Evidence of Microbial Activity in Coal Seam Production Water and Hydrochemical Constraints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Test Methods
3. Results and Analysis
3.1. Archaeal Community Structure of Coalbed-Produced Water
3.2. Conventional Ion of Coalbed-Produced Water
3.3. Hydrogen, Oxygen, and Carbon Isotopic Compositions of Coalbed-Produced Water
3.4. Trace Elements Concentration of Coalbed-Produced Water
4. Discussion
4.1. Microbial Diversity in Coalbed-Produced Water
4.2. Evidence of Microbial Activity in Coalbed-Produced Water
4.3. Environmental Factors Influencing the Composition of Archaeal Communities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Qin, Y. A preliminary investigation on water quality of coalbed natural gas produced water for beneficial uses: A case study in the southern Qinshui Basin, North China. Environ. Sci. Pollut. Res. 2018, 25, 21589–21604. [Google Scholar] [CrossRef]
- Bao, Y.; Ju, Y.; Yin, Z.; Xiong, J.; Wang, G.; Qi, Y. Influence of reservoir properties on the methane adsorption capacity and fractal features of coal and shale in the upper Permian coal measures of the south Sichuan coalfield, China. Energy Explor. Exploit. 2020, 38, 57–58. [Google Scholar] [CrossRef]
- Huang, H.; Nie, Z.; Chao, H.; Chen, D.; Zhao, Z.; Liu, Y. Discussion of the selection for producing layers of deep CBM wells in Linfen block. J. China Coal Soc. 2018, 43, 1627–1633. [Google Scholar]
- Bao, Y.; Li, Z.; Meng, J.; Chen, X.; Liu, X. Reformation of coal reservoirs by microorganisms and its significance in CBM exploitation. Fuel 2024, 360, 130642. [Google Scholar] [CrossRef]
- Liu, H.; Sang, S.; Formolo, M.; Li, M.; Liu, S.; Xu, H.; An, S.; Li, J.; Wang, X. Production characteristics and drainage optimization of coalbed methane wells: A case study from low-permeability anthracite hosted reservoirs in southern Qinshui Basin, China. Energy Sustain. Dev. 2013, 17, 412–423. [Google Scholar] [CrossRef]
- Tao, S.; Tang, D.Z.; Xu, H.; Lv, Y. Analysis on influence factors of coalbed methane wells productivity and development proposals in southern Qinshui Basin. J. China Coal Soc. 2011, 36, 194–198. [Google Scholar]
- Bao, Y.; An, C.; Wang, C.; Guo, C.; Wang, W. Hydrogeochemical characteristics and water-rock interactions of coalbed-produced water derived from the Dafosi biogenic gas field in the southern margin of Ordos Basin, China. Geofluids 2021, 2021, 5972497. [Google Scholar] [CrossRef]
- Guo, C.; Qin, Y.; Xia, Y.; Ma, D.; Han, D.; Chen, Y.; Chen, W.; Jian, K.; Lu, L. Geochemical characteristics of water produced from CBM wells and implications for commingling CBM production: A case study of the Bide-Santang Basin, western Guizhou, China. J. Petrol. Sci. Eng. 2017, 159, 666–678. [Google Scholar] [CrossRef]
- Guo, C.; Qin, Y.; Wu, C.; Lu, L. Hydrogeological control and productivity modes of coalbed methane commingled production in multi-seam areas: A case study of the Bide–Santang Basin, western Guizhou, South China. J. Petrol. Sci. Eng. 2020, 189, 107039. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, Y.; Bai, J.; Li, G.; Zhuang, X.; Wang, X. Hydrogeochemistry characteristics of produced waters from CBM wells in southern Qinshui basin and implications for CBM commingled development. J. Nat. Gas Sci. Eng. 2018, 56, 428–443. [Google Scholar] [CrossRef]
