Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (202)

Search Parameters:
Keywords = laser deposition PLD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2952 KB  
Article
Higher than 60% Dielectric Tunability in Ba0.6Sr0.4TiO3 Films Using TiO2 Anatase Buffer Layers
by Pengzhan Zhang, Jiaming He, Xinyu Liu, Leng Zhang, Ling Zhang, Danbei Wang, Kongpin Wu and Sake Wang
Nanomaterials 2025, 15(23), 1797; https://doi.org/10.3390/nano15231797 - 28 Nov 2025
Viewed by 291
Abstract
In this work, Ba0.6Sr0.4TiO3 (BST) films were deposited on Si(100) and Pt(111)/Ti/SiO2/Si(100) substrates using the pulsed laser deposition (PLD) technique. The effects of TiO2 buffer layer thickness and preparation temperature on the microstructure and electrical [...] Read more.
In this work, Ba0.6Sr0.4TiO3 (BST) films were deposited on Si(100) and Pt(111)/Ti/SiO2/Si(100) substrates using the pulsed laser deposition (PLD) technique. The effects of TiO2 buffer layer thickness and preparation temperature on the microstructure and electrical properties of BST films were studied in detail. We intensively investigated the influence of the TiO2 buffer layer on the microstructure of BST films by using X-ray diffraction and scanning electron microscopy. We found that anatase crystalline TiO2 buffer layers within 15 nm thicknesses could significantly change the BST films from an irregular orientation to the (111) preferential orientation. The TiO2 anatase layers could promote the growth of BST film grains for obtaining minimal stress and low lattice distortion, increase the nucleation density, and improve its surface morphology, resulting in higher dielectric constant and resistance voltage, and lower dielectric loss and leakage current density. The dielectric constant, dielectric loss, and dielectric tunability of the BST devices with 8 nm thick TiO2 anatase buffer layers at 1 MHz were 856.5, 0.017, and 64.3%, respectively. The achieved high dielectric tunability indicates BST with TiO2 anatase buffer layers as one of the encouraging candidates for RF and microwave tunable applications at room temperature. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

14 pages, 2531 KB  
Article
Highly Sensitive SERS Detection of Food Colorants via Charge Transfer of Metal and Semiconductor in Ag/TiO2/Ti Foam
by Qunlong Wang, Yuting Jing, De Zhang, Ruijing Wang, Linlin Chen, Jianghua Zhang, Shaofeng Sui and Xuefeng Wang
Foods 2025, 14(23), 3998; https://doi.org/10.3390/foods14233998 - 22 Nov 2025
Cited by 1 | Viewed by 441
Abstract
A three-dimensional Ag/TiO2/Ti foam was fabricated via thermal annealing followed by pulsed laser deposition (PLD), providing a simple and scalable fabrication strategy. The porous Ti foam framework allows for the uniform dispersion of Ag nanoparticles (NPs), while the thermally formed TiO [...] Read more.
A three-dimensional Ag/TiO2/Ti foam was fabricated via thermal annealing followed by pulsed laser deposition (PLD), providing a simple and scalable fabrication strategy. The porous Ti foam framework allows for the uniform dispersion of Ag nanoparticles (NPs), while the thermally formed TiO2 interlayer promotes synergistic electromagnetic and chemical enhancement mechanisms. The localized electromagnetic field amplification at Ag-TiO2 interfaces was simulated using the finite-difference time-domain (FDTD) method. Density functional theory (DFT) calculations confirmed that TiO2 enhances both rhodamine 6G (R6G) adsorption on the substrate and charge transfer (CT) between the substrate and R6G, increasing the SERS activity. The optimized substrate demonstrates exceptional surface-enhanced Raman scattering (SERS) performance with an enhancement factor of 1.9 × 107 and a detection limit of 2.24 × 10−11 M for rhodamine 6G, with good reproducibility (RSD = 8.4%). Practical applicability is validated through sensitive detection of food colorants (brilliant blue and allura red). The synergistic combination of CT and electromagnetic enhancement in the easily fabricated Ag/TiO2/Ti foam enables its application as a promising platform for food safety monitoring, effectively bridging laboratory innovation and practical applications. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

