Novel Droop-Based Techniques for Dynamic Performance Improvement in a Linear Active Disturbance Rejection Controlled-Dual Active Bridge for Fast Battery Charging of Electric Vehicles
Abstract
:1. Introduction
2. Working Principle of DAB Converter Based on SPS Modulation
3. Basic Principle of Linear Active Disturbance Rejection Control (LADRC)
4. Control System Design
4.1. LADRC-Based Output Current Loop Control
4.2. Battery Voltage Loop Control Based on LADRC
5. Proposed Feedforward for Dynamic Performance Enhancement
5.1. Approach 1
5.2. Approach 2
5.3. Approach 3
6. Numerical Simulations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Biswas, A.; Rodriguez, R.; Keshavarz-Motamed, Z.; Emadi, A. Hybrid electric vehicle specific engines: State-of-the-art review. Energy Rep. 2022, 8, 832–851. [Google Scholar] [CrossRef]
- Shafique, M.; Luo, X. Environmental life cycle assessment of battery electric vehicles from the current and Future Energy Mix Perspective. J. Environ. Manag. 2022, 303, 114050. [Google Scholar] [CrossRef]
- Xue, L.; Shen, Z.; Boroyevich, D.; Mattavelli, P.; Diaz, D. Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle with Charging Current Containing Low Frequency Ripple. IEEE Trans. Power Electron. 2015, 30, 7299–7307. [Google Scholar] [CrossRef]
- Naik, N.; Vyjayanthi, C.; Modi, C. Filter-Based Active Damping of DAB Converter to Lower Battery Degradation in EV Fast Charging Application. IEEE Access 2023, 11, 74277–74289. [Google Scholar] [CrossRef]
- Hou, N.; Song, W.; Zhu, Y.; Sun, X.; Li, W. Dynamic and static performance optimization of dual active bridge DC-DC converters. J. Mod. Power Syst. Clean Energy 2018, 6, 607–618. [Google Scholar] [CrossRef]
- Li, L.; Xu, G.; Xiong, W.; Liu, D.; Su, M. An Optimized DPS Control for Dual-Active-Bridge Converters to Secure Full-Load-Range ZVS with Low Current Stress. IEEE Trans. Transp. Electrif. 2022, 8, 1389–1400. [Google Scholar] [CrossRef]
- Tian, J.; Wang, F.; Zhuo, F.; Cui, X.; Yang, D. An Optimal Primary-Side Duty Modulation Scheme with Minimum Peak-to-Peak Current Stress for DAB-Based EV Applications. IEEE Trans. Ind. Electron. 2023, 70, 6798–6808. [Google Scholar] [CrossRef]
- Gong, L.; Jin, X.; Xu, J.; Deng, Z.; Li, H.; Soeiro, T.B.; Wang, Y. A Dynamic ZVS-Guaranteed and Seamless-Mode-Transition Modulation Scheme for the DAB Converter That Maximizes the ZVS Range and Lowers the Inductor RMS Current. IEEE Trans. Power Electron. 2022, 37, 13119–13134. [Google Scholar] [CrossRef]
- Xia, P.; Shi, H.; Wen, H.; Bu, Q.; Hu, Y.; Yang, Y. Robust LMI-LQR Control for Dual-Active-Bridge DC–DC Converters with High Parameter Uncertainties. IEEE Trans. Transp. Electrif. 2020, 6, 131–145. [Google Scholar] [CrossRef]
- Xu, G.; Li, L.; Chen, X.; Xiong, W.; Liang, X.; Su, M. Decoupled EPS Control Utilizing Magnetizing Current to Achieve Full Load Range ZVS for Dual Active Bridge Converters. IEEE Trans. Ind. Electron. 2022, 69, 4801–4813. [Google Scholar] [CrossRef]
- Ji, Z.; Wang, Q.; Li, D.; Sun, Y. Fast DC-Bias Current Control of Dual Active Bridge Converters with Feedforward Compensation. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2587–2591. [Google Scholar] [CrossRef]
- Tiwary, N.; Naik, V.N.; Panda, A.K.; Narendra, A.; Lenka, R.K. Fuzzy Logic Based Direct Power Control of Dual Active Bridge Converter. In Proceedings of the 2021 1st International Conference on Power Electronics and Energy (ICPEE), Bhubaneswar, India, 2–3 January 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, B.; Zha, Y.; Zhang, T.; Chen, S. Fuzzy logic control of dual active bridge in solid state transformer applications. In Proceedings of the 2016 Tsinghua University-IET Electrical Engineering Academic Forum, Beijing, China, 13–15 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Tarisciotti, L.; Chen, L.; Shao, S.; Dragičević, T.; Wheeler, P.; Zanchetta, P. Finite Control Set Model Predictive Control for Dual Active Bridge Converter. IEEE Trans. Ind. Appl. 2022, 58, 2155–2165. [Google Scholar] [CrossRef]