- Huang, H.; Sang, S.; Miao, Y.; Dong, Z.; Zhang, H. Trends of ionic concentration variations in water coproduced with coalbed methane in the Tiefa Basin. Int. J. Coal Geol. 2017, 182, 32–41. [Google Scholar] [CrossRef]
- Zhou, B.; Qin, Y.; Yang, Z. Ion composition of produced water from coalbed methane wells in western Guizhou, China, and associated productivity response. Fuel 2020, 265, 116939. [Google Scholar] [CrossRef]
- Liu, H.; Fan, Y.; Ma, Y.; He, C.; Gong, F.; Zhu, Z.; Zhu, P. Hydro-chemical characteristics, genesis analysis and risk assessment of Fuyuan Laochang ore concentration area in Yunnan, China. Pol. J. Environ. Stud. 2024, 33, 727–739. [Google Scholar] [CrossRef]
- Yang, Z.; Qin, Y.; Wu, C.; Qin, Z.; Li, G.; Li, C. Geochemical response of produced water in the CBM well group with multiple coal seams and its geological significance—A case study of the Songhe well group in Western Guizhou. Int. J. Coal Geol. 2019, 7, 39–51. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Z.; Bai, J.; Liu, D. Source apportionment of produced water and feasibility discrimination of commingling CBM production from wells in southern Qinshui Basin. J. China Coal Soc. 2014, 39, 1892–1898. [Google Scholar]
- Rice, D.D. Composition and origins of coalbed gas. Hydrocarbons from coal: AAPG Studies in Geology. US Geol. Surv. 1993, 38, 159–184. [Google Scholar]
- Fu, H.; Li, Y.; Su, X.; Yan, D.; Yang, S.; Wang, G.; Wang, X.; Zhao, W. Environmental conditions and mechanisms restricting microbial methanogenesis in the Miquan region of the southern Junggar Basin, NW China. GSA Bull. 2023, 135, 420–434. [Google Scholar] [CrossRef]
- Flores, R.M.; Rice, C.A.; Stricker, G.D. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor. Int. J. Coal Geol. 2008, 76, 52–75. [Google Scholar] [CrossRef]
- Wawrik, B.; Mendivelso, M.; Parisi, V.A.; Suflita, J.M.; Davidova, I.A.; Marks, C.R.; Nostrand, J.D.V.; Liang, Y.; Zhou, J.; Huizinga, B.J.; et al. Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin. FEMS Microbiol. Ecol. 2012, 81, 26–42. [Google Scholar] [CrossRef]
- Yang, X.; Wu, R.; Han, Z.; Wang, B. Analysis of methanogenic community and pathway of coalbed methane fields in the Qinshui Basin based on mcrA gene. Microbiol. China 2017, 44, 795–806. [Google Scholar]
- Bao, Y.; Lv, D.; Guo, Z.; Yun, Y.; Wang, Y.; Li, D. Contribution of sulfate-reducing bacteria in the formation of hydrogen sulfide in coal seams of Hancheng mining area, China. Geomicrobiol. J. 2024, 41, 35–47. [Google Scholar] [CrossRef]
- DIN EN ISO17294-1-2007; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 1: General Guidelines. ISO: Geneva, Switzerland, 2007.
- EN ISO 10304-1:2007; Water Quality—Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. ISO: Geneva, Switzerland, 2009.
- EPA Method 200.8; Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). EPA: Washington, DC, USA, 1994.
- He, M.; Liu, G.; Li, Y.; Zhou, L.; Arif, M.; Liu, Y. Spatial-temporal distribution, source identification, risk assessment and water quality assessment of trace elements in the surface water of typical tributary in Yangtze River delta, China. Mar. Pollut. Bull. 2023, 192, 115035. [Google Scholar] [CrossRef]
- Moreno Merino, L.; Aguilera, H.; González-Jiménez, M.; Díaz-Losada, E. D-Piper, a modified piper diagram to represent big sets of hydrochemical analyses. Environ. Modell. Softw. 2021, 138, 104979. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Tang, S.; Zhang, S.; Xi, Z. Biogeochemical assessment of the coalbed methane source, migration, and fate: A case study of the Shizhuangnan block, southern Qinshui Basin. ACS Omega 2022, 7, 7715–7724. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, J.; Shen, J.; Yang, Z.; Shen, Y.; Zhang, B. Frontier research of geological technology for coal measure gas joint-mining. J China Coal Soc. 2018, 43, 1504–1516. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Zheng, S.; Hou, F.; Ni, B. Study on hydrogen and oxygen stable isotopes of meteoric water in China. Chin. Sci. Bull. 1983, 13, 801–806. [Google Scholar]
- Jenny, G.; Sepehr, S.Y.; Carina, S.; Anna, K.; Jörgen, E.; Ulf, S.; Bo, H.S. Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Appl. Energy 2013, 112, 473–477. [Google Scholar]
- Su, X.; Zhao, W.; Xia, D. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. Biotechnol. Biofuels 2018, 11, 245. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Deng, K.; Cheng, X.; Wei, J.; Jiang, M.; Wang, X.; Chen, T. High-throughput sequencing of microbial diversity in implant-associated infection. Infect. Genet. Evol. 2016, 43, 307–311. [Google Scholar] [CrossRef]
- Kinnon, E.C.P.; Golding, S.D.; Boreham, C.J.; Baublys, K.A.; Esterle, J.S. Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia. Int. J. Coal Geol. 2010, 82, 219–231. [Google Scholar] [CrossRef]
- Golding, S.D.; Boreham, C.J.; Esterle, J.S. Stable isotope geochemistry of coal bed and shale gas and related production waters: A review. Int. J. Coal Geol. 2013, 120, 24–40. [Google Scholar] [CrossRef]
- Yang, Z.; Qin, Y.; Qin, Z.; Yi, T.; Li, C.; Zhang, Z. Characteristics of dissolved inorganic carbon in produced water from coalbed methane wells and its geological significance. Petrol. Explor. Dev. 2020, 47, 1074–1083. [Google Scholar] [CrossRef]
- Meng, Y.; Tang, D.; Xu, H.; Li, Y.; Gao, L. Coalbed methane produced water in China: Status and environmental issues. Environ. Sci. Pollut. Res. 2014, 21, 6964–6974. [Google Scholar] [CrossRef]
- Li, Y.; Fu, H.; Yan, D.; Su, X.; Wang, X.; Zhao, W.; Wang, H.; Wang, G. Effects of simulated surface freshwater environment on in situ microorganisms and their methanogenesis after tectonic uplift of a deep coal seam. Int. J. Coal Geol. 2022, 257, 104014. [Google Scholar] [CrossRef]
- Oleszkiewicz, J.A.; Sharma, V.K. Stimulation and inhibition of anaerobic processes by heavy metals—A review. Biol. Wastes 1990, 31, 45–67. [Google Scholar] [CrossRef]
- Zandvoort, M.H.; Van Hullebusch, E.D.; Fermoso, F.G.; Lens, P.N.L. Trace metals in anaerobic granular sludge reactors: Bioavailability and dosing strategies. Eng. Life Sci. 2006, 6, 293–301. [Google Scholar] [CrossRef]
