Enzymatic In Situ Interesterification of Rapeseed Oil with Methyl Formate in Diesel Fuel Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Oil Content in Rapeseed
2.2.2. In Situ Interesterification Studies
2.2.3. Optimization of the In Situ Interesterification Process
- Y is the response (dependent variable);
- Xi and Xj are independent variables;
- β0, βi, βii and βj, βij are constant coefficients.
Coded Factor | Actual Factor | RME Yield (%) | |||||
---|---|---|---|---|---|---|---|
A | B | C | A (Mass Ratio of Methyl Formate to Seed, g) | B (Catalyst Amount, %) | C (Duration, h) | Actual Value | Predicted Value |
1.0 | 1.0 | 1.0 | 50 | 24 | 72 | 8.20 | 7.88 |
−1.0 | 1.0 | −1.0 | 10 | 24 | 48 | 55.63 | 53.56 |
1.0 | 1.0 | −1.0 | 50 | 24 | 48 | 10.27 | 12.05 |
−1.0 | 1.0 | −1.0 | 10 | 24 | 48 | 53.08 | 53.56 |
−1.0 | 1.0 | 1.0 | 10 | 24 | 72 | 69.47 | 70.37 |
0 | −1.2 | 0 | 30 | 13 | 60 | 34.19 | 32.88 |
0 | 0 | 0 | 30 | 19 | 60 | 39.67 | 40.48 |
−1.0 | −1.0 | −1.0 | 10 | 14 | 48 | 35.26 | 36.02 |
1.0 | −1.0 | −1.0 | 50 | 14 | 48 | 6.09 | 5.39 |
1.0 | 1.0 | 1.0 | 50 | 24 | 72 | 9.18 | 7.88 |
0 | 0 | 1.2 | 30 | 19 | 74.4 | 35.10 | 36.46 |
0 | −1.2 | 0 | 30 | 13 | 60 | 32.34 | 32.88 |
1.2 | 0 | 0 | 54 | 19 | 60 | 8.67 | 9.59 |
0 | 0 | −1.2 | 30 | 19 | 45.6 | 27.41 | 26.32 |
−1.0 | 1.0 | 1.0 | 10 | 24 | 72 | 69.15 | 70.37 |
−1.0 | −1.0 | 1.0 | 10 | 14 | 72 | 56.63 | 57.09 |
0 | 0 | 0 | 30 | 19 | 60 | 38.86 | 40.48 |
1.0 | −1.0 | −1.0 | 50 | 14 | 48 | 6.39 | 5.39 |
−1.0 | −1.0 | −1.0 | 10 | 14 | 48 | 34.75 | 36.02 |
0 | 0 | 0 | 30 | 19 | 60 | 41.14 | 40.48 |
−1.0 | −1.0 | 1.0 | 10 | 14 | 72 | 58.82 | 57.09 |
1.2 | 0 | 0 | 54 | 19 | 60 | 10.67 | 9.59 |
0 | 1.2 | 0 | 30 | 25 | 60 | 44.96 | 44.84 |
0 | 1.2 | 0 | 30 | 25 | 60 | 45.09 | 44.84 |
0 | 0 | −1.2 | 30 | 19 | 45.6 | 25.45 | 26.32 |
−1.2 | 0 | 0 | 6 | 19 | 60 | 64.78 | 65.46 |
0 | 0 | 1.2 | 30 | 19 | 74.4 | 38.72 | 36.46 |
1 | −1.0 | 1.0 | 50 | 14 | 72 | 3.78 | 5.48 |
1 | −1.0 | 1.0 | 50 | 14 | 72 | 5.19 | 5.48 |
−1.2 | 0 | 0 | 6 | 19 | 60 | 67.11 | 65.46 |
1 | 1.0 | −1.0 | 50 | 24 | 48 | 12.16 | 12.05 |
2.2.4. Interesterification Product Quality Studies
3. Results and Discussion
3.1. Modelling of Interesterification Process
- Y—rapeseed methyl ester yield (%);
- A—mass ratio of methyl formate to rapeseed (m/m);
- B—amount of lipase Lipozyme TL IM (% of oil content);
- C—process duration (h).