35 pages, 6556 KB  
Review
Artificial Intelligence-Guided Pulsed Synthesis of Zinc Oxide Nanostructures on Thin Metal Shells
by Serguei P. Murzin
Processes 2025, 13(11), 3755; https://doi.org/10.3390/pr13113755 - 20 Nov 2025
Viewed by 912
Abstract
Zinc oxide (ZnO) nanostructures have been intensively investigated for applications in sensing, photocatalysis, and optoelectronic devices, where functional performance is strongly governed by morphology, crystallinity, and defect structure. Conventional wet-chemical and vapor-phase growth methods often require long processing times or complex chemistries and [...] Read more.
Zinc oxide (ZnO) nanostructures have been intensively investigated for applications in sensing, photocatalysis, and optoelectronic devices, where functional performance is strongly governed by morphology, crystallinity, and defect structure. Conventional wet-chemical and vapor-phase growth methods often require long processing times or complex chemistries and face reproducibility and compatibility challenges when applied to thin, flexible, or curved metallic substrates. Pulsed high-energy techniques—such as pulsed laser deposition (PLD), high-power impulse magnetron sputtering (HiPIMS), and pulsed laser or plasma processing—offer a versatile alternative, enabling rapid and localized synthesis both from and on Zn-bearing thin shells. These methods create transient nonequilibrium conditions that accelerate oxidation and promote spatially controlled nanostructure formation. This review highlights the emerging integration of artificial intelligence (AI) with pulsed ZnO synthesis on thin metallic substrates, emphasizing standardized data reporting, Bayesian optimization and active learning for efficient parameter exploration, physics-informed and graph-based neural networks for predictive modeling, and reinforcement learning for adaptive process control. By connecting synthesis dynamics with data-driven modeling, the review outlines a path toward predictive and autonomous control of ZnO nanostructure formation. Future perspectives include autonomous experimental workflows, machine-vision-assisted diagnostics, and the extension of AI-guided pulsed synthesis strategies to other functional metal oxide systems. Full article
Show Figures

Figure 1

15 pages, 2298 KB  
Article
Seed-Layer-Assisted Liquid-Phase Epitaxial Growth of YIG Films on Single-Crystal Yttrium Aluminum Garnet Substrates: Evidence for Enhancement in Strain-Induced Anisotropy
by Chaitrali Kshirsagar, Rao Bidthanapally, Ying Liu, Peng Zhou, Sahana Mukund, Aruna Bidthanapally, Hongwei Qu, Deepa Xavier, Subhabrat Samantaray, Venkatachalam Subramanian, Michael R. Page and Gopalan Srinivasan
Crystals 2025, 15(11), 953; https://doi.org/10.3390/cryst15110953 - 4 Nov 2025
Viewed by 682
Abstract
Epitaxial thick films of yttrium iron garnet (YIG) are ideal for use in microwave devices due to their low losses at high frequencies. This report is on the growth of strain-engineered YIG films by liquid-phase epitaxy (LPE) on yttrium aluminum garnet (YAG) substrates [...] Read more.
Epitaxial thick films of yttrium iron garnet (YIG) are ideal for use in microwave devices due to their low losses at high frequencies. This report is on the growth of strain-engineered YIG films by liquid-phase epitaxy (LPE) on yttrium aluminum garnet (YAG) substrates with −3% lattice mismatch with YIG. Since the use of a lattice-matched substrate is preferred for LPE growths, a seed layer of YIG, 370–400 nm in thickness, was deposited by pulsed laser deposition (PLD) on (100), (110), and (111) YAG substrates. The seed layers were stoichiometric with magnetic parameters in agreement with the parameters for bulk single-crystal YIG and with strain-induced perpendicular magnetic anisotropy field Ha = 0.19–0.43 kOe. YIG films, 4 to 8.4 μm in thickness, were grown by LPE at 870 °C on YAG substrates with the seed layers using the PbO+B2O3 flux and annealed in air at 1000 °C. The films were Y-rich and Fe-deficient and confirmed to be epitaxial single crystals by X-ray diffraction. The saturation magnetization 4πMs at room temperature was rather high and ranged from 1.9 kG to 2.3 kG. Ferromagnetic resonance at 5–15 GHz showed the absence of significant magneto-crystalline anisotropy in the LPE films with the line-width ΔH in the range 85–160 Oe, and Ha = 0.27–0.80 kOe which is much higher than for the seed layers. The high magnetization and Ha-values for the LPE films could be partially attributed to the off-stoichiometry. Although the strain due to the film–substrate lattice mismatch contributes to Ha, the mismatch in the thermal expansion coefficients for YIG and YAG is also a likely cause of Ha due to the high growth and annealing temperatures. The LPE-grown YIG films with high strain-induced anisotropy fields have the potential for use in self-biased microwave devices. Full article
(This article belongs to the Special Issue Single-Crystalline Composite Materials (Second Edition))
Show Figures

Figure 1

27 pages, 2616 KB  
Review
Recent Advances in Pulsed Laser Deposition of REBa2Cu3O7−δ High-Temperature Superconducting Coated Conductors and Artificial Flux Pinning
by Ziheng Guo, Liangkang Chen, Yuxiang Li, Xinyue Xia, Guangyao Lin, Penghong Hu, Dongliang Gong, Dongliang Wang and Yanwei Ma
Materials 2025, 18(21), 4988; https://doi.org/10.3390/ma18214988 - 31 Oct 2025
Viewed by 1326
Abstract
Rare-earth barium copper oxide (REBCO) high-temperature superconductors, owing to their ability to maintain high critical current density (Jc) under liquid-nitrogen-temperature and high-magnetic-field conditions, are widely regarded as one of the most promising material systems among all superconductors. This review systematically [...] Read more.
Rare-earth barium copper oxide (REBCO) high-temperature superconductors, owing to their ability to maintain high critical current density (Jc) under liquid-nitrogen-temperature and high-magnetic-field conditions, are widely regarded as one of the most promising material systems among all superconductors. This review systematically summarizes fabrication strategies for REBCO coated conductors, with a focus on pulsed laser deposition (PLD) for achieving high-quality epitaxial growth with precise composition control. To enhance in-field performance, strategies for introducing artificial pinning centers (APCs) are examined, including rare-earth element doping, substrate surface decoration, and nanoscale secondary phase incorporation. The mechanisms of vortex pinning from different dimensional defects and their synergistic effects are compared. Finally, we suggest potential future directions aimed at further enhancing the superconducting properties. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

17 pages, 3861 KB  
Article
Substrate Temperature-Induced Crystalline Phase Evolution and Surface Morphology in Zirconium Thin Films Deposited by Pulsed Laser Ablation
by Berdimyrat Annamuradov, Zikrulloh Khuzhakulov, Mikhail Khenner, Jasminka Terzic, Danielle Gurgew and Ali Oguz Er
Coatings 2025, 15(10), 1198; https://doi.org/10.3390/coatings15101198 - 11 Oct 2025
Viewed by 831
Abstract
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited [...] Read more.
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited the strongest orientation at 400 °C while Zr (002) was maximum at 500 °C. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses demonstrated an increase in surface roughness with temperature, with the smoothest surface observed at lower temperatures and significant island formation at 500 °C due to the transition to 3D growth. At 500 °C, interdiffusion effects led to the formation of zirconium silicide at the Zr/Si interface. To further interpret the experimental findings, computational modeling was employed to analyze the transition from 2D layer-by-layer growth to 3D island formation at elevated temperatures. Using a multi-parameter kinetics-free model based on free energy minimization, the critical film thickness for this transition was determined to be ~1–2 nm, aligning well with experimental observations. A separate kinetic model of island nucleation and growth predicts that this shift is driven by the kinetics of adatom surface diffusion. Additionally, the kinetic simulations revealed that, at 400 °C, adatom diffusivity optimally balances crystallization and surface energy minimization, yielding the highest film quality. At 500 °C, the rapid increase in diffusivity leads to the proliferation of 3D islands, consistent with the roughness trends observed in SEM and AFM data. These findings underscore the critical role of deposition parameters in tailoring Zr thin films for applications in advanced coatings and electronic devices. Full article
(This article belongs to the Collection Collection of Papers on Thin Film Deposition)
Show Figures