- Mincer, T.J.; Church, M.J.; Taylor, L.T.; Preston, C.; Karl, D.M.; DeLong, E.F. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ. Microbiol. 2007, 9, 1162–1175. [Google Scholar] [CrossRef]
- Nicol, G.W.; Leininger, S.; Schleper, C.; Prosser, J.I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 2008, 10, 2966–2978. [Google Scholar] [CrossRef]
- Shan, T.; Bao, Y.; Liu, X.; Wang, X.; Li, D. Evolution characteristics and molecular constraints of microbial communities during coal biogasification. Bioprocess Biosyst. Eng. 2024, 47, 2075–2089. [Google Scholar] [CrossRef]
Sample ID | Coal Seam | Concentration of Conventional Ion (mg·L−1) | pH | TDS (mg·L−1) | DOC (mg·L−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | |||||
H5-1 | No. 5 | 2003.00 | 13.37 | 34.11 | 7.11 | 2416.89 | 0.56 | 863.39 | 7.66 | 4906.74 | 44.88 |
H5-2 | 1974.50 | 100.03 | 16.88 | 5.22 | 1811.99 | 11.86 | 1555.13 | 7.88 | 4698.05 | 49.08 | |
H5-3 | 603.75 | 3.62 | 3.56 | 0.59 | 169.17 | <0.10 | 991.49 | 8.32 | 1276.44 | 45.89 | |
H5-4 | 808.51 | 9.69 | 4.69 | 0.64 | 500.38 | 0.05 | 873.64 | 7.96 | 1760.78 | 48.26 | |
Average | 1347.44 | 31.68 | 14.81 | 3.39 | 1224.61 | 4.16 | 1070.91 | 7.96 | 3160.50 | 47.03 | |
H11-1 | No. 11 | 1163.60 | 29.15 | 29.95 | 16.46 | 793.87 | 241.69 | 1211.83 | 7.64 | 2880.64 | 66.17 |
H11-2 | 330.29 | 3.60 | 12.54 | 2.26 | 109.68 | 0.06 | 716.93 | 7.69 | 816.90 | 57.53 | |
H11-3 | 894.51 | 7.40 | 19.22 | 7.41 | 801.79 | 0.12 | 840.34 | 7.71 | 2150.62 | 27.17 | |
H11-4 | 536.82 | 8.55 | 9.08 | 0.92 | 167.80 | 0.25 | 914.76 | 8.21 | 1180.80 | 73.82 | |
H11-5 | 1772.50 | 30.46 | 135.72 | 64.77 | 1941.86 | 824.71 | 536.74 | 7.61 | 5038.39 | 41.40 | |
H11-6 | 1132.10 | 46.12 | 163.11 | 48.25 | 602.70 | 987.22 | 538.75 | 7.97 | 3248.88 | 54.51 | |
H11-7 | 366.55 | 13.51 | 8.57 | 2.90 | 86.71 | 0.13 | 815.14 | 8.16 | 885.94 | 58.08 | |
H11-8 | 742.01 | 13.11 | 18.69 | 4.78 | 484.01 | 0.25 | 895.11 | 7.73 | 1710.41 | 44.04 | |
Average | 867.30 | 18.99 | 49.61 | 18.47 | 623.55 | 256.80 | 808.70 | 7.84 | 2239.07 | 52.84 |
Sample ID | Coal Seam | δDH2O (‰) | δ18OH2O (‰) | δ13CDIC (‰) |
---|---|---|---|---|
H5-1 | No. 5 | −72.00 | −10.84 | 14.51 |
H5-2 | −77.00 | −10.99 | −5.27 | |
H5-3 | −98.16 | −13.46 | 20.54 | |
H5-4 | −112.07 | −15.82 | 15.14 | |
Average | −89.81 | −12.78 | 11.23 | |
H11-1 | No. 11 | −77.79 | −11.04 | 10.18 |
H11-2 | −84.12 | −11.45 | 7.74 | |
H11-3 | −61.56 | −9.22 | 19.19 | |
H11-4 | −81.47 | −11.24 | 28.08 | |
H11-5 | −78.58 | −11.27 | 9.85 | |
H11-6 | −113.62 | −15.36 | 4.02 | |
H11-7 | −80.10 | −11.00 | 27.77 | |
H11-8 | −82.60 | −11.66 | 21.20 | |
Average | −82.48 | −11.53 | 16.00 |
Sample ID | Coal Seam | Al | As | Ba | Co | Cr | Cu | Hg | Li | Mn | Mo | Ni | Pb | Rb | Sb | Se | Sn | Sr | Ti | Tl | U | V | W | Zn | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H5-1 | No. 5 | 104.24 | 1.70 | 7043.93 | 0.03 | 0.60 | 0.01 | 0.09 | 246.89 | 94.46 | 2.87 | 3.24 | 0.11 | 21.76 | 0.01 | 23.08 | 0.06 | 8287.18 | 0.44 | 0.02 | 0.02 | 10.96 | 0.40 | 2.55 | 0.10 |
H5-2 | 54.87 | 1.49 | 8455.96 | 0.15 | 0.71 | 0.03 | 0.12 | 276.20 | 149.71 | 12.23 | 12.26 | 0.09 | 32.24 | 0.12 | 24.27 | 0.10 | 6254.50 | 0.20 | 0.02 | 0.00 | 7.02 | 1.13 | 1.17 | 0.14 | |