3.2. The Interaction of Independent Variables and Their Effect on the Interesterification Process
3.3. Optimisation of In Situ Interesterification Process
3.4. Physicochemical Properties of the In Situ Interesterification Product
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dawood, S.; Ahmad, M.; Ullah, K.; Zafar, M.; Khan, K. Synthesis and characterization of methyl esters from non-edible plant species yellow oleander oil, using magnesium oxide (MgO) nano-catalyst. Mater. Res. Bull. 2018, 101, 371–379. [Google Scholar] [CrossRef]
- Moraes, P.S.; Engelmann, J.I.; Igansi, A.V.; Sant Anna Cadaval, T.R., Jr.; Antonio De Almeida Pinto, L. Nile tilapia industrialization waste: Evaluation of the yield, quality and cost of the biodiesel production process. J. Clean. Prod. 2021, 287, 125041. [Google Scholar] [CrossRef]
- Vishal, D.; Dubey, S.; Goyal, R.; Dwivedi, G.; Baredar, P.; Chhabra, M. Optimization of alkali-catalyzed transesterification of rubber oil for biodiesel production & its impact on engine performance. Renew. Energy 2020, 158, 167–180. [Google Scholar]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Kazancev, K. Snail shells as a heterogeneous catalyst for biodiesel fuel production. Processes 2023, 11, 260. [Google Scholar] [CrossRef]
- Ferrero, G.O.; Faba, E.M.S.; Eimer, G.A. Biodiesel production from alternative raw materials using a heterogeneous low ordered biosilicified enzyme as biocatalyst. Biotechnol. Biofuels 2021, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Wang, X.; Zhao, B.; Sun, J.; Wang, Y. Rapid in situ transesterification of sunflower oil. Ind. Eng. Chem. Res. 2009, 48, 850–856. [Google Scholar] [CrossRef]
- Benni, S.D.; Munnolli, D.R.S.; Katagi, K.S.; Kadam, N.S.; Akki, M.C. Liquid fuel synthesis from Leonotis nepetifolia seeds through in-situ transesterification method. Energy Sources A Recovery Util. Environ. Eff. 2020, 1–18. [Google Scholar] [CrossRef]
- Kavitha, M.S.; Murugavelh, S. In situ acid catalysed transesterification of biodiesel production from Sterculia foetida oil and seed. Int. J. Green Energy 2019, 16, 1465–1474. [Google Scholar]
- Tran, D.T.; Yeh, K.L.; Chen, C.L.; Chang, J.S. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour. Technol. 2012, 108, 119–127. [Google Scholar] [CrossRef]
- Lei, H.; Ding, X.; Zhang, H.; Chen, X.; Li, Y.; Zhang, H.; Wang, Z. In situ production of fatty acid methyl ester from low quality rice bran: An economical route for biodiesel production. Fuel 2010, 89, 1475–1479. [Google Scholar] [CrossRef]
- Li, P.; Miao, X.; Li, R.; Zhong, J. In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J. Biomed. Biotechnol. 2011, 2011, 141207. [Google Scholar] [CrossRef] [PubMed]
- Santaraite, M.; Sendzikiene, E.; Makareviciene, V.; Kazancev, K. Biodiesel production by lipase-catalyzed in situ transesterification of rapeseed oil containing a high free fatty acid content with ethanol in diesel fuel media. Energies 2020, 13, 2588. [Google Scholar] [CrossRef]
- Kojima, S.; Du, D.; Sato, M.; Park, E.Y. Efficient production of fatty acid methyl esterfrom waste activated bleaching earth using diesel oil as organic solvent. J. Biosci. Bioeng. 2004, 98, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Sendzikiene, E.; Makareviciene, V.; Gumbyte, M. Reactive extraction and fermental transesterification of rapeseed oil with butanol in diesel fuel media. Fuel. Process Technol. 2015, 138, 758–764. [Google Scholar] [CrossRef]
- Sendzikiene, E.; Makareviciene, V.; Santaraite, M. Simultaneous extraction of rapeseed oil and enzymatic transesterification with butanol in the mineral diesel medium. Energies 2022, 15, 6837. [Google Scholar] [CrossRef]
- Govindaraju, R.; Chen, S.S.; Wang, L.P.; