Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Resistivity
3.2. X-ray Diffraction
3.3. STM Studies: Surface Nano-Morphology
3.4. Optical Anisotropy
3.5. Magnetic Anisotropy
3.6. TEM Studies
3.7. Compositional Analysis by STEM-EELS
3.8. Activation Energy
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barranco, A.; Borras, A.; González-Elipe, A.R.; Palmero, A. Perspectives on oblique angle deposition of thin films: From fundamentals to applications. Prog. Mater. Sci. 2016, 76, 59–153. [Google Scholar] [CrossRef]
- Yan, X.; Mont, F.W.; Poxson, D.J.; Cho, J.; Schubert, E.F.; Kim, M.H.; Sone, C. Electrically conductive thin-films color filters made of single-material indium-tin-oxide. J. Appl. Phys. 2011, 109, 103113. [Google Scholar] [CrossRef]
- Rider, D.A.; Tucker, R.T.; Worfolk, B.J.; Kathleen, K.M.; Abeed Lalany, A.; Brett, M.J.; Buriak, J.M.; Harris, K.D. Indium tin oxide nanopillar electrodesin polymer/fullerene solar cells. Nanotechnology 2011, 22, 085706. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Toole, R.; Basnet, P.; Zhao, Y. Highly sensitive double-layered nanorod array gas sensors prepared by oblique angle deposition. Appl. Phys. Lett. 2014, 104, 073110. [Google Scholar] [CrossRef]
- Wei, W.; Jiang, C.; Wang, F.; Wang, C.; Xue, D. Enhanced microwave absorption in columnar structured magnetic materials. J. Appl. Phys. 2012, 112, 083908. [Google Scholar] [CrossRef]
- Wang, G.; Dong, C.; Wang, W.; Wang, Z.; Chai, G.; Jiang, C.; Xue, D. Observation of rotatable stripe domain in permalloy films with oblique sputtering. J. Appl. Phys. 2012, 112, 093907. [Google Scholar] [CrossRef]
- Gaillard, Y.; Rico, V.J.; Jimenez-Pique, E.; González-Elipe, A.R. Nanoidentation of TiO2 thin films with different nanostructures. J. Phys. D Appl. Phys. 2009, 42, 145305. [Google Scholar] [CrossRef]
- González-García, L.; González-Valls, I.; Lira-Cantu, M.; Barranco, A.; González-Elipe, A.R. Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells. Energy Environ. Sci. 2011, 4, 3426–3435. [Google Scholar] [CrossRef]
- Tripathi, J.K.; Markovich, G.; Goldfarb, I. Self-ordered magnetic α-FeSi2 nano-stripes on Si(111). Appl. Phys. Lett. 2013, 102, 251604. [Google Scholar] [CrossRef]
- Tang Liu, D.-L.; Ye, D.-X.; Zhao, Y.-P.; Lu, T.-M.; Wang, G.-C.; Vijayaraghavan, A. Magnetic properties of Co nanocolumns fabricated by oblique angle deposition. J. Appl. Phys. 2003, 93, 4194–4200. [Google Scholar] [CrossRef]
- Tang, F.; Liu, D.-L.; Ye, D.-X.; Lu, T.-M.; Wang, G.-C. Asymmetry of magneto-optical Kerr effect loops of Co nanocolumns grown by oblique incident angle deposition. J. Magn. Magn. Mater. 2004, 283, 65–70. [Google Scholar] [CrossRef]
- Quirós, C.; Peverini, L.; Díaz, J.; Alija, A.; Blanco, C.; Vélez, M.; Robach, O.; Ziegler, E.; Alameda, J.M. Asymmetric grazing incidence small angle X-ray scattering and anisotropic domain wall motion in obliquely grown nannocrystalline Co films. Nanotechnology 2014, 25, 335704. [Google Scholar] [CrossRef] [PubMed]
- Hawkeye, M.M.; Brett, M.J. Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A 2007, 25, 1317–1335. [Google Scholar] [CrossRef]
- Suzuki, M.; Taga, Y. Optical anisotropy and columnar structure of obliquely deposited thin films containing fine metal particles. J. Non-Cryst. Solids 1992, 150, 148–152. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Huang, J.-H.; Lai, K.-Y.; Jen, Y.-J.; Liu, C.-P.; He, J.-H. Giant optical anisotropy of oblique-aligned ZnO nanowire arrays. Opt. Express 2012, 20, 2015–2024. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, K.; Shinzato, S. Resistivity anisotropy of Ni films induced by oblique incidence sputter deposition. Thin Solid Films 1988, 164, 165–168. [Google Scholar] [CrossRef]
- Otiti, T.; Niklasson, G.A.; Svedlindh, P.; Granqvist, C.G. Anisotropic optical, magnetic and electrical properties of obliquely evaporated Ni thin films. Thin Solid Films 1997, 307, 245–249. [Google Scholar] [CrossRef]
- Song, C.; Larsen, G.K.; Zhao, Y. Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling. Appl. Phys. Lett. 2013, 102, 233101. [Google Scholar] [CrossRef]