H5-3 | 74.42 | 1.21 | 236.99 | 0.07 | 0.39 | 0.87 | 0.09 | 91.04 | 12.40 | 7.80 | 0.14 | 1.34 | 5.09 | 0.04 | 21.08 | 0.06 | 552.85 | 0.21 | 0.05 | 0.01 | 5.69 | 1.12 | 0.00 | 0.16 | |
H5-4 | 65.44 | 1.37 | 424.41 | 0.02 | 3.75 | 0.52 | 0.06 | 59.41 | 22.15 | 0.77 | 18.21 | 0.02 | 5.62 | 0.00 | 21.52 | 0.08 | 732.57 | 0.23 | 0.04 | 0.05 | 6.06 | 0.94 | 0.00 | 0.18 | |
Average | 74.75 | 1.44 | 4040.32 | 0.07 | 1.36 | 0.36 | 0.09 | 168.38 | 69.68 | 5.92 | 8.46 | 0.39 | 16.18 | 0.04 | 22.49 | 0.07 | 3956.77 | 0.27 | 0.03 | 0.02 | 7.43 | 0.90 | 0.93 | 0.14 | |
H11-1 | No. 11 | 86.21 | 1.15 | 40.76 | 0.04 | 0.56 | 1.05 | 0.04 | 327.01 | 120.97 | 1.43 | 1.43 | 0.08 | 18.87 | 0.02 | 24.32 | 0.05 | 2752.64 | 0.11 | 0.03 | 0.00 | 6.00 | 0.04 | 0.00 | 0.12 |
H11-2 | 76.03 | 0.72 | 591.53 | 0.13 | 1.49 | 0.00 | 0.09 | 52.42 | 114.82 | 0.82 | 0.43 | 3.57 | 5.16 | 0.01 | 21.05 | 0.03 | 495.75 | 0.27 | 0.05 | 0.00 | 4.35 | 1.01 | 0.00 | 0.07 | |
H11-3 | 192.80 | 1.74 | 3587.82 | 2.30 | 1.17 | 0.09 | 0.31 | 177.44 | 89.39 | 1.23 | 4.09 | 0.09 | 5.29 | 0.06 | 22.19 | 0.13 | 2627.68 | 0.99 | 0.03 | 0.10 | 9.54 | 7.44 | 0.71 | 0.33 | |
H11-4 | 65.72 | 1.01 | 221.40 | 0.15 | 0.31 | 0.27 | 0.11 | 169.20 | 34.22 | 3.59 | 0.42 | 0.07 | 7.75 | 0.08 | 23.54 | 0.05 | 282.13 | 0.03 | 0.04 | 0.01 | 3.59 | 1.40 | 60.25 | 0.08 | |
H11-5 | 83.81 | 1.86 | 31.73 | 0.14 | 0.75 | 0.00 | 0.07 | 1185.12 | 214.73 | 1.18 | 3.85 | 0.21 | 25.04 | 0.03 | 24.15 | 0.09 | 6547.09 | 0.41 | 0.02 | 0.00 | 10.00 | 0.22 | 0.00 | 0.18 | |
H11-6 | 51.41 | 2.24 | 37.30 | 0.05 | 0.41 | 0.00 | 0.04 | 480.59 | 1.32 | 0.21 | 1.88 | 0.00 | 43.89 | 0.01 | 22.81 | 0.10 | 5785.94 | 0.35 | 0.02 | 0.02 | 4.24 | 0.36 | 0.00 | 0.12 | |
H11-7 | 68.98 | 0.74 | 241.55 | 1.11 | 0.44 | 0.25 | 0.07 | 106.96 | 108.68 | 14.30 | 2.06 | 0.03 | 15.33 | 0.04 | 20.92 | 0.06 | 362.19 | 0.22 | 0.04 | 0.00 | 3.46 | 0.00 | 0.00 | 0.06 | |
H11-8 | 57.08 | 1.04 | 1617.65 | 0.04 | 0.44 | 0.00 | 0.09 | 113.82 | 122.18 | 16.32 | 0.19 | 0.03 | 6.68 | 0.02 | 22.64 | 0.05 | 1546.00 | 0.14 | 0.03 | 0.01 | 4.03 | 0.74 | 0.00 | 0.11 | |
Average | 85.25 | 1.31 | 796.22 | 0.50 | 0.70 | 0.21 | 0.10 | 326.57 | 100.79 | 4.89 | 1.75 | 0.51 | 16.00 | 0.03 | 22.70 | 0.07 | 2549.93 | 0.31 | 0.03 | 0.02 | 5.65 | 1.40 | 7.62 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Chen, X.; Guo, Z.; Li, Z.; Zhuang, Y.; Gao, M. Evidence of Microbial Activity in Coal Seam Production Water and Hydrochemical Constraints. Energies 2024, 17, 5170. https://doi.org/10.3390/en17205170
Bao Y, Chen X, Guo Z, Li Z, Zhuang Y, Gao M. Evidence of Microbial Activity in Coal Seam Production Water and Hydrochemical Constraints. Energies. 2024; 17(20):5170. https://doi.org/10.3390/en17205170
Chicago/Turabian StyleBao, Yuan, Xueru Chen, Zhidong Guo, Zhengyan Li, Yufei Zhuang, and Min Gao. 2024. "Evidence of Microbial Activity in Coal Seam Production Water and Hydrochemical Constraints" Energies 17, no. 20: 5170. https://doi.org/10.3390/en17205170
APA StyleBao, Y., Chen, X., Guo, Z., Li, Z., Zhuang, Y., & Gao, M. (2024). Evidence of Microbial Activity in Coal Seam Production Water and Hydrochemical Constraints. Energies, 17(20), 5170. https://doi.org/10.3390/en17205170