A New Topology of Multi-Input Bidirectional DC-DC Converters for Hybrid Energy Storage Systems
Abstract
:1. Introduction
2. Converter Structure and Control
3. Experimental Test Bench
4. Efficiency Comparison between the Half-Bridge Converter and the Proposed Converter
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, J.; Dusmez, S.; Khaligh, A. Optimization of Sizing and Battery Cycle Life in Battery/Ultracapacitor Hybrid Energy Storage Systems for Electric Vehicle Applications. IEEE Trans. Ind. Inform. 2014, 10, 2112–2121. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, Z.; Huang, D.; Lin, T. Model Prediction and Rule Based Energy Management Strategy for a Plug-in Hybrid Electric Vehicle with Hybrid Energy Storage System. IEEE Trans. Power Electron. 2021, 36, 5926–5940. [Google Scholar] [CrossRef]
- Kollmeyer, P.J.; Wootton, M.; Reimers, J.; Opila, D.F.; Kurera, H.; Kadakia, M.; Gu, R.; Stiene, T.; Chemali, E.; Wood, M.; et al. Real-Time Control of a Full Scale Li-ion Battery and Li-ion Capacitor Hybrid Energy Storage System for a Plug-in Hybrid Vehicle. IEEE Trans. Ind. Appl. 2019, 55, 4204–4214. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y.; Khajepour, A. Cyber-Physical Control for Energy Management of Off-Road Vehicles with Hybrid Energy Storage Systems. IEEE/ASME Trans. Mechatron. 2018, 23, 2609–2618. [Google Scholar] [CrossRef]
- Podder, A.K.; Chakraborty, O.; Islam, S.; Kumar, N.M.; Alhelou, H.H. Control Strategies of Different Hybrid Energy Storage Systems for Electric Vehicles Applications. IEEE Access 2021, 9, 51865–51895. [Google Scholar] [CrossRef]
- Shen, Y.; Xie, J.; He, T.; Yao, L.; Xiao, Y. CEEMD-Fuzzy Control Energy Management of Hybrid Energy Storage Systems in Electric Vehicles. IEEE Trans. Energy Convers. 2024, 39, 555–566. [Google Scholar] [CrossRef]
- Ju, C.; Wang, P.; Goel, L.; Xu, Y. A Two-Layer Energy Management System for Microgrids with Hybrid Energy Storage Considering Degradation Costs. IEEE Trans. Smart Grid 2018, 9, 6047–6057. [Google Scholar] [CrossRef]
- Zhou, H.; Bhattacharya, T.; Tran, D.; Siew, T.S.T.; Khambadkone, A.M. Composite Energy Storage System Involving Battery and Ultracapacitor with Dynamic Energy Management in Microgrid Applications. IEEE Trans. Power Electron. 2011, 26, 923–930. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, C.; Kadavil, R.; Liaw, B.; Muljadi, E.; Wu, X.; Srivastava, S.K.; Mosier, T.; Dufek, E. A Novel Framework for Optimizing Ramping Capability of Hybrid Energy Storage Systems. IEEE Trans. Smart Grid 2021, 12, 1651–1662. [Google Scholar] [CrossRef]
- Joshi, A.; Suresh, A.; Kamalasadan, S. Grid Frequency Regulation Based on Point of Common Coupling Angle Deviation Control of Distributed Energy Resources with Fully Active Hybrid Energy Storage System. IEEE Trans. Ind. Appl. 2021, 57, 4473–4485. [Google Scholar] [CrossRef]
- Garcia-Torres, F.; Bordons, C.; Tobajas, J.; Real-Calvo, R.; Santiago, I.; Grieu, S. Stochastic Optimization of Microgrids with Hybrid Energy Storage Systems for Grid Flexibility Services Considering Energy Forecast Uncertainties. IEEE Trans. Power Syst. 2021, 36, 5537–5547. [Google Scholar] [CrossRef]
- Inthamoussou, F.A.; Pegueroles-Queralt, J.; Bianchi, F.D. Control of a Supercapacitor Energy Storage System for Microgrid Applications. IEEE Trans. Energy Convers. 2013, 28, 690–697. [Google Scholar] [CrossRef]
- Bahloul, M.; Khadem, S.K. Impact of Power Sharing Method on Battery Life Extension in HESS for Grid Ancillary Services. IEEE Trans. Energy Convers. 2019, 34, 1317–1327. [Google Scholar] [CrossRef]
- Hein, K.; Xu, Y.; Wilson, G.; Gupta, A.K. Coordinated Optimal Voyage Planning and Energy Management of All-Electric Ship with Hybrid Energy Storage System. IEEE Trans. Power Syst. 2021, 36, 2355–2365. [Google Scholar] [CrossRef]
- Abkenar, A.T.; Nazari, A.; Jayasinghe, S.D.G.; Kapoor, A.; Negnevitsky, M. Fuel Cell Power Management Using Genetic Expression Programming in All-Electric Ships. IEEE Trans. Energy Convers. 2017, 32, 779–787. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y. A Systematic Approach to Synthesizing Multi-Input DC–DC Converters. IEEE Trans. Power Electron. 2009, 24, 116–127. [Google Scholar] [CrossRef]
- Amiri, E.; Khorasani, R.R.; Adib, E.; Khoshkbar-Sadigh, A. Multi-Input High Step-Up DC–DC Converter with Independent Control of Voltage and Power for Hybrid Renewable Energy Systems. IEEE Trans. Ind. Electron. 2021, 68, 12079–12087. [Google Scholar] [CrossRef]
- Danyali, S.; Hosseini, S.H.; Gharehpetian, G.B. New Extendable Single-Stage Multi-input DC–DC/AC Boost Converter. IEEE Trans. Power Electron. 2014, 29, 775–788. [Google Scholar] [CrossRef]
- Faraji, R.; Farzanehfard, H. Soft-Switched Nonisolated High Step-Up Three-Port DC–DC Converter for Hybrid Energy Systems. IEEE Trans. Power Electron. 2018, 33, 10101–10111. [Google Scholar] [CrossRef]
- Chen, Y.M.; Liu, Y.C.; Wu, F.Y. Multi-input DC/DC converter based on the multiwinding transformer for renewable energy applications. IEEE Trans. Ind. Appl. 2002, 38, 1096–1104. [Google Scholar] [CrossRef]
- Dusmez, S.; Li, X.; Akin, B. A New Multiinput Three-Level DC/DC Converter. IEEE Trans. Power Electron. 2016, 31, 1230–1240. [Google Scholar] [CrossRef]
- Li, X.L.; Tse, C.K.; Lu, D.D.C. Single-Inductor Multi-Input Multi-Output DC-DC Converter with High Flexibility and Simple Control. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar]
- Mohseni, P.; Hosseini, S.H.; Sabahi, M.; Jalilzadeh, T.; Maalandish, M. A New High Step-Up Multi-Input Multi-Output DC–DC Converter. IEEE Trans. Ind. Electron. 2019, 66, 5197–5208. [Google Scholar] [CrossRef]
- Shan, Z.; Ding, X.; Jatskevich, J.; Tse, C.K. Synthesis of Multi-Input Multi-Output DC/DC Converters without Energy Buffer Stages. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 712–716. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Qing, X.; Ma, M.; Lin, Z. Principle and Topology Derivation of Single-Inductor Multi-Input Multi-Output DC–DC Converters. IEEE Trans. Ind. Electron. 2021, 68, 25–36. [Google Scholar] [CrossRef]
- Jabbari, M.; Dorcheh, M.S. Resonant Multi-input/Multi-output/Bidirectional ZCS Step-Down DC--DC Converter with Systematic Synthesis for Point-to-Point Power Routing. IEEE Trans. Power Electron. 2018, 33, 6024–6032. [Google Scholar] [CrossRef]
- Faraji, R.; Farzanehfard, H.; Kampitsis, G.; Mattavelli, M.; Matioli, E.; Esteki, M. Fully Soft-Switched High Step-Up Nonisolated Three-Port DC–DC Converter Using GaN HEMTs. IEEE Trans. Ind. Electron. 2020, 67, 8371–8380. [Google Scholar] [CrossRef]
- Ahrabi, R.R.; Ardi, H.; Elmi, M.; Ajami, A. A Novel Step-Up Multiinput DC–DC Converter for Hybrid Electric Vehicles Application. IEEE Trans. Power Electron. 2017, 32, 3549–3561. [Google Scholar] [CrossRef]
- Kardan, F.; Alizadeh, R.; Banaei, M.R. A New Three Input DC/DC Converter for Hybrid PV/FC/Battery Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1771–1778. [Google Scholar] [CrossRef]
- Nahavandi, A.; Hagh, M.T.; Sharifian, M.B.B.; Danyali, S. A nonisolated multiinput multioutput DC–DC boost converter for electric vehicle applications. IEEE Trans. Power Electron. 2015, 30, 1818–1835. [Google Scholar] [CrossRef]
- Liu, D.; Li, H. A ZVS Bi-Directional DC–DC Converter for Multiple Energy Storage Elements. IEEE Trans. Power Electron. 2006, 21, 1513–1517. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Gupta, R. Multiple-Input Configuration of Isolated Bidirectional DC–DC Converter for Power Flow Control in Combinational Battery Storage. IEEE Trans. Ind. Inform. 2018, 14, 2–11. [Google Scholar] [CrossRef]
- Athikkal, S.; Kumar, G.G.; Sundaramoorthy, K.; Sankar, A. A Non-Isolated Bridge-Type DC–DC Converter for Hybrid Energy Source Integration. IEEE Trans. Ind. Appl. 2019, 55, 4033–4043. [Google Scholar] [CrossRef]
- Akar, F.; Tavlasoglu, Y.; Ugur, E.; Vural, B.; Aksoy, I. A Bidirectional Nonisolated Multi-Input DC–DC Converter for Hybrid Energy Storage Systems in Electric Vehicles. IEEE Trans. Veh. Technol. 2016, 65, 7944–7955. [Google Scholar] [CrossRef]
- Balapanuru, O.; Lokhande, M.M.; Aware, M.V. Nonisolated Integrated Boost Featured (NIIBF) Multi-Input Ultrahigh Gain DC–DC Converter. in IEEE Trans. Power Electron. 2024, 39, 5682–5694. [Google Scholar] [CrossRef]
- Aravind, R.; Chokkalingam, B.; Verma, R.; Aruchamy, S.; Mihet-Popa, L. Multi-Port Non-Isolated DC-DC Converters and Their Control Techniques for the Applications of Renewable Energy. IEEE Access 2024, 12, 88458–88491. [Google Scholar] [CrossRef]
- Bharathidasan, M.; Indragandhi, V.; Raju, J.; Obuli Pranav, D.; Vaithilingam, C.A.; Mahadzir, P.N.A.F.B.S. Design and Analysis of a Non-Isolated Multi-Input DC-DC Converter for Electric Vehicle Applications. In Proceedings of the 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 8–10 December 2023; pp. 1–7. [Google Scholar]
- Marchesoni, M.; Vacca, C. New DC–DC Converter for Energy Storage System Interfacing in Fuel Cell Hybrid Electric Vehicles. IEEE Trans. Power Electron. 2007, 22, 301–308. [Google Scholar] [CrossRef]
- Marchesoni, M.; Passalacqua, M.; Vaccaro, L. A refined loss evaluation of a three-switch double input DC-DC converter for hybrid vehicle applications. Energies 2020, 13, 204. [Google Scholar] [CrossRef]
- Benevieri, A.; Carbone, L.; Cosso, S.; Gallione, F.; Hussain, S. Multi-Input Bidirectional DC-DC Converter for Energy Management in Hybrid Electrical Vehicles Applications. In Proceedings of the 2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2023; pp. 1–5. [Google Scholar]
- Passalacqua, M.; Marchesoni, M.; Vaccaro, L. A New Modulation Strategy for Exploiting Discontinuous Conduction Mode in a Double-Input Three-Switch Bidirectional DC–DC Converter. IEEE Trans. Ind. Electron. 2021, 68, 10815–10825. [Google Scholar] [CrossRef]
- Cosso, S.; Formentini, A.; Marchesoni, M.; Passalacqua, M.; Vaccaro, L. A fast control for a three-switch multi-input DC-DC converter. In Proceedings of the 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hanover, Germany, 5–9 September 2022; pp. P.1–P.12. [Google Scholar]
Switch State | T1 | T2 | T3 | T4 | Condition |
---|---|---|---|---|---|
1 | ON | ON | ON | ON | Short circuit |
2 | ON | ON | ON | OFF | Iout = 0 |
3 | ON | ON | OFF | ON | v3 = Vout |
4 | ON | ON | OFF | OFF | Voltages depend on currents |
5 | ON | OFF | ON | ON | v2 = Vout |
6 | ON | OFF | ON | OFF | Voltages depend on currents |
7 | ON | OFF | OFF | ON | Voltages depend on currents |
8 | ON | OFF | OFF | OFF | v1 = Vout |
9 | OFF | ON | ON | ON | Voltages depend on currents |
10 | OFF | ON | ON | OFF | Voltages depend on currents |
11 | OFF | ON | OFF | ON | Voltages depend on currents |
12 | OFF | ON | OFF | OFF | Voltages depend on currents |
13 | OFF | OFF | ON | ON | Voltages depend on currents |
14 | OFF | OFF | ON | OFF | Voltages depend on currents |
15 | OFF | OFF | OFF | ON | Voltages depend on currents |
16 | OFF | OFF | OFF | OFF | Voltages depend on currents |
Parameter | Value | Parameter | Value |
---|---|---|---|
V1 | 12 V | L1 | 330 µH |
V2 | 12 V | L2 | 950 µH |
V3 | 24 V | L3 | 750 µH |
V4 | 12 V | L4 | 330 µH |
Vout | 100 V | Fsw | 10 kHz |
Cout | 3 mF | Rated current | 20 A |
Converter | Total Power | Losses | Efficiency |
---|---|---|---|
4 half-bridges in parallel connection | 1200 W | 86 W | 93.3% |
Proposed 5-switch converter | 1200 W | 48 W | 96.2% |
Current | 0.75 < t < 1.25 | 1.25 < t < 1.75 | 1.75 < t < 2.25 | 2.25 < t < 2.75 |
---|---|---|---|---|
I1 | 7 A | −5 A | −5 A | −5 A |
I2 | 7 A | 7 A | 7 A | −5 A |
I3 | −5 A | −5 A | 7 A | 7 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosso, S.; Benevieri, A.; Marchesoni, M.; Passalacqua, M.; Vaccaro, L.; Pozzobon, P. A New Topology of Multi-Input Bidirectional DC-DC Converters for Hybrid Energy Storage Systems. Energies 2024, 17, 5120. https://doi.org/10.3390/en17205120
Cosso S, Benevieri A, Marchesoni M, Passalacqua M, Vaccaro L, Pozzobon P. A New Topology of Multi-Input Bidirectional DC-DC Converters for Hybrid Energy Storage Systems. Energies. 2024; 17(20):5120. https://doi.org/10.3390/en17205120
Chicago/Turabian StyleCosso, Simone, Alessandro Benevieri, Mario Marchesoni, Massimiliano Passalacqua, Luis Vaccaro, and Paolo Pozzobon. 2024. "A New Topology of Multi-Input Bidirectional DC-DC Converters for Hybrid Energy Storage Systems" Energies 17, no. 20: 5120. https://doi.org/10.3390/en17205120
APA StyleCosso, S., Benevieri, A., Marchesoni, M., Passalacqua, M., Vaccaro, L., & Pozzobon, P. (2024). A New Topology of Multi-Input Bidirectional DC-DC Converters for Hybrid Energy Storage Systems. Energies, 17(20), 5120. https://doi.org/10.3390/en17205120