Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects
Abstract
:1. Introduction
2. Trends in Publications Associated with Dark Fermentation, Anaerobic Digestion, and Two-Stage Integrated DF-AD of Food Waste
3. Current Status of Food Waste
Characteristics of Food Waste
4. Acidogenic Process for Food Waste Valorisation
4.1. Anaerobic Digestion
4.2. Dark Fermentation
4.3. Integrated Fermentative Biohydrogen and Biogas Production in Two-Stage DF-AD Process
4.4. Factors Affecting Acidogenic Processes (DF, AD, and DF-AD)
4.4.1. Temperature
4.4.2. pH
4.4.3. Oganic Loading Rate
4.4.4. Hydraulic Retention Time
4.4.5. Reactor Configuration
Acidogenic Process | pH | HRT | Temperature | Products | OLR (g VS/L/d) | Reactor Configuration | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|---|
Biogas (single-stage AD process) | 6.5–7 | 25–40 d | Psychrophilic (10–30 °C), mesophilic (30–40 °C), and thermophilic (50–60 °C) conditions | Methane 50–70% | 2–3 (mesophilic) 4–5 (thermophilic) | CSTR AFBR UASB AMFR | Less expensive Simple operation | Longer HRT Low OLR |
Bio-H2 (dark fermentation) | 4.5–6 | 4 h–5 d | mesophilic (30–40 °C) and thermophilic (50–60 °C) conditions | Hydrogen 30–60% | 17–106 | AFBR, UASB, MBR, CSTR, | Intermediate products from fermentation could be utilised as valuable products Utilisation of feedstock with lower pH | Low H2 yield |
Biohythane (two-stage AD process) | Stage-1: 4.5–6 Stage-2: 6.5–7 | Stage-1: 1–3 days Stage-2: 15–30 days 14–20 days (Thermophilic) (14–40 days) mesophilic | Stage-1: Mesophilic/Thermophilic Stage-2: Mesophilic | Methane 50–60% Hydrogen 5–30% | Stage-1 16–18 (kg VS/m3/d) Stage-2 4–6 | CSTR LBR AMFR | Shorter HRT in comparison of single stage AD | VFA accumulation |
5. Energy Yield from AD, DF, and Integrated DF-AD Processes
6. Economic and Environmental Aspects/Feasibility (Environmental Analysis/Sustainability of CO2 Emissions)
7. Treatment of Byproducts Generated from Anaerobic Processes: Digested Slurry Management
8. Envisaged Futuristic Integrated Bio-Thermo-Chemical Processes: An Innovative Anaerobic Biorefinery Concept
9. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maalouf, A.; Agamuthu, P. Waste management evolution in the last five decades in developing countries—A review. Waste Manag. Res. 2023, 41, 1420–1434. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/state-of-food-agriculture/2019/en/ (accessed on 5 December 2023).
- Cut Food Waste-China Water Risk. Available online: https://www.chinawaterrisk.org/wp-content/uploads/2022/03/CWR-Report-Together-We-Can-Action-6.pdf (accessed on 1 March 2023).
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Crutchik, D.; Barboza, J.; Vázquez-Padín, J.R.; Pedrouso, A.; Del Río, Á.V.; Mosquera-Corral, A.; Campos, J.L. Integrating food waste management into urban wastewater treatment: Economic and environmental impacts. J. Environ. Manag. 2023, 345, 118517. [Google Scholar] [CrossRef] [PubMed]
- Melikoglu, M.; Lin, C.S.K.; Webb, C. Analysing global food waste problem: Pinpointing the facts and estimating the energy content. Cent. Eur. J. Eng. 2013, 3, 157–164. [Google Scholar] [CrossRef]
- Nordin; Kaida, N.; Othman, N.A.; Akhir, F.N.M.; Hara, H. Reducing Food Waste: Strategies for Household Waste Management to Minimize the Impact of Climate Change and Contribute to Malaysia’s Sustainable Development. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 7th AUN/SEED-Net Regional Conference on Natural Disaster, Kuala Lumpur, Malaysia, 25–26 November 2019; IOP Publishing: Bristol, UK, 2020; Volume 479, p. 012035. [Google Scholar]
- Edjabou, M.E.; Takou, V.; Boldrin, A.; Petersen, C.; Astrup, T.F. The influence of recycling schemes on the composition and generation of municipal solid waste. J. Clean. Prod. 2021, 295, 126439. [Google Scholar] [CrossRef]
- Ahmed, A.; Li, W.; Varjani, S.; You, S. Waste-to-energy technologies for sustainability: Life-cycle assessment and economic analysis. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 599–612. [Google Scholar]
- Lahiri, A.; Daniel, S.; Kanthapazham, R.; Vanaraj, R.; Thambidurai, A.; Peter, L.S. A critical review on food waste management for the production of materials and biofuel. J. Hazard. Mater. Adv. 2023, 10, 100266. [Google Scholar] [CrossRef]
- Tang, R.; Liu, Y.; Ma, R.; Zhang, L.; Li, Y.; Li, G.; Wang, D.; Lin, J.; Li, Q.; Yuan, J. Effect of moisture content, aeration rate, and C/N on maturity and gaseous emissions during kitchen waste rapid composting. J. Environ. Manag. 2023, 326, 116662. [Google Scholar] [CrossRef]
- Harmsen, M.; van Vuuren, D.P.; Bodirsky, B.L.; Chateau, J.; Durand-Lasserve, O.; Drouet, L.; Fricko, O.; Fujimori, S.; Gernaat, D.E.; Hanaoka, T.; et al. The role of methane in future climate strategies: Mitigation potentials and climate impacts. Clim. Chang. 2020, 163, 1409–1425. [Google Scholar] [CrossRef]
- EPA. Wasted Food Scale. 2023. Available online: https://www.epa.gov/sustainable-management-food/wasted-food-scale (accessed on 1 November 2023).
- United Nations. The Sustainable Development Goals Report 2022; United Nations: San Francisco, CA, USA, 2022; pp. 1–68. Available online: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf (accessed on 1 August 2023).