- Chen, L.; Lin, L.; Shao, S.; Gao, F.; Wang, Z.; Wheeler, P.W.; Dragičević, T. Moving Discretized Control Set Model-Predictive Control for Dual-Active Bridge with the Triple-Phase Shift. IEEE Trans. Power Electron. 2020, 35, 8624–8637. [Google Scholar] [CrossRef]
- Dòria-Cerezo, A.; Serra, F.M.; Esteban, F.D.; Biel, D.; Griñó, R. Comparison of First- and Second-Order Sliding-Mode Controllers for a DC-DC Dual Active Bridge. IEEE Access 2022, 10, 40264–40272. [Google Scholar] [CrossRef]
- Tiwary, N.; Naik, N.V.; Panda, A.K.; Narendra, A.; Lenka, R.K. A Robust Voltage Control of DAB Converter with Super-Twisting Sliding Mode Approach. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 4, 288–298. [Google Scholar] [CrossRef]
- Jeung, Y.-C.; Lee, D.-C. Voltage and Current Regulations of Bidirectional Isolated Dual-Active-Bridge DC–DC Converters Based on a Double-Integral Sliding Mode Control. IEEE Trans. Power Electron. 2019, 34, 6937–6946. [Google Scholar] [CrossRef]
- Cupelli, M.; Gurumurthy, S.K.; Bhanderi, S.K.; Yang, Z.; Joebges, P.; Monti, A.; De Doncker, R.W. Port Controlled Hamiltonian Modeling and IDA-PBC Control of Dual Active Bridge Converters for DC Microgrids. IEEE Trans. Ind. Electron. 2019, 66, 9065–9075. [Google Scholar] [CrossRef]
- Monika, M.; Meshram, R.; Wagh, S. Disturbance Rejection and Harmonic mitigation for Solid State Transformer through Passivity Based Control. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- López-Rodríguez, K.; Escobar-Mejía, A.; Piedrahita-Echavarria, E.Y.; Gil-González, W. Passivity-Based Current Control of a Dual-Active Bridge to Improve the Dynamic Response of a Solid-State Transformer During Power and Voltage Variations. In Proceedings of the 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, Croatia, 28 September–1 October 2020; pp. 230–235. [Google Scholar] [CrossRef]
- Cupelli, M.; Bhanderi, S.K.; Gurumurthy, S.K.; Monti, A. Port—Hamiltonian Modelling and Control of Single Phase DAB Based MVDC Shipboard Power System. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 3437–3444. [Google Scholar] [CrossRef]
- Haider, F.; Ali, A. Active Disturbance Rejection Control for Time Varying Disturbances: Comparative Study on a DC-DC Boost Converter. In Proceedings of the 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, 10–12 February 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zeng, Y.; Maswood, A.I.; Pou, J.; Zhang, X.; Li, Z.; Sun, C.; Mukherjee, S.; Gupta, A.K.; Dong, J. Active Disturbance Rejection Control Using Artificial Neural Network for Dual-Active-Bridge-Based Energy Storage System. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 301–311. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Qin, Z.; Bauer, P. Decoupling Control of Multiactive Bridge Converters Using Linear Active Disturbance Rejection. IEEE Trans. Ind. Electron. 2021, 68, 10688–10698. [Google Scholar] [CrossRef]
- Ali, M.; Yaqoob, M.; Cao, L.; Loo, K.H. Disturbance-Observer-Based DC-Bus Voltage Control for Ripple Mitigation and Improved Dynamic Response in Two-Stage Single-Phase Inverter System. IEEE Trans. Ind. Electron. 2019, 66, 6836–6845. [Google Scholar] [CrossRef]
- Long, B.; Zeng, W.; Rodríguez, J.; Garcia, C.; Guerrero, J.M.; Chong, K.T. Stability Enhancement of Battery-Testing DC Microgrid: An ADRC-Based Virtual Inertia Control Approach. IEEE Trans. Smart Grid 2022, 13, 4256–4268. [Google Scholar] [CrossRef]
- Zhuo, S.; Gaillard, A.; Xu, L.; Paire, D.; Gao, F. Extended State Observer-Based Control of DC–DC Converters for Fuel Cell Application. IEEE Trans. Power Electron. 2020, 35, 9923–9932. [Google Scholar] [CrossRef]
- Bose, B.; Garg, A.; Panigrahi, B.K.; Kim, J. Study on Li-Ion Battery Fast Charging Strategies: Review, Challenges and proposed charging framework. J. Energy Storage 2022, 55, 105507. [Google Scholar] [CrossRef]
- Gücin, T.N.; Biberoğlu, M.; Fincan, B. A Constant-Current Constant-Voltage Charging based control and design approach for the parallel resonant converter. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 414–419. [Google Scholar] [CrossRef]
- Diep, N.T.; Trung, N.K.; Minh, T.T. Control the Constant Current/Voltage Charging Mode in the Wireless Charging System for Electric Vehicle with LCC Compensation Circuit. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Surve, U.; Narayana, T.H.; Srinivas, S.; Ronanki, D. Loss Minimization of Dual Active Bridge Converter Through Design Optimization in CC-CV Mode for Electric Vehicle Battery Charging Applications. In Proceedings of the 2023 IEEE Industry Applications Society Annual Meeting (IAS), Nashville, TN, USA, 29 October–2 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Narayana, T.H.; Surve, U.; Srinivas, S. ZVS Enhancement of Dual Active Bridge Converter Using Series Connected Inductors for EV Battery Charging Application. In Proceedings of the 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), Hyderabad, India, 4–6 August 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Ashfaq, M.H.; Memon, Z.A.; Chaudhary, M.A.; Talha, M.; Selvaraj, J.; Rahim, N.A.; Hussain, M.M. Robust dynamic control of constant-current-source-based dual-active-bridge DC/DC converter used for off-board EV charging. Energies 2022, 15, 8850. [Google Scholar] [CrossRef]
- Nkembi, A.A.; Cova, P.; Kortabarria, I.; Sacchi, E.; Delmonte, N. An improved modelling and dynamic control of the dual active bridge converter for fast battery charging of electric vehicles. In Proceedings of the 12th International Conference on Power Electronics, Machines and Drives (PEMD 2023), Brussels, Belgium, 23–24 October 2023; pp. 247–254. [Google Scholar] [CrossRef]
- Han, J.; Gu, X.; Yang, Y.; Tang, T. Dynamic improvement with a feedforward control strategy of bidirectional DC-DC converter for battery charging and discharging. Electronics 2020, 9, 1738. [Google Scholar] [CrossRef]
- Sinha, S.; Ghosh, A. Switching Transients Reduction for Battery Charging Controller during Mode Selection. In Proceedings of the 2024 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 24–25 February 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Ghosh, S.; Singh, A.K.; Singh, R.; Maurya, R.; Singh, S.N.; Yang, G. Intelligent control of integrated on-board charger with improved power quality and reduced charging transients. ISA Trans. 2023, 135, 355–368. [Google Scholar] [CrossRef]
- Lin, F.-J.; Huang, M.-S.; Yeh, P.-Y.; Tsai, H.-C.; Kuan, C.-H. DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger. IEEE Trans. Power Electron. 2012, 27, 3782–3794. [Google Scholar] [CrossRef]
- Arora, S.; Singh, M. Reduction of switching transients in CC/CV mode of electric vehicles battery charging. In Proceedings of the 5th IET International Conference on Clean Energy and Technology (CEAT2018), Kuala Lumpur, Malaysia, 5–6 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Habibullah, A.F.; Kim, K.-H. Decentralized Power Management of DC Microgrid Based on Adaptive Droop Control with Constant Voltage Regulation. IEEE Access 2022, 10, 129490–129504. [Google Scholar] [CrossRef]
- Li, B.; Li, Q.; Wang, Y.; Wen, W.; Li, B.; Xu, L. A Novel Method to Determine Droop Coefficients of DC Voltage Control for VSC-MTDC System. IEEE Trans. Power Deliv. 2020, 35, 2196–2211. [Google Scholar] [CrossRef]
- Nkembi, A.A.; Santoro, D.; Ahmad, F.; Kortabarria, I.; Cova, P.; Sacchi, E.; Delmonte, N. A novel feedforward scheme for enhancing dynamic performance of vector-controlled dual active bridge converter with dual phase shift modulation for Fast Battery Charging Systems. Electronics 2024, 13, 3791. [Google Scholar] [CrossRef]