Figure 1

22 pages, 19738 KB  
Article
Temporal Sculpting of Laser Pulses for Functional Engineering of Al2O3/AgO Films: From Structural Control to Enhanced Gas Sensing Performance
by Doaa Yaseen Doohee, Abbas Azarian and Mohammad Reza Mozaffari
Sensors 2025, 25(18), 5836; https://doi.org/10.3390/s25185836 - 18 Sep 2025
Viewed by 1255
Abstract
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were [...] Read more.
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were achieved through optical lens modifications to control both energy density and laser spot size. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses showed a distinct reduction in both crystallite and grain sizes with decreasing pulse width, along with significant improvements in surface morphology refinement and film compactness. Hall effect measurements revealed a transition from n-type to p-type conductivity with decreasing pulse width, demonstrating increased hole concentration and reduced carrier mobility attributed to grain boundary scattering. Furthermore, current-voltage (I-V) characteristics demonstrated improved photoconductivity under illumination, with the most pronounced enhancement observed in samples prepared using longer pulse durations. Gas sensing measurements for NO2 and H2S revealed enhanced sensitivity, improved response/recovery characteristics at 250 °C, with optimal performance achieved in films deposited using shorter pulse durations. This improvement is attributed to their larger surface area and higher density of active adsorption sites. Our results demonstrate a clear relationship between laser pulse parameters and the functional properties of Al2O3/AgO films, providing valuable insights for optimizing deposition processes to develop advanced gas sensors. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

11 pages, 2022 KB  
Article
Thickness Influences on Structural and Optical Properties of Thermally Annealed (GaIn)2O3 Films
by Shiyang Zhang, Fabi Zhang, Tangyou Sun, Zanhui Chen, Xingpeng Liu, Haiou Li, Shifeng Xie, Wanli Yang and Yue Li
Nanomaterials 2025, 15(18), 1385; https://doi.org/10.3390/nano15181385 - 9 Sep 2025
Viewed by 698
Abstract
This work explores the relationship between the thickness and the structural, morphological, and optical features of thermally annealed (GaIn)2O3 thin films grown by pulsed laser deposition at room temperature. The thickness of the (GaIn)2O3 films varied from [...] Read more.
This work explores the relationship between the thickness and the structural, morphological, and optical features of thermally annealed (GaIn)2O3 thin films grown by pulsed laser deposition at room temperature. The thickness of the (GaIn)2O3 films varied from 20 to 391 nm with an increase in deposition time. The film with a thickness of about 105 nm showed largest grain size as well as the strongest XRD peak intensity, as measured by atomic force microscopy and X-ray diffraction. The studies on the optical properties show that the bandgap value decreased from 5.14 to 4.55 eV with the change in the film thickness from 20 to 391 nm. The film thickness had a significant impact on the structure, morphology, and optical properties of (GaIn)2O3, and the PLD growth mode notably influenced the film quality. The results suggest that optimizing the film thickness is essential for improving the film quality and achieving the target bandgap. Full article
Show Figures

Figure 1

13 pages, 1342 KB  
Article
Electrical Resistivity Control for Non-Volatile-Memory Electrodes Induced by Femtosecond Laser Irradiation of LaNiO3 Thin Films Produced by Pulsed Laser Deposition
by Leonélio Cichetto, Carlos Doñate-Buendía, María Teresa Flores-Arias, Maria Aymerich, João Paulo de Campos da Costa, Eloísa Cordoncillo-Cordoncillo, João Paulo Pereira do Carmo, Oswaldo Hideo Ando, Héctor Beltrán Mir, Juan Manuel Andrés Bort, Elson Longo da Silva and Adenilson José Chiquito
Inorganics 2025, 13(9), 297; https://doi.org/10.3390/inorganics13090297 - 2 Sep 2025
Cited by 1 | Viewed by 1094
Abstract
In this work, we investigated how the electrical resistivity of LaNiO3 thin films deposited on SrLaAlO4 (100), LaAlO3 (100), and MgO (100) single-crystal substrates by the pulsed laser deposition (PLD) technique can be controlled [...] Read more.
In this work, we investigated how the electrical resistivity of LaNiO3 thin films deposited on SrLaAlO4 (100), LaAlO3 (100), and MgO (100) single-crystal substrates by the pulsed laser deposition (PLD) technique can be controlled by femtosecond laser irradiation. Thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM-EDS), and temperature-dependent electrical resistivity measurements. The XRD data indicated good crystallinity and preferential crystallographic orientation. The electronic transport parameters of irradiated samples showed a remarkable decrease in the electrical resistivity for all studied films, which ranged from 38% to 52% depending on the temperature region considered and the type of substrate used. The results indicate a new and innovative route to decrease the electrical resistivity values in a precise, controlled, and localized manner, which could not be performed directly by well-known growth processes, allowing for direct application in non-volatile-memory electrodes. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

