Strain Analysis of GaN HEMTs on (111) Silicon with Two Transitional AlxGa1−xN Layers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nakamura, S.; Krames, M.R. History of gallium–nitride-based light-emitting diodes for illumination. Proc. IEEE 2013, 101, 2211–2220. [Google Scholar] [CrossRef]
- Mishra, U.K.; Shen, L.; Kazior, T.E.; Wu, Y. GaN-based RF power devices and amplifiers. Proc. IEEE 2008, 96, 287–305. [Google Scholar] [CrossRef]
- Wu, Y.; Jacob-Mitos, M.; Moore, M.L.; Heikman, S. A 97.8% Efficient GaN HEMT boost converter with 300-W output power at 1 MHz. IEEE Electron Device Lett. 2008, 29, 824–826. [Google Scholar] [CrossRef]
- Millán, J.; Godignon, P.; Perpiñà, X.; Pérez-Tomás, A.; Rebollo, J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Watanabe, A.; Takeuchi, T.; Hirosawa, K.; Amano, H.; Hiramatsu, K.; Akasaki, I. The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer. J. Cryst. Growth 1993, 128, 391–396. [Google Scholar] [CrossRef]
- Marchand, H.; Zhao, L.; Zhang, N.; Moran, B.; Mishra, U.K.; Speck, J.S.; DenBaars, S.P.; Freitas, J.A. Metalorganic chemical vapor deposition of GaN on Si (111): stress control and application to field-effect transistors. J. Appl. Phys. 2001, 89, 7846–7851. [Google Scholar] [CrossRef]
- Raghavan, S.; Redwing, J.M. Growth stresses and cracking in GaN films on (111) Si grown by metal-organic chemical-vapor deposition. I. AlN buffer layers. J. Appl. Phys. 2005, 98, 023514. [Google Scholar] [CrossRef]
- Fritze, S.; Drechsel, P.; Stauss, P.; Rode, P.; Markurt, T.; Schulz, T.; Albrecht, M.; Bläsing, J.; Dadgar, A.; Krost, A. Role of low-temperature AlGaN interlayers in thick GaN on silicon by metalorganic vapor phase epitaxy. J. Appl. Phys. 2012, 111, 124505. [Google Scholar] [CrossRef]
- Shane, C.; Lin, L.W.; Tien, T.L.; Ching, C.; Li, C. Threading dislocation reduction in three-dimensionally grown GaN islands on Si (111) substrate with AlN/AlGaN buffer layers. J. Appl. Phys. 2017, 122, 105306. [Google Scholar]
- Jang, S.H.; Lee, C.-R. High-quality GaN/Si(111) epitaxial layers grown with various Al0.3Ga0.7N/GaN superlattices as intermediate layer by MOCVD. J. Cryst. Growth 2003, 253, 64–70. [Google Scholar] [CrossRef]
- Feltin, E. Crack-Free Thick GaN layers on silicon (111) by metalorganic vapor phase epitaxy. Phys. Status Solidi A 2001, 188, 531–535. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, X.; Sang, L.; Guo, L.; Zhang, J.; Wang, J.; He, C.; Zhang, L.; Wang, M.; Xu, F.; et al. Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition. Sci. Rep. 2016, 6, 23020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Tan, W.; Westwater, S.; Pujol, A.; Pinos, A.; Mezouari, S.; Stribley, K.; Whiteman, J.; Shannon, J.; Strickland, K. High brightness GaN-on-Si based blue LEDs grown on 150 mm Si substrates using thin buffer layer technology. IEEE J. Electron Devices Soc. 2015, 3, 457–462. [Google Scholar] [CrossRef]
- Armin, D.; Jürgen, B.; Annette, D.; Assadullah, A.; Michael, H.; Alois, K. Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness. Jpn. J. Appl. Phys. 2000, 39, L1183. [Google Scholar]
- Sawaki, N.; Hikosaka, T.; Koide, N.; Tanaka, S.; Honda, Y.; Yamaguchi, M. Growth and properties of semi-polar GaN on a patterned silicon substrate. J. Cryst. Growth 2009, 311, 2867–2874. [Google Scholar] [CrossRef]
- Chen, C.H.; Yeh, C.M.; Hwang, J.; Tsai, T.L.; Chiang, C.H.; Chang, C.S.; Chen, T.P. Stress relaxation in the GaN/AlN multilayers grown on a mesh-patterned Si(111) substrate. J. Appl. Phys. 2005, 98, 093509. [Google Scholar] [CrossRef]
- Ibbetson, J.P.; Fini, P.T.; Ness, K.D.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 2000, 77, 250–252. [Google Scholar] [CrossRef]
- Cheng, K.; Leys, M.; Degroote, S.; Van Daele, B.; Boeykens, S.; Derluyn, J.; Germaian, M.; Van Tendeloo, G.; Engelen, J.; Borghs, G. Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers. J. Electron. Mater. 2006, 35, 592–598. [Google Scholar] [CrossRef]
- Kim, M.-H.; Do, Y.G.; Kang, H.C.; Noh, D.Y.; Park, S.-J. Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 2001, 7, 2713–2715. [Google Scholar] [CrossRef]
- Able, A.; Wegscheider, W.; Engl, K.; Zweck, J. Growth of crack-free GaN on Si(111) with graded AlGaN buffer layers. J. Cryst. Growth 2005, 276, 415–418. [Google Scholar] [CrossRef]
- Leung, B.; Han, J.; Sun, Q. Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111). Phys. Status Solidi C 2014, 11, 437–441. [Google Scholar] [CrossRef]
- Perozek, J.; Lee, H.P.; Krishnan, B.; Paranjpe, A.; Reuter, K.B.; Sadana, D.K.; Bayram, C. Investigation of structural, optical, and electrical characteristics of an AlGaN/GaN high electron mobility transistor structure across a 200 mm Si (1 1 1) substrate. J. Phys. D 2017, 50, 055103. [Google Scholar] [CrossRef]
- Kotani, J.; Tomabechi, S.; Miyajima, T.; Nakamura, N.; Kikkawa, T.; Watanabe, K.; Imanishi, K. Tensile strain-induced formation of micro-cracks for AlGaN/GaN heterostructures. Phys. Status Solidi C 2013, 10, 808–811. [Google Scholar] [CrossRef]
- Lee, H.-P.; Perozek, J.; Rosario, L.D.; Bayram, C. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations. Sci. Rep. 2016, 6, 37588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, S.; Correia, M.R.; O’Donnell, K.P.; Alves, E.; Sequeira, A.D.; Franco, N.; Watson, I.M.; Deatcher, C.J. Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping. Appl. Phys. Lett. 2002, 80, 3913–3915. [Google Scholar] [CrossRef]
- Wright, A.F. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J. Appl. Phys. 1997, 82, 2833–2839. [Google Scholar] [CrossRef]
Location | 1st layer Al0.35Ga0.65N | 2nd layer Al0.17Ga0.83N |
---|---|---|
central | −0.00227 | −0.00189 |
edge | −0.00174 | −0.0011 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Zhu, C.; Jiu, L.; Gong, Y.; Yu, X.; Bai, J.; Esendag, V.; Wang, T. Strain Analysis of GaN HEMTs on (111) Silicon with Two Transitional AlxGa1−xN Layers. Materials 2018, 11, 1968. https://doi.org/10.3390/ma11101968
Cai Y, Zhu C, Jiu L, Gong Y, Yu X, Bai J, Esendag V, Wang T. Strain Analysis of GaN HEMTs on (111) Silicon with Two Transitional AlxGa1−xN Layers. Materials. 2018; 11(10):1968. https://doi.org/10.3390/ma11101968
Chicago/Turabian StyleCai, Yuefei, Chenqi Zhu, Ling Jiu, Yipin Gong, Xiang Yu, Jie Bai, Volkan Esendag, and Tao Wang. 2018. "Strain Analysis of GaN HEMTs on (111) Silicon with Two Transitional AlxGa1−xN Layers" Materials 11, no. 10: 1968. https://doi.org/10.3390/ma11101968
APA StyleCai, Y., Zhu, C., Jiu, L., Gong, Y., Yu, X., Bai, J., Esendag, V., & Wang, T. (2018). Strain Analysis of GaN HEMTs on (111) Silicon with Two Transitional AlxGa1−xN Layers. Materials, 11(10), 1968. https://doi.org/10.3390/ma11101968