- IEA. Tracking Clean Energy Progress 2023; IEA: Paris, France, 2023; License: CC BY 4.0; Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 30 August 2023).
- Holechek, J.L.; Geli, H.M.; Sawalhah, M.N.; Valdez, R. A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Yadav, S.; Singh, D.; Mohanty, P.; Sarangi, P.K. Biochemical and thermochemical routes of H2 production from food waste: A comparative review. Chem. Eng. Technol. 2023, 46, 191–203. [Google Scholar] [CrossRef]
- Dangol, S.; Ghimire, A.; Tuladhar, S.; Khadka, A.; Thapa, B.; Sapkota, L. Biohythane and organic acid production from food waste by two-stage anaerobic digestion: A review within biorefinery framework. Int. J. Environ. Sci. Technol. 2022, 19, 12791–12824. [Google Scholar] [CrossRef]
- Tsegaye, B.; Jaiswal, S.; Jaiswal, A.K. Food waste biorefinery: Pathway towards circular bioeconomy. Foods 2021, 10, 1174. [Google Scholar] [CrossRef]
- Abanades, S.; Abbaspour, H.; Ahmadi, A.; Das, B.; Ehyaei, M.A.; Esmaeilion, F.; El Haj Assad, M.; Hajilounezhad, T.; Jamali, D.H.; Hmida, A.; et al. A critical review of biogas production and usage with legislations framework across the globe. Int. J. Environ. Sci. Technol. 2021, 19, 3377–3400. [Google Scholar] [CrossRef]
- Sahota, S.; Shah, G.; Ghosh, P.; Kapoor, R.; Sengupta, S.; Singh, P.; Vijay, V.; Sahay, A.; Vijay, V.K.; Thakur, I.S. Review of trends in biogas upgradation technologies and future perspectives. Bioresour. Technol. Rep. 2018, 1, 79–88. [Google Scholar] [CrossRef]
- Ferraren-De Cagalitan, D.D.T.; Abundo, M.L.S. A review of biohydrogen production technology for application towards hydrogen fuel cells. Renew. Sustain. Energy Rev. 2021, 151, 111413. [Google Scholar] [CrossRef]
- D’Silva, T.C.; Khan, S.A.; Kumar, S.; Kumar, D.; Isha, A.; Deb, S.; Yadav, S.; Illathukandy, B.; Chandra, R.; Vijay, V.K.; et al. Biohydrogen production through dark fermentation from waste biomass: Current status and future perspectives on biorefinery development. Fuel 2023, 350, 128842. [Google Scholar] [CrossRef]
- Bolzonella, D.; Battista, F.; Cavinato, C.; Gottardo, M.; Micolucci, F.; Lyberatos, G.; Pavan, P. Recent developments in biohythane production from household food wastes: A review. Bioresour. Technol. 2018, 257, 311–319. [Google Scholar] [CrossRef]
- Hans, M.; Kumar, S. Biohythane production in two-stage anaerobic digestion system. Int. J. Hydrogen Energy 2019, 44, 17363–17380. [Google Scholar] [CrossRef]
- Meena, R.A.A.; Banu, J.R.; Kannah, R.Y.; Yogalakshmi, K.N.; Kumar, G. Biohythane production from food processing wastes–challenges and perspectives. Bioresour. Technol. 2020, 298, 122449. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, A.; Trably, E.; Frunzo, L.; Pirozzi, F.; Lens, P.N.; Esposito, G.; Cazier, E.A.; Escudié, R. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresour. Technol. 2018, 248, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Rawoof, S.A.A.; Kumar, P.S.; Vo, D.V.N.; Devaraj, T.; Subramanian, S. Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review. Renew. Sustain. Energy Rev. 2021, 152, 111700. [Google Scholar] [CrossRef]
- Wilk, M.; Gajek, M.; Śliz, M.; Czerwińska, K.; Lombardi, L. Hydrothermal Carbonization Process of Digestate from Sewage Sludge: Chemical and Physical Properties of Hydrochar in Terms of Energy Application. Energies 2022, 15, 6499. [Google Scholar] [CrossRef]
- Timofeeva, S.S.; Karaeva, J.V.; Kovalev, A.A.; Kovalev, D.A.; Litti, Y.V. Steam gasification of digestate after anaerobic digestion and dark fermentation of lignocellulosic biomass to produce syngas with high hydrogen content. Int. J. Hydrogen Energy 2023, 48, 7559–7568. [Google Scholar] [CrossRef]
- Riva, C.; Orzi, V.; Carozzi, M.; Acutis, M.; Boccasile, G.; Lonati, S.; Tambone, F.; d’Imporzano, G.; Adani, F. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Sci. Total Environ. 2016, 547, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Albini, E.; Pecorini, I.; Ferrara, G. Improvement of digestate stability using dark fermentation and anaerobic digestion processes. Energies 2019, 12, 3552. [Google Scholar] [CrossRef]
- Parmar, K.R.; Ross, A.B. Integration of hydrothermal carbonisation with anaerobic digestion; Opportunities for valorisation of digestate. Energies 2019, 12, 1586. [Google Scholar] [CrossRef]
- Pilarska, A.A.; Kulupa, T.; Kubiak, A.; Wolna-Maruwka, A.; Pilarski, K.; Niewiadomska, A. Anaerobic digestion of food waste—A short review. Energies 2023, 16, 5742. [Google Scholar] [CrossRef]
- Yasin, N.H.M.; Mumtaz, T.; Hassan, M.A. Food waste and food processing waste for biohydrogen production: A review. J. Environ. Manag. 2013, 130, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemeš, J.J.; Ho, C.S.; Ho, W.S. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion—A review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Pagliaccia, P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018, 248, 37–56. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Chew, K.R.; Leong, H.Y.; Khoo, K.S.; Vo, D.V.N.; Anjum, H.; Chang, C.K.; Show, P.L. Effects of anaerobic digestion of food waste on biogas production and environmental impacts: A review. Environ. Chem. Lett. 2021, 19, 2921–2939. [Google Scholar] [CrossRef]