32 pages, 1741 KB  
Review
Advances and Prospects of Nanomaterial Coatings in Optical Fiber Sensors
by Wenwen Qu, Yanxia Chen, Shuangqiang Liu and Le Luo
Coatings 2025, 15(9), 1008; https://doi.org/10.3390/coatings15091008 - 1 Sep 2025
Cited by 5 | Viewed by 2503
Abstract
This review summarizes the recent advances in the application of nanomaterial coatings in optical fiber sensors, with a particular focus on deposition techniques and the research progress over the past five years in humidity sensing, gas detection, and biosensing. Benefiting from the high [...] Read more.
This review summarizes the recent advances in the application of nanomaterial coatings in optical fiber sensors, with a particular focus on deposition techniques and the research progress over the past five years in humidity sensing, gas detection, and biosensing. Benefiting from the high specific surface area, abundant surface active sites, and quantum confinement effects of nanomaterials, advanced thin-film fabrication techniques—including spin coating, dip coating, self-assembly, physical/chemical vapor deposition, atomic layer deposition (ALD), electrochemical deposition (ECD), electron beam evaporation (E-beam evaporation), pulsed laser deposition (PLD) and electrospinning, and other techniques—have been widely employed in the construction of functional layers for optical fiber sensors, significantly enhancing their sensitivity, response speed, and environmental stability. Studies have demonstrated that nanocoatings can achieve high-sensitivity detection of targets such as humidity, volatile organic compounds (VOCs), and biomarkers by enhancing evanescent field coupling and enabling optical effects such as surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR), and lossy mode resonance (LMR). This paper first analyzes the principles and optimization strategies of nanocoating fabrication techniques, then explores the mechanisms by which nanomaterials enhance sensor performance across various application domains, and finally presents future research directions in material performance optimization, cost control, and the development of novel nanocomposites. These insights provide a theoretical foundation for the functional design and practical implementation of nanomaterial-based optical fiber sensors. Full article
(This article belongs to the Special Issue Advanced Optical Film Coating)
Show Figures

Figure 1

17 pages, 2890 KB  
Article
Boosting the Photocatalytic Behavior of PbS/TiO2 Nanocomposites via the Pulsed Laser Deposition of PbS Nanoparticles onto TiO2 Nanotube Arrays Under Various Helium Background Pressures
by Ameni Rebhi, Karim Choubani, Anouar Hajjaji, Mohamed Ben Rabha, Mohammed A. Almeshaal, Brahim Bessais, Mounir Gaidi and My Ali El Khakani
Crystals 2025, 15(9), 783; https://doi.org/10.3390/cryst15090783 - 31 Aug 2025
Viewed by 976
Abstract
In this study, highly ordered titanium dioxide nanotubes (TiO2-NTs) have been synthesized using the electrochemical anodization procedure. Subsequently, the TiO2-NTs were successfully decorated with PbS nanoparticles (NPs) using the pulsed KrF-laser deposition (PLD) technique under vacuum and under different [...] Read more.
In this study, highly ordered titanium dioxide nanotubes (TiO2-NTs) have been synthesized using the electrochemical anodization procedure. Subsequently, the TiO2-NTs were successfully decorated with PbS nanoparticles (NPs) using the pulsed KrF-laser deposition (PLD) technique under vacuum and under different Helium background pressures (PHe) ranging from 50 to 400 mTorr. The prepared samples (PbS-NPs/TiO2-NTs) were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and UV–Vis and photoluminescence spectroscopies. XRD analyses confirmed that all TiO2-NTs crystallized in the anatase phase, while the PbS-NPs crystallized in the cfc lattice. The average crystallite size of the (200) crystallites was found to increase from 21 to 33 nm when the pressure of helium (PHe) was raised from vacuum to 200 mTorr and then dropped back to ~22 nm at PHe = 400 mTorr. Interestingly, the photoluminescence intensity of the PbS-NPs/TiO2-NTs samples was found to start diminishing for PHe ≥ 200 mTorr, indicating a lesser recombination rate of the photogenerated carriers, which also corresponded to a better photocatalytic degradation of the Amido Black (AB) dye. Indeed, the PbS-NPs/TiO2-NTs samples processed at PHe = 200 and 300 mTorr were found to exhibit the highest photocatalytic degradation efficiency towards AB with a kinetic constant 130% higher than that of bare TiO2-NTs. The PbS-NPs/TiO2-NTs photocatalyst samples processed under PHe = 200 or 300 mTorr were shown to remove 98% of AB within 180 min under UV light illumination. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysts Materials)
Show Figures

Figure 1

11 pages, 3094 KB  
Article
Lithium Niobate Thin Film on Silicon Fabricated by Pulsed Laser Deposition
by Shaoqing Song, Tianqi Xiao, Jiashun Song, Hongde Liu, Dahuai Zheng, Yongfa Kong and Jingjun Xu
Crystals 2025, 15(9), 756; https://doi.org/10.3390/cryst15090756 - 27 Aug 2025
Viewed by 1640
Abstract
Lithium niobate (LiNbO3, LN) is a multifunctional material with broad applicability in photonic and electronic devices. Recent advances in lithium niobate on insulator (LNOI) technology have significantly enhanced the integration density and miniaturization potential of LN-based platforms. Among the various fabrication [...] Read more.
Lithium niobate (LiNbO3, LN) is a multifunctional material with broad applicability in photonic and electronic devices. Recent advances in lithium niobate on insulator (LNOI) technology have significantly enhanced the integration density and miniaturization potential of LN-based platforms. Among the various fabrication techniques available, pulsed laser deposition (PLD) presents a cost-effective and versatile alternative to crystalline ion slicing (CIS), particularly advantageous for achieving high doping concentrations. However, a persistent challenge in PLD-grown lithium niobate film is cracking, primarily induced by the substantial thermal stress resulting from the mismatch in thermal expansion coefficients between LN and the substrate. In this study, we implemented a series of process modifications to address the cracking issue and successfully achieved crack-free LN films by introducing a lithium-deficient phase. This approach enabled the successful fabrication of highly Fe3+-doped LN films with a high electrical conductivity of 9.95 × 10−5 S/m while also exhibiting characteristic polarization switching behavior. These results demonstrate that PLD enables the fabrication of highly doped, structurally robust LN films and holds significant potential for the development of advanced electronic and optoelectronic devices. Full article
Show Figures

Figure 1

24 pages, 1483 KB  
Review
Towards AZO Thin Films for Electronic and Optoelectronic Large-Scale Applications
by Elena Isabela Bancu, Valentin Ion, Stefan Antohe and Nicu Doinel Scarisoreanu
Crystals 2025, 15(8), 670; https://doi.org/10.3390/cryst15080670 - 23 Jul 2025
Cited by 3 | Viewed by 2332
Abstract
Transparent conductive oxides (TCOs) have become essential components in a broad range of modern devices, including smartphones, flat-panel displays, and photovoltaic cells. Currently, indium tin oxide (ITO) is used in approximately 90% of these devices. However, ITO prices continue to rise due to [...] Read more.
Transparent conductive oxides (TCOs) have become essential components in a broad range of modern devices, including smartphones, flat-panel displays, and photovoltaic cells. Currently, indium tin oxide (ITO) is used in approximately 90% of these devices. However, ITO prices continue to rise due to the limited supply of indium (In), making the development of alternative materials for TCOs indispensable. Therefore, this study highlights the latest advances in creating new, affordable materials, with a focus on aluminum-doped zinc oxide (AZO). Over the last few decades, this material has been widely studied to improve its physical properties, particularly its low electrical resistivity, which can affect the performance of various devices. Now, it is close to replacing ITO due to several advantages including cost-effectiveness, stability under hydrogen plasma, low processing temperatures, and lack of toxicity. Besides that, in comparison to other TCOs such as IZO, IGZO, or IZrO, AZO achieved a low electrical resistivity (10−5 ohm cm) while maintaining a high transparency across the visible spectrum (over 85%). Additionally, due to the increasing development of technologies utilizing such materials, it is essential to develop more effective techniques for producing TCOs on a larger scale. Additionally, due to the increasing development of technologies utilizing such materials, it is essential to develop more effective techniques for producing TCOs on a larger scale. This review emphasizes the potential of AZO as a cost-effective and scalable alternative to ITO, highlighting key advancements in deposition techniques such as pulsed laser deposition (PLD). Full article
Show Figures