- Favieres, C.; Vergara, J.; Magén, C.; Ibarra, M.R.; Madurga, V. Building oriented nano-sheets in Co–MT (MT = V, Cr, Cu, Zn, Cd, Hf) and the generation and enhancement of magnetic anisotropy. J. Alloys Compd. 2016, 664, 695–706. [Google Scholar] [CrossRef]
- Madurga, V.; Vergara, J.; Favieres, C. Generating and measuring anisotropic elastic behaviour of Co thin films with oriented surface nano-strings on micro-cantilevers. Nanoscale Res. Lett. 2011, 6, 325. [Google Scholar] [CrossRef] [PubMed]
- Madurga, V.; Favieres, C.; Vergara, J. Growth and sculpting of Co nano-strings on Si micro-cantilevers: Magneto-mechanical properties. Nanotechnology 2010, 21, 095702. [Google Scholar] [CrossRef] [PubMed]
- Madurga, V.; Vergara, J.; Favieres, C.J. Magnetic domain structures and nano-strings morphology of laser off-normal deposited amorphous cobalt films with controlled magnetic anisotropy. J. Magn. Magn. Mater. 2004, 272–276, 1681–1683. [Google Scholar] [CrossRef]
- Vergara, J.; Favieres, C.; Madurga, V. Magnetic anisotropy in isotropic and nanopatterned strongly exchange-coupled nanolayers. Nanoscale Res. Lett. 2012, 7, 577. [Google Scholar] [CrossRef] [PubMed]
- Vergara, J.; Favieres, C.; Madurga, V. Increased ultra high frequency magnetic susceptibility in nanopatterned nanolayers with strong exchange coupling. J. Phys. D Appl. Phys. 2015, 48, 435003. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baró, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed]
- Chiappe, D.; Toma, A.; Buatier de Mongeot, F. Tailoring resistivity anisotropy of nanorippled metal films: Electrons surfing on gold waves. Phys. Rev. B 2012, 86, 045414. [Google Scholar] [CrossRef]
- Nagamura, N.; Hobara, R.; Uetake, T.; Hirahara, T.; Ogawa, M.; Okuda, T.; He, K.; Moras, P.; Sheverdyaeva, P.M.; Carbone, C.; et al. Anisotropic electronic conduction in metal nanofilms grown on a one-dimensional surface superstructure. Phys. Rev. B 2014, 89, 125415. [Google Scholar] [CrossRef]
- Madurga, V.; Vergara, J.; Favieres, C. Surface nanostrings morphology of oblique pulsed laser deposited cobalt thin film. In Proceedings of the TNT 2005, Trends in Nanotechnology, Oviedo, Spain, 29 August–2 September 2005; Available online: http://www.phantomsnet.net/files/abstracts/TNT2005/TNT05_MadurgaVicente.pdf (accessed on 2 September 2005).
- Primak, W. Kinetics of Processes Distributed in Activation Energy. Phys. Rev. 1955, 100, 1677–1689. [Google Scholar] [CrossRef]
- Hernando, A.; Nielsen, O.V.; Madurga, V. Relaxation processes and pure shear stress creep in a metallic glass ribbon of composition (Fe0.05Co0.95)75Si15B10. J. Mater. Sci. 1985, 20, 2093–2102. [Google Scholar] [CrossRef]
- Baricco, M.; Allia, P.; Vinai, F.; Riontino, G. Structural relaxation in FeNiCrPB amorphous alloy by joint isothermal and tempering measurements of the electrical resistivity. J. Mater. Sci. 1988, 23, 4287–4294. [Google Scholar] [CrossRef]
- Allia, P.; Baricco, M.; Riontino, G.; Vinai, F. Kinetic analyses of structural relaxation of Fe-Ni based amorphous alloys by means of DSC and electrical resistivity measurements. J. Less Common Met. 1988, 145, 375–381. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergara, J.; Favieres, C.; Magén, C.; De Teresa, J.M.; Ibarra, M.R.; Madurga, V. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation. Materials 2017, 10, 1390. https://doi.org/10.3390/ma10121390
Vergara J, Favieres C, Magén C, De Teresa JM, Ibarra MR, Madurga V. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation. Materials. 2017; 10(12):1390. https://doi.org/10.3390/ma10121390
Chicago/Turabian StyleVergara, José, Cristina Favieres, César Magén, José María De Teresa, Manuel Ricardo Ibarra, and Vicente Madurga. 2017. "Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation" Materials 10, no. 12: 1390. https://doi.org/10.3390/ma10121390
APA StyleVergara, J., Favieres, C., Magén, C., De Teresa, J. M., Ibarra, M. R., & Madurga, V. (2017). Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation. Materials, 10(12), 1390. https://doi.org/10.3390/ma10121390