- Pal, P.; Behera, R.K.; Chikondra, B.; Zaabi, O.A.; Hosani, K.A. Modified Single Phase Shift Control of DAB Converter for Fast Dynamic Response Under Various Disturbances. In Proceedings of the IECON 2022—48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17–20 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Lucas, K.E.; Pagano, D.J.; Medeiros, R.L.P. Single Phase-Shift Control of DAB Converter using Robust Parametric Approach. In Proceedings of the 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), Santos, Brazil, 1–4 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Sun, Y. Overview of Dual-Active-Bridge Isolated Bidirectional DC–DC Converter for High-Frequency-Link Power-Conversion System. IEEE Trans. Power Electron. 2014, 29, 4091–4106. [Google Scholar] [CrossRef]
- Turzyński, M.; Bachman, S.; Jasiński, M.; Piasecki, S.; Ryłko, M.; Chiu, H.J.; Kuo, S.H.; Chang, Y.C. Analytical estimation of power losses in a dual active bridge converter controlled with a single-phase shift switching scheme. Energies 2022, 15, 8262. [Google Scholar] [CrossRef]
- Dong, H.; Wang, H.; Li, G.; Zhai, H. Linear active disturbance rejection control of new double full-bridge ZVZCS converter for Beam Supply. Electronics 2022, 11, 3062. [Google Scholar] [CrossRef]
- Smadi, A.A.; Khoucha, F.; Amirat, Y.; Benrabah, A.; Benbouzid, M. Active disturbance rejection control of an interleaved high gain DC-DC boost converter for fuel cell applications. Energies 2023, 16, 1019. [Google Scholar] [CrossRef]
- Kang, Z.; Li, Y. Active disturbance rejection control of full-Bridge DC–DC converter for a pulse power supply with controllable charging time. Electronics 2023, 12, 5018. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Lu, J. Research on linear active disturbance rejection control in DC/DC boost converter. Electronics 2019, 8, 1249. [Google Scholar] [CrossRef]
- Rolak, M.; Twardy, M.; Soból, C. Generalized average modeling of a dual active bridge DC-DC converter with triple-phase-shift modulation. Energies 2022, 15, 6092. [Google Scholar] [CrossRef]
- De Din, E.; Siddique, H.A.B.; Cupelli, M.; Monti, A.; De Doncker, R.W. Voltage Control of Parallel-Connected Dual-Active Bridge Converters for Shipboard Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 664–673. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Input voltage (Vin) | 756 V |
Battery nominal voltage (Vo) | 900 V |
Switching frequency (fs) | 100 kHz |
Rated power (Po) | 250 kW |
External inductance plus transformer leakage inductance (L) | 1.8 µH |
Parasitic resistance of inductor and transformer | 50 mΩ |
Drain-source on resistance of MOSFET (Rds-on) | 35 mΩ |
Transformer turns ratio | 5:6 |
Output filter capacitor (Cf) | 200 µF |
Filter capacitor ESR | 50 mΩ |
Description | Parameter | Value |
---|---|---|
LADRC for output current | 2000 rad/s, 6000 rad/s | |
LADRC for output voltage | 500 rad/s, 3000 rad/s | |
Feedforward parameters | α, β | 15, 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkembi, A.A.; Santoro, D.; Ahmad, F.; Kortabarria, I.; Cova, P.; Sacchi, E.; Delmonte, N. Novel Droop-Based Techniques for Dynamic Performance Improvement in a Linear Active Disturbance Rejection Controlled-Dual Active Bridge for Fast Battery Charging of Electric Vehicles. Energies 2024, 17, 5171. https://doi.org/10.3390/en17205171
Nkembi AA, Santoro D, Ahmad F, Kortabarria I, Cova P, Sacchi E, Delmonte N. Novel Droop-Based Techniques for Dynamic Performance Improvement in a Linear Active Disturbance Rejection Controlled-Dual Active Bridge for Fast Battery Charging of Electric Vehicles. Energies. 2024; 17(20):5171. https://doi.org/10.3390/en17205171
Chicago/Turabian StyleNkembi, Armel Asongu, Danilo Santoro, Fawad Ahmad, Iñigo Kortabarria, Paolo Cova, Emilio Sacchi, and Nicola Delmonte. 2024. "Novel Droop-Based Techniques for Dynamic Performance Improvement in a Linear Active Disturbance Rejection Controlled-Dual Active Bridge for Fast Battery Charging of Electric Vehicles" Energies 17, no. 20: 5171. https://doi.org/10.3390/en17205171
APA StyleNkembi, A. A., Santoro, D., Ahmad, F., Kortabarria, I., Cova, P., Sacchi, E., & Delmonte, N. (2024). Novel Droop-Based Techniques for Dynamic Performance Improvement in a Linear Active Disturbance Rejection Controlled-Dual Active Bridge for Fast Battery Charging of Electric Vehicles. Energies, 17(20), 5171. https://doi.org/10.3390/en17205171