- Kabir, S.B.; Khalekuzzaman, M.; Hossain, N.; Jamal, M.; Alam, M.A.; Abomohra, A.E.F. Progress in biohythane production from microalgae-wastewater sludge co-digestion: An integrated biorefinery approach. Biotechnol. Adv. 2022, 57, 107933. [Google Scholar] [CrossRef] [PubMed]
- Capson-Tojo, G.; Rouez, M.; Crest, M.; Steyer, J.P.; Delgenès, J.P.; Escudié, R. Food waste valorization via anaerobic processes: A review. Rev. Environ. Sci. Bio/Technol. 2016, 15, 499–547. [Google Scholar] [CrossRef]
- Sanchez Lopez, J.; Patinha Caldeira, C.; De Laurentiis, V.; Sala, S.; Avraamides, M. Brief on Food Waste in the European Union; Avraamides, M., Ed.; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Sahota, S.; Vijay, V.K.; Subbarao, P.M.V.; Chandra, R.; Ghosh, P.; Shah, G.; Kapoor, R.; Vijay, V.; Koutu, V.; Thakur, I.S. Characterization of leaf waste based biochar for cost effective hydrogen sulphide removal from biogas. Bioresour. Technol. 2018, 250, 635–641. [Google Scholar] [CrossRef]
- Kumar, S.; Paritosh, K.; Pareek, N.; Chawade, A.; Vivekanand, V. De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: An overview. Renew. Sustain. Energy Rev. 2018, 90, 160–170. [Google Scholar] [CrossRef]
- Kumar, S.; Gandhi, P.; Yadav, M.; Paritosh, K.; Pareek, N.; Vivekanand, V. Weak alkaline treatment of wheat and pearl millet straw for enhanced biogas production and its economic analysis. Renew. Energy 2019, 139, 753–764. [Google Scholar] [CrossRef]
- Kumar, S.; D’Silva, T.C.; Chandra, R.; Malik, A.; Vijay, V.K.; Misra, A. Strategies for boosting biomethane production from rice straw: A systematic review. Bioresour. Technol. Rep. 2021, 15, 100813. [Google Scholar] [CrossRef]
- Kannah, R.Y.; Velu, C.; Rajesh Banu, J.; Heimann, K.; Karthikeyan, O.P. Food waste valorization by microalgae. In Waste to Wealth; Springer: Singapore, 2018; pp. 319–342. [Google Scholar]
- Dahiya, S.; Kumar, A.N.; Sravan, J.S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef]
- Assis, T.I.; Gonçalves, R.F. Valorization of food waste by anaerobic digestion: A bibliometric and systematic review focusing on optimization. J. Environ. Manag. 2022, 320, 115763. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Sun, L.; Douieb, Y.; Sun, J.; Luo, W. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: Performance and microbial community structure characterization. Bioresour. Technol. 2013, 146, 619–627. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, Y.W.; Jahng, D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresour. Technol. 2011, 102, 5048–5059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Su, H.; Tan, T. Batch and semi-continuous anaerobic digestion of food waste in a dual solid–liquid system. Bioresour. Technol. 2013, 145, 10–16. [Google Scholar] [CrossRef]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, Y.Y.; Liu, H.C.; Chen, T.C.; Hung, C.H.; Chen, C.H.; Ong, H.C. A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application. Appl. Energy 2019, 237, 283–291. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, Y.Y.; Liu, H.C.; Chen, T.C.; Hung, H.C.; Chen, C.H. Analysis of physicochemical properties of liquefaction bio-oil from food waste. Energy Procedia 2019, 158, 61–66. [Google Scholar] [CrossRef]
- Saqib, N.U.; Baroutian, S.; Sarmah, A.K. Physicochemical, structural and combustion characterization of food waste hydrochar obtained by hydrothermal carbonization. Bioresour. Technol. 2018, 266, 357–363. [Google Scholar] [CrossRef]
- Zheng, C.; Ma, X.; Yao, Z.; Chen, X. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste. Bioresour. Technol. 2019, 285, 121347. [Google Scholar] [CrossRef]
- Singh, D.; Yadav, S. Steam gasification with torrefaction as pretreatment to enhance syngas production from mixed food waste. J. Environ. Chem. Eng. 2021, 9, 104722. [Google Scholar] [CrossRef]
- Xu, Z.; Qi, H.; Yao, D.; Zhang, J.; Zhu, Z.; Wang, Y.; Cui, P. Modeling and comprehensive analysis of food waste gasification process for hydrogen production. Energy Convers. Manag. 2022, 258, 115509. [Google Scholar] [CrossRef]
- Deheri, C.; Acharya, S.K. An experimental approach to produce hydrogen and methane from food waste using catalyst. Int. J. Hydrogen Energy 2020, 45, 17250–17259. [Google Scholar] [CrossRef]
- Park, C.; Lee, N.; Kim, J.; Lee, J. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions. Environ. Pollut. 2021, 270, 116045. [Google Scholar] [CrossRef]
- Chang, J.I.; Hsu, T.E. Effects of compositions on food waste composting. Bioresour. Technol. 2008, 99, 8068–8074. [Google Scholar] [CrossRef]