Figure 1

40 pages, 4499 KB  
Review
Application of Pulsed Laser Deposition (PLD) Technology in the Preparation of Two-Dimensional (2D) Film Materials
by Jixiang Cai, Feixing Li, Xueshuai Zhang, Jianguo Wang, Zecong Yu, Bo Feng and Youwen Li
Materials 2025, 18(13), 2999; https://doi.org/10.3390/ma18132999 - 24 Jun 2025
Cited by 5 | Viewed by 2718
Abstract
Two-dimensional film materials with unique atomic structures and electronic operation modes have demonstrated amazing application potential and value in the field of high technology. Among the various methods for preparing 2D film materials, PLD technology has become the preferred technology for rapid and [...] Read more.
Two-dimensional film materials with unique atomic structures and electronic operation modes have demonstrated amazing application potential and value in the field of high technology. Among the various methods for preparing 2D film materials, PLD technology has become the preferred technology for rapid and green preparation of high-quality, complex structured 2D film materials due to its features such as maintaining the excellent stoichiometric ratio of the target, strong process flexibility, and non-polluting environment. Therefore, this paper discusses the exciting topic of PLD technology in the preparation and application of 2D film materials. Based on a systematic exposition of its basic principles and influencing factors, it provides a detailed overview of the current application status of PLD technology in the preparation of various 2D film materials such as carbides, sulfides, oxides, nitrides, and perovskites. Meanwhile, the advantages and disadvantages of PLD technology in the preparation of 2D film materials were also positively summarized, and the challenges and emerging strategies it faces in the future preparation of 2D film materials were cautiously discussed. This provides practical suggestions and reflections for the sustainable development of PLD technology in the fields of basic research, performance regulation, device development, and application of 2D film materials preparation. Full article
(This article belongs to the Special Issue Rising Stars in Additive Manufacturing)
Show Figures

Graphical abstract

15 pages, 5870 KB  
Article
High Dielectric Tunability and Figure of Merit at Low Voltage in (001)-Oriented Epitaxial Tetragonal Pb0.52Zr0.48TiO3 Thin Films
by Hongwang Li, Chao Liu and Jun Ouyang
Nanomaterials 2025, 15(9), 695; https://doi.org/10.3390/nano15090695 - 5 May 2025
Cited by 2 | Viewed by 862
Abstract
Ferroelectric thin films with a high dielectric tunability (η) have great potential in electrically tunable applications, including microwave tunable devices such as phase shifters, filters, delay lines, etc. Using a modified Landau–Devonshire type thermodynamic potential, we show that the dielectric tunability [...] Read more.
Ferroelectric thin films with a high dielectric tunability (η) have great potential in electrically tunable applications, including microwave tunable devices such as phase shifters, filters, delay lines, etc. Using a modified Landau–Devonshire type thermodynamic potential, we show that the dielectric tunability η of a (001) tetragonal ferroelectric film can be analytically solved. After a survey of materials, a large η value above 60% was predicted to be achievable in a (001)-oriented tetragonal Pb(Zr0.52Ti0.48)O3 (PZT) film. Experimentally, (001)-oriented PZT thin films were prepared on LaNiO3-coated (100) SrTiO3 substrates by using pulsed laser deposition (PLD). These films exhibited good dielectric tunability (η ~ 67.6%) measured at a small electric field E of ~250 kV/cm (corresponding to 5 volts for a 200 nm thick film). It only dropped down to ~54.2% when E was further reduced to 125 kV/cm (2.5 volts for 200 nm film). The measured dielectric tunability η as functions of the applied electric field E and measuring frequency f are discussed for a 500 nm thick PZT film, with the former well described by the theoretical η(E) curves and the latter showing a weak frequency dependence. These observations validate our integrated approach rooted in a theoretical understanding. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop