.; Sankaran, N.B.; Samanta, A. Unusually high fluorescence enhancement of some 1,8-naphthalimide derivatives induced by transition metal salts. J. Phys. Chem. 2000, 104, 11824–11832. [Google Scholar] [CrossRef]
- Jantas, R.; Gorna, K. Antibacterial finishing of cotton fabrics. Fibers Text. East. Eur. 2006, 14, 88–91. [Google Scholar]
- Kubelka, P.; Munk, F. 1931 Ein Beitrag zur Optik der Farbanstriche. Z. Technol. Phys. 1931, 12, 593–601. [Google Scholar]
- Džimbeg-Malčić, V.; Barbarić-Mikočević, Ž.; Itrić, K. Kubelka-Munk theory in describing optical properties of paper. Tech. Gaz. 2011, 18, 117–124. [Google Scholar]
- Becerir, B. An Approach for Estimating the Relation between K/S Values and Dye Uptake. Colourage 2003, 50, 39–48. [Google Scholar]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.; Nakamura, C.V. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef] [Green Version]
- Surdu, L.; Stelescu, M.D.; Manaila, E.; Nicula, G.; Iordache, O.; Dinca, L.C.; Berechet, M.-D.; Vamesu, M.; Gurau, D. The improvement of the resistance to Candida albicans and Trichophyton interdigitale of some woven fabrics based on cotton. Bioinorg. Chem. Appl. (Hindawi Publ. Corp.) 2014, 2014, 763269. [Google Scholar]
- Andreozzi, E.; Barbieri, F.; Ottaviani, M.F.; Giorgi, L.; Bruscolini, F.; Manti, A.; Battistelli, M.; Sabatini, L.L.; Pianetti, A. Dendrimers and polyamino-phenolic ligands: Activity of new molecules against Legionella pneumophila biofilms. Front. Microbiol. 2016, 7, 289. [Google Scholar] [CrossRef]
- | L* | a* | b* | X | Y | Z | x | y |
---|---|---|---|---|---|---|---|---|
Cotton (control) | 92.83 | −0.06 | 2.67 | 78.26 | 82.52 | 84.90 | 0.3185 | 0.3361 |
Cotton + BT | 81.97 | 4.14 | 42.35 | 58.81 | 60.24 | 27.20 | 0.4021 | 0.4119 |
Cotton + [Zn(BT)(NO3)2] | 88.32 | −1.75 | 33.12 | 68.16 | 72.74 | 42.39 | 0.3719 | 0.3968 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staneva, D.; Vasileva-Tonkova, E.; Grabchev, I. A New Bioactive Complex between Zn(II) and a Fluorescent Symmetrical Benzanthrone Tripod for an Antibacterial Textile. Materials 2019, 12, 3473. https://doi.org/10.3390/ma12213473
Staneva D, Vasileva-Tonkova E, Grabchev I. A New Bioactive Complex between Zn(II) and a Fluorescent Symmetrical Benzanthrone Tripod for an Antibacterial Textile. Materials. 2019; 12(21):3473. https://doi.org/10.3390/ma12213473
Chicago/Turabian StyleStaneva, Desislava, Evgenia Vasileva-Tonkova, and Ivo Grabchev. 2019. "A New Bioactive Complex between Zn(II) and a Fluorescent Symmetrical Benzanthrone Tripod for an Antibacterial Textile" Materials 12, no. 21: 3473. https://doi.org/10.3390/ma12213473
APA StyleStaneva, D., Vasileva-Tonkova, E., & Grabchev, I. (2019). A New Bioactive Complex between Zn(II) and a Fluorescent Symmetrical Benzanthrone Tripod for an Antibacterial Textile. Materials, 12(21), 3473. https://doi.org/10.3390/ma12213473