- Negri, C.; Ricci, M.; Zilio, M.; D’Imporzano, G.; Qiao, W.; Dong, R.; Adani, F. Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review. Renew. Sustain. Energy Rev. 2020, 133, 110138. [Google Scholar] [CrossRef]
- Chang, J.I.; Chen, Y.J. Effects of bulking agents on food waste composting. Bioresour. Technol. 2010, 101, 5917–5924. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Han, W.; Ye, M.; Zhu, A.J.; Zhao, H.T.; Li, Y.F. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour. Technol. 2015, 191, 24–29. [Google Scholar] [CrossRef]
- Zabranska, J.; Pokorna, D. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol. Adv. 2018, 36, 707–720. [Google Scholar] [CrossRef]
- Zhang, Z.; O’Hara, I.M.; Mundree, S.; Gao, B.; Ball, A.S.; Zhu, N.; Bai, Z.; Jin, B. Biofuels from food processing wastes. Curr. Opin. Biotechnol. 2016, 38, 97–105. [Google Scholar] [CrossRef]
- Lytras, G.; Lytras, C.; Mathioudakis, D.; Papadopoulou, K.; Lyberatos, G. Food waste valorization based on anaerobic digestion. Waste Biomass Valorization 2021, 12, 1677–1697. [Google Scholar] [CrossRef]
- Torsha, T. A Novel Approach for Anaerobic Treatment of Food Waste under Psychrophilic Temperature. Ph.D. Thesis, Concordia University, Concordia, CA, USA, 2023. [Google Scholar]
- He, Q.; Li, L.; Zhao, X.; Qu, L.; Wu, D.; Peng, X. Investigation of foaming causes in three mesophilic food waste digesters: Reactor performance and microbial analysis. Sci. Rep. 2017, 7, 13701. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.A.H.; Rooney, D.W. Hydrogen production, storage, utilisation and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Patel, S.K.; Das, D.; Kim, S.C.; Cho, B.K.; Kalia, V.C.; Lee, J.K. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew. Sustain. Energy Rev. 2021, 150, 111491. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, H.; Liu, W.; Guo, J.; Xian, M. Debottlenecking the biological hydrogen production pathway of dark fermentation: Insight into the impact of strain improvement. Microb. Cell Factories 2022, 21, 166. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. Bioresour. Technol. 2021, 321, 124354. [Google Scholar] [CrossRef] [PubMed]
- Bundhoo, M.Z.; Mohee, R. Inhibition of dark fermentative bio-hydrogen production: A review. Int. J. Hydrogen Energy 2016, 41, 6713–6733. [Google Scholar] [CrossRef]
- Arun, J.; Sasipraba, T.; Gopinath, K.P.; Priyadharsini, P.; Nachiappan, S.; Nirmala, N.; Dawn, S.S.; Chi, N.T.L.; Pugazhendhi, A. Influence of biomass and nanoadditives in dark fermentation for enriched bio-hydrogen production: A detailed mechanistic review on pathway and commercialization challenges. Fuel 2022, 327, 125112. [Google Scholar] [CrossRef]
- Valdez-Vazquez, I.; Poggi-Varaldo, H.M. Hydrogen production by fermentative consortia. Renew. Sustain. Energy Rev. 2009, 13, 1000–1013. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.H.; Shin, H.S. Hydrogen fermentation of food waste without inoculum addition. Enzym. Microb. Technol. 2009, 45, 181–187. [Google Scholar] [CrossRef]
- Ghimire, A.; Luongo, V.; Frunzo, L.; Lens, P.N.; Pirozzi, F.; Esposito, G. Biohythane production from food waste in a two-stage process: Assessing the energy recovery potential. Environ. Technol. 2022, 43, 2190–2196. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, O.; Modestra, J.A.; Rova, U.; Christakopoulos, P.; Matsakas, L. Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution. Fermentation 2023, 9, 368. [Google Scholar] [CrossRef]
- Soares, J.F.; Confortin, T.C.; Todero, I.; Mayer, F.D.; Mazutti, M.A. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renew. Sustain. Energy Rev. 2020, 117, 109484. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Rajendran, K.; Pugazhendhi, A.; Rao, C.V.; Atabani, A.E.; Kumar, G.; Yang, Y.H. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci. Total Environ. 2021, 765, 144429. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, C.; Giuliano, A.; Bolzonella, D.; Pavan, P.; Cecchi, F. Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience. Int. J. Hydrogen Energy 2012, 37, 11549–11555. [Google Scholar] [CrossRef]
- Parajuli, A.; Khadka, A.; Sapkota, L.; Ghimire, A. Effect of hydraulic retention time and organic-loading rate on two-staged, semi-continuous mesophilic anaerobic digestion of food waste during start-up. Fermentation 2022, 8, 620. [Google Scholar] [CrossRef]
- Sambusiti, C.; Monlau, F.; Ficara, E.; Musatti, A.; Rollini, M.; Barakat, A.; Malpei, F. Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process. Technol. 2015, 137, 359–365. [Google Scholar] [CrossRef]
- Phanduang, O.; Lunprom, S.; Salakkam, A.; Liao, Q.; Reungsang, A. Improvement in energy recovery from Chlorella sp. biomass by integrated dark-photo biohydrogen production and dark fermentation-anaerobic digestion processes. Int. J. Hydrogen Energy 2019, 44, 23899–23911. [Google Scholar] [CrossRef]
- Han, S.K.; Shin, H.S. Performance of an innovative two-stage process converting food waste to hydrogen and methane. J. Air Waste Manag. Assoc. 2004, 54, 242–249. [Google Scholar] [CrossRef]
- Qin, Y.; Li, L.; Wu, J.; Xiao, B.; Hojo, T.; Kubota, K.; Cheng, J.; Li, Y.Y. Co-production of biohydrogen and biomethane from food waste and paper waste via recirculated two-phase anaerobic digestion process: Bioenergy yields and metabolic distribution. Bioresour. Technol. 2019, 276, 325–334. [Google Scholar] [CrossRef]
- Ayodele, D.T.; Ogunbiyi, O.D.; Akamo, D.O.; Otun, K.O.; Akinpelu, D.A.; Adegoke, J.A.; Fapojuwo, D.P.; Oladoye, P.O. Factors affecting biohydrogen production: Overview and perspectives. Int. J. Hydrogen Energy 2023, 48, 27513–27539. [Google Scholar] [CrossRef]
- Srisowmeya, G.; Chakravarthy, M.; Devi, G.N. Critical considerations in two-stage anaerobic digestion of food waste–A review. Renew. Sustain. Energy Rev. 2020, 119, 109587. [Google Scholar] [CrossRef]
- Yun, S.; Fang, W.; Du, T.; Hu, X.; Huang, X.; Li, X.; Zhang, C.; Lund, P.D. Use of bio-based carbon materials for improving biogas yield and digestate stability. Energy 2018, 164, 898–909. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Frunzo, L.; Esposito, G.; Lens, P.N.; Pirozzi, F. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods. J. Environ. Manag. 2014, 146, 142–149. [Google Scholar] [CrossRef]
- Agyeman, F.O.; Tao, W. Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate. J. Environ. Manag. 2014, 133, 268–274. [Google Scholar] [CrossRef]
- Kim, S.H.; Han, S.K.; Shin, H.S. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int. J. Hydrogen Energy 2004, 29, 1607–1616. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Hafez, H.; Nakhla, G. Ultrasonication for biohydrogen production from food waste. Int. J. Hydrogen Energy 2011, 36, 2896–2903. [Google Scholar] [CrossRef]
- Gadhe, A.; Sonawane, S.S.; Varma, M.N. Ultrasonic pretreatment for an enhancement of biohydrogen production from complex food waste. Int. J. Hydrogen Energy 2014, 39, 7721–7729. [Google Scholar] [CrossRef]
- Shin, H.S.; Youn, J.H.; Kim, S.H. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy 2004, 29, 1355–1363. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, H.S. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int. J. Hydrogen Energy 2008, 33, 5266–5274. [Google Scholar] [CrossRef]
- Kim, D.H.; Wu, J.; Jeong, K.W.; Kim, M.S.; Shin, H.S. Natural inducement of hydrogen from food waste by temperature control. Int. J. Hydrogen Energy 2011, 36, 10666–10673. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Hafez, H.; Dhar, B.R.; Nakhla, G. Single and combined effect of various pretreatment methods for biohydrogen production from food waste. Int. J. Hydrogen Energy 2011, 36, 11379–11387. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.C. A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int. J. Hydrogen Energy 2009, 34, 245–254. [Google Scholar] [CrossRef]
- Chu, C.F.; Li, Y.Y.; Xu, K.Q.; Ebie, Y.; Inamori, Y.; Kong, H.N. A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrogen Energy 2008, 33, 4739–4746. [Google Scholar] [CrossRef]
- Jung, K.W.; Moon, C.; Cho, S.K.; Kim, S.H.; Shin, H.S.; Kim, D.H. Conversion of organic solid waste to hydrogen and methane by two-stage fermentation system with reuse of methane fermenter effluent as diluting water in hydrogen fermentation. Bioresour. Technol. 2013, 139, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Yeshanew, M.M.; Frunzo, L.; Pirozzi, F.; Lens, P.N.; Esposito, G. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresour. Technol. 2016, 220, 312–322. [Google Scholar] [CrossRef]
- Kobayashi, T.; Xu, K.Q.; Li, Y.Y.; Inamori, Y. Effect of sludge recirculation on characteristics of hydrogen production in a two-stage hydrogen–methane fermentation process treating food wastes. Int. J. Hydrogen Energy 2012, 37, 5602–5611. [Google Scholar] [CrossRef]
- Chinellato, G.; Cavinato, C.; Bolzonella, D.; Heaven, S.; Banks, C.J. Biohydrogen production from food waste in batch and semi-continuous conditions: Evaluation of a two-phase approach with digestate recirculation for pH control. Int. J. Hydrogen Energy 2013, 38, 4351–4360. [Google Scholar] [CrossRef]
- Algapani, D.E.; Qiao, W.; Ricci, M.; Bianchi, D.; Wandera, S.M.; Adani, F.; Dong, R. Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renew. Energy 2019, 130, 1108–1115. [Google Scholar] [CrossRef]
- Chu, C.F.; Xu, K.Q.; Li, Y.Y.; Inamori, Y. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int. J. Hydrogen Energy 2012, 37, 10611–10618. [Google Scholar] [CrossRef]
- Lee, D.Y.; Ebie, Y.; Xu, K.Q.; Li, Y.Y.; Inamori, Y. Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour. Technol. 2010, 101, S42–S47. [Google Scholar] [CrossRef]
- Ding, L.; Cheng, J.; Qiao, D.; Yue, L.; Li, Y.Y.; Zhou, J.; Cen, K. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. Bioresour. Technol. 2017, 241, 491–499. [Google Scholar] [CrossRef]
- Rafieenia, R.; Girotto, F.; Peng, W.; Cossu, R.; Pivato, A.; Raga, R.; Lavagnolo, M.C. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag. 2017, 59, 194–199. [Google Scholar] [CrossRef]
- Pisutpaisal, N.; Nathao, C.; Sirisukpoka, U. Biological hydrogen and methane production in from food waste in two-stage CSTR. Energy Procedia 2014, 50, 719–722. [Google Scholar] [CrossRef]
- Liu, X.; Li, R.; Ji, M.; Han, L. Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: Substrate conversion and energy yield. Bioresour. Technol. 2013, 146, 317–323. [Google Scholar] [CrossRef]
- Nathao, C.; Sirisukpoka, U.; Pisutpaisal, N. Production of hydrogen and methane by one and two stage fermentation of food waste. Int. J. Hydrogen Energy 2013, 38, 15764–15769. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M.; Zieliński, M. Biohythane Production in Hydrogen-Oriented Dark Fermentation of Aerobic Granular Sludge (AGS) Pretreated with Solidified Carbon Dioxide (SCO2). Int. J. Mol. Sci. 2023, 24, 4442. [Google Scholar] [CrossRef]
- Chong, C.C.; Cheng, Y.W.; Ng, K.H.; Vo, D.V.N.; Lam, M.K.; Lim, J.W. Bio-hydrogen production from steam reforming of liquid biomass wastes and biomass-derived oxygenates: A review. Fuel 2022, 311, 122623. [Google Scholar] [CrossRef]
- Arashiro, L.T.; Josa, I.; Ferrer, I.; Van Hulle, S.W.; Rousseau, D.P.; Garfí, M. Life cycle assessment of microalgae systems for wastewater treatment and bioproducts recovery: Natural pigments, biofertilizer and biogas. Sci. Total Environ. 2022, 847, 157615. [Google Scholar] [CrossRef]
- Marangon, B.B.; Magalhães, I.B.; Pereira, A.S.A.P.; Silva, T.A.; Gama, R.C.N.; Ferreira, J.; Castro, J.S.; Assis, L.R.; Lorentz, J.F.; Calijuri, M.L. Emerging microalgae-based biofuels: Technology, life-cycle and scale-up. Chemosphere 2023, 326, 138447. [Google Scholar] [CrossRef]
- Bastidas-Oyanedel, J.R.; Schmidt, J.E. Increasing profits in food waste biorefinery—A techno-economic analysis. Energies 2018, 11, 1551. [Google Scholar] [CrossRef]
- Ljunggren, M.; Zacchi, G. Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresour. Technol. 2010, 101, 7780–7788. [Google Scholar] [CrossRef] [PubMed]
- Micolucci, F.; Gottardo, M.; Pavan, P.; Cavinato, C.; Bolzonella, D. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste. J. Clean. Prod. 2018, 171, 1376–1385. [Google Scholar] [CrossRef]
- Theaker, H. Can Micro-Scale Anaerobic Digestion Be Viable? An Investigation of the Techno-Economics and Flexibility of Micro-scale Anaerobic Digestion for Future Routes to the Market. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2020. [Google Scholar]
- Al Naami, A. Techno-economic Feasibility Study of a Biogas Plant for Treating Food Waste Collected from Households in Kartamantul Region, Yogyakarta. Master’s Thesis, Gadjah Mada University, Yogyakarta, Indonesia, 2017. [Google Scholar]
- Han, W.; Fang, J.; Liu, Z.; Tang, J. Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour. Technol. 2016, 202, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Din, M.F.M.; Taib, S.M.; Ling, Y.E.; Puteh, H.; Mishra, P.; Nasrullah, M.; Sakinah, M.; Wahid, Z.A.; Rana, S.; et al. Process constraints in sustainable bio-hythane production from wastewater. Bioresour. Technol. Rep. 2019, 5, 359–363. [Google Scholar] [CrossRef]
- Dinesh, G.K.; Chauhan, R.; Chakma, S. Influence and strategies for enhanced biohydrogen production from food waste. Renew. Sustain. Energy Rev. 2018, 92, 807–822. [Google Scholar] [CrossRef]
- Byun, J.; Han, J.H. Economic feasible hydrogen production system from carbohydrate-rich food waste. Appl. Energy 2023, 340, 121044. [Google Scholar] [CrossRef]
- Mohanakrishna, G.; Sneha, N.P.; Rafi, S.M.; Sarkar, O. Dark fermentative hydrogen production: Potential of food waste as future energy needs. Sci. Total Environ. 2023, 888, 163801. [Google Scholar] [CrossRef]
- Jarunglumlert, T.; Prommuak, C.; Putmai, N.; Pavasant, P. Scaling-up bio-hydrogen production from food waste: Feasibilities and challenges. Int. J. Hydrogen Energy 2018, 43, 634–648. [Google Scholar] [CrossRef]
- Takata, M.; Fukushima, K.; Kawai, M.; Nagao, N.; Niwa, C.; Yoshida, T.; Toda, T. The choice of biological waste treatment method for urban areas in Japan—An environmental perspective. Renew. Sustain. Energy Rev. 2013, 23, 557–567. [Google Scholar] [CrossRef]
- Moult, J.A.; Allan, S.R.; Hewitt, C.N.; Berners-Lee, M. Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy 2018, 77, 50–58. [Google Scholar] [CrossRef]
- Aydin, M.I.; Dincer, I. A life cycle impact analysis of various hydrogen production methods for public transportation sector. Int. J. Hydrogen Energy 2022, 47, 39666–39677. [Google Scholar] [CrossRef]
- Sun, C.; Xia, A.; Liao, Q.; Fu, Q.; Huang, Y.; Zhu, X. Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste. Renew. Sustain. Energy Rev. 2019, 112, 395–410. [Google Scholar] [CrossRef]
- Schievano, A.; Sciarria, T.P.; Gao, Y.C.; Scaglia, B.; Salati, S.; Zanardo, M.; Quiao, W.; Dong, R.; Adani, F. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran. Waste Manag. 2016, 56, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. Energy Inst. 2019, 92, 1779–1799. [Google Scholar] [CrossRef]
- Mikusińska, J.; Kuźnia, M.; Czerwińska, K.; Wilk, M. Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process. Energies 2023, 16, 5458. [Google Scholar] [CrossRef]
- Kovačić, Đ.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate management and processing practices: A review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- Cao, Z.; Jung, D.; Olszewski, M.P.; Arauzo, P.J.; Kruse, A. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Manag. 2019, 100, 138–150. [Google Scholar] [CrossRef]
- Funke, A.; Mumme, J.; Koon, M.; Diakité, M. Cascaded production of biogas and hydrochar from wheat straw: Energetic potential and recovery of carbon and plant nutrients. Biomass Bioenergy 2013, 58, 229–237. [Google Scholar] [CrossRef]
- Aragón-Briceño, C.I.; Grasham, O.; Ross, A.B.; Dupont, V.; Camargo-Valero, M.A. Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renew. Energy 2020, 157, 959–973. [Google Scholar] [CrossRef]
- Ahmed, M.; Andreottola, G.; Elagroudy, S.; Negm, M.S.; Fiori, L. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and bio-methane production. J. Environ. Manag. 2021, 281, 111910. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.E.; Hammerton, J.M.; Camargo-Valero, M.A.; Ross, A.B. Integration of Hydrothermal Carbonisation and Anaerobic Digestion for the Energy Valorisation of Grass. Energies 2022, 15, 3495. [Google Scholar] [CrossRef]
- Zhao, Z.; Qi, S.; Wang, R.; Li, H.; Song, G.; Li, H.; Yin, Q. Life cycle assessment of food waste energy and resource conversion scheme via the integrated process of anaerobic digestion and hydrothermal carbonization. Int. J. Hydrogen Energy 2023, 52, 122–132. [Google Scholar] [CrossRef]
- Alibardi, L.; Astrup, T.F.; Asunis, F.; Clarke, W.P.; De Gioannis, G.; Dessì, P.; Lens, P.N.; Lavagnolo, M.C.; Lombardi, L.; Muntoni, A.; et al. Organic waste biorefineries: Looking towards implementation. Waste Manag. 2020, 114, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Usmani, Z.; Sharma, M.; Awasthi, A.K.; Sharma, G.D.; Cysneiros, D.; Nayak, S.C.; Thakur, V.K.; Naidu, R.; Pandey, A.; Gupta, V.K. Minimizing hazardous impact of food waste in a circular economy–Advances in resource recovery through green strategies. J. Hazard. Mater. 2021, 416, 126154. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food waste utilization for reducing carbon footprints towards sustainable and cleaner environment: A review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Nadagouda, M.N.; Badawi, M.; Bonilla-Petriciolet, A.; Aminabhavi, T.M. Valorization of biowastes for clean energy production, environmental depollution and soil fertility. J. Environ. Manag. 2023, 332, 117410. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nikhil, G.N.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.V.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef]
- Wang, S.; Mukhambet, Y.; Esakkimuthu, S. Integrated microalgal biorefinery–Routes, energy, economic and environmental perspectives. J. Clean. Prod. 2022, 348, 131245. [Google Scholar] [CrossRef]
Substrate | TS (% WB) | VS (%TS) | Ash (%TS) | C (% TS) | H (% TS) | N (% TS) | S (% TS) | O (% TS) | C/N | Carbohydrates (% TS) | Fat (% TS) | Protein (% TS) | pH | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Food waste | 18.90 | 90.10 | 9.90 | 41.10 | NA | 3.40 | 0.92 | NA | 12.00 | NA | NA | NA | NA | [51] |
Food waste | 18.10 | 94.47 | 5.53 | 46.67 | 6.39 | 5.42 | 0.81 | 36.39 | 13.20 | NA | NA | NA | 6.5 | [52] |
Food waste | 23.10 | 90.90 | 9.10 | 56.30 | NA | 2.30 | NA | NA | 24.50 | NA | NA | NA | 4.2 | [53] |
Food waste | 25.70 | 91.05 | 8.95 | 51.80 | NA | 2.90 | NA | NA | 17.90 | NA | NA | NA | 4.4 | [53] |
Food waste | 6.80 | 76.47 | 23.53 | 72.50 | NA | 1.30 | NA | NA | 55.80 | NA | NA | NA | 4.1 | [53] |
Food waste | 23.10 | 90.90 | 9.10 | 56.30 | NA | 2.30 | NA | NA | 24.50 | NA | NA | NA | NA | [53] |
Food waste | 25.70 | 91.05 | 8.95 | 51.80 | NA | 2.90 | NA | NA | 17.90 | NA | NA | NA | NA | [53] |
Food waste | 6.80 | 76.47 | 23.53 | 72.50 | NA | 1.30 | NA | NA | 55.80 | NA | NA | NA | NA | [53] |
Food waste | 30.90 | 85.30 | 14.70 | 46.78 | NA | 3.16 | NA | NA | 14.80 | NA | NA | NA | NA | [54] |
Food waste | 39.10 | 80.90 | 1.61 | 41.53 | 5.76 | 1.55 | NA | 51.04 | 26.77 | NA | NA | NA | NA | [55] |
Food waste | NA | 74.00 | 1.15 | 50.70 | 7.60 | 4.40 | NA | 36.90 | 13.44 | NA | NA | NA | NA | [56] |
Food waste | 23.50 | 79.11 | 6.40 | 39.00 | 7.32 | 5.70 | 0.30 | 47.70 | 7.90 | NA | NA | NA | NA | [57] |
Food waste | NA | 81.31 | 6.14 | 49.64 | 7.47 | 3.21 | 0.05 | 33.49 | NA | NA | NA | NA | NA | [58] |
Food waste | NA | 73.78 | 3.62 | 45.71 | 6.72 | 2.91 | NA | 41.04 | NA | NA | NA | NA | NA | [59] |
Food waste | NA | 69.35 | 8.32 | 42.25 | 6.47 | 5.25 | NA | 37.36 | NA | NA | NA | NA | NA | [60] |
Food waste | 10.20 | 84.31 | 5.19 | 48.70 | 6.40 | 3.26 | 0.30 | 32.56 | NA | NA | NA | NA | 4.3 | [61] |
Food waste | 96.70 | 71.30 | 10.30 | 47.50 | 6.60 | 3.90 | 0.40 | 41.60 | NA | 60.00 | 16.00 | 22.00 | NA | [62] |
Kitchen waste | 85.00 | 60.00 | 3.50 | 45.00 | 6.00 | 1.00 | NA | 40.00 | NA | 40.00 | 15.00 | 10.00 | NA | [63] |
Kitchen food waste | 19.80 | 83.40 | 16.60 | 43.80 | 7.00 | 3.20 | NA | 25.00 | 16.30 | 36.70 | 24.20 | 11.70 | 5.8 | [64] |
Kitchen waste | 60.00 | 85.00 | 5.50 | 46.00 | 7.00 | 3.00 | NA | 50.00 | NA | 60.00 | 40.00 | 30.00 | NA | [63] |
Synthetic Food Waste | 17.60 | 94.60 | 5.40 | 45.80 | 7.30 | 3.10 | NA | 42.00 | 15.70 | 73.70 | 9.70 | 20.70 | 4.5 | [64] |
Synthetic Food Waste | 19.50 | NA | 1.00 | 44.50 | 5.10 | 3.30 | NA | 47.00 | 15.70 | 63.00 | 21.00 | 16.00 | NA | [65] |
Vegetable waste | 24.00 | 94.10 | 5.90 | 54.00 | 2.40 | NA | NA | 22.50 | 55.20 | 15.00 | 23.90 | NA | [66] | |
Restaurant food waste | 21.50 | 93.50 | 6.50 | 49.00 | 9.20 | 3.60 | NA | 33.90 | 18.50 | 53.70 | 17.90 | 18.70 | 5.3 | [64] |
Average | 29.80 | 83.10 | 8.35 | 49.54 | 6.82 | 3.12 | 0.46 | 39.73 | 21.95 | 55.29 | 19.85 | 19.13 | 4.89 | |
STD | 23.28 | 9.19 | 5.87 | 8.21 | 0.91 | 1.20 | 0.30 | 6.96 | 13.24 | 11.32 | 8.62 | 6.13 | 0.86 | |
Min. | 6.80 | 60.00 | 1.00 | 39.00 | 5.10 | 1.00 | 0.05 | 25.00 | 7.90 | 36.70 | 9.70 | 10.00 | 4.10 | |
Max. | 96.70 | 94.60 | 23.53 | 72.50 | 9.20 | 5.70 | 0.92 | 51.04 | 55.80 | 73.70 | 40.00 | 30.00 | 6.50 |
Biomethane | ||||||||
---|---|---|---|---|---|---|---|---|
Experiment Scale | Type of FW | OLR (g VS/L) | HRT (days) | Temp. | Methane Yield (L/kg VS) | Hydrogen Yield (L/kg VS) | Energy Yield (MJ/gVS) | References |
Batch | FW | NA | 50 | 38 | 370 | NA | 12.4 | [51] |
Batch | Kitchen FW | 3–10 | 30–45 | 35–41 | 313–568 | NA | 10–19 | [64] |
Batch | Synthetic FW | 2 g–15 g | 12–65 | 35–37 | 116–630 | NA | 4–21 | [64] |
Batch | Restaurant FW and canteen FW | 1 g–20 g | 8–50 | 35–41 | 268–684 | NA | 9–23 | [64] |
Batch | FW | 8 | 30 | 35 | 643 | NA | 22 | [53] |
Batch | Solid FW | 8 | 30 | 35 | 659 | NA | 22 | [53] |
Batch | Liquid FW | 8 | 30 | 35 | 581 | NA | 19 | [53] |
Semi-continuous | FW | NA | 20–40 | 37 | 396 | NA | 13 | [53] |
Semi-continuous | Raw FW | 6–16 | NA | 35 | 405 | NA | 14 | [53] |
Semi-continuous | Solid FW | 6–16 | NA | 35 | 540 | NA | 18 | [53] |
Semi-continuous | Liquid FW | 3–12 | NA | 35 | 390 | NA | 13 | [53] |
Batch | FW | NA | 250 | 32–34 | 648 | NA | 21 | [94] |
Semi-continuous | FW | 3 | 54–160 | 36 | 630 | NA | 21 | [95] |
Biohydrogen | ||||||||
Experiment Scale | Type of FW | OLR (g VS/L) | HRT Days | Temp. | Methane (L/kg VS) | Hydrogen Yield (L/kg VS) | Energy Yield (MJ/gVS) | References |
Batch | FW | NA | NA | NA | NA | 123 | 1.3 | [96] |
CSTR (Sonicated biological hydrogen reactor) | FW | 13.4–14.4 | NA | 37 | NA | 118 | 1.3 | [97] |
Batch | FW | NA | NA | 37 | NA | 149 | 1.6 | [98] |
Batch | FW | NA | NA | NA | NA | 360 | 3.9 | [99] |
Semi-continuous | FW | NA | NA | 37 | NA | 63 | 0.7 | [100] |
Batch | FW | NA | NA | 37 | NA | 219 | 2.4 | [67] |
Batch | FW | NA | NA | NA | NA | 165 | 1.8 | [101] |
Batch | FW | NA | NA | NA | NA | 97 | 1.0 | [102] |
Biohythane | ||||||||
Experiment Scale | Type of FW | OLR (g VS/L) | HRT Days | Temp. | Methane Yield (L/kg VS) | Hydrogen Yield (L/kg VS) | Energy Yield (MJ/gVS) | References |
CSTR | FW | NA | NA | NA | 546 | 65 | 19.0 | [103] |
CSTR | FW | 38.4, 6.6 | 1.3, 5 | NA | 464 | 205 | 17.7 | [104] |
UASB | FW | NA | 15 | NA | 250 | 161 | 10.1 | [105] |
ASBR | FW | NA | 15 | NA | 526 | 125 | 18.9 | [105] |
CSTR AFBR | FW | 3.4, 6 | 55, 37 | 314 | 115 | 11.7 | [106] | |
CSTR ABR | FW | NA | NA | NA | 392 | 68 | 13.8 | [107] |
CSTR | FW | 20, NA | 3,12 | 55, 55 | 311 | 117 | 11.7 | [108] |
CSTR | FW | 18, 5.7 | 55, 35 | 510 | 135 | 18.5 | [109] | |
CSTR | FW | NA | NA | NA | 364 | 85 | 13.1 | [110] |
Semi-continuous | FW | NA | NA | NA | 451 | 114 | 16.3 | [111] |
CSTR | FW | NA | NA | NA | 512 | 43 | 17.6 | [112] |
NA | FW | NA | NA | NA | 352 | 5 | 11.8 | [113] |
CSTR | FW | NA | NA | NA | 392 | 293 | 16.2 | [114] |
CSTR | FW | NA | NA | NA | 354 | 106 | 13.0 | [115] |
UASB | FW | NA | NA | NA | 95 | 55 | 3.8 | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahota, S.; Kumar, S.; Lombardi, L. Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects. Energies 2024, 17, 666. https://doi.org/10.3390/en17030666
Sahota S, Kumar S, Lombardi L. Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects. Energies. 2024; 17(3):666. https://doi.org/10.3390/en17030666
Chicago/Turabian StyleSahota, Shivali, Subodh Kumar, and Lidia Lombardi. 2024. "Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects" Energies 17, no. 3: 666. https://doi.org/10.3390/en17030666
APA StyleSahota, S., Kumar, S., & Lombardi, L. (2024). Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects. Energies, 17(3), 666. https://doi.org/10.3390/en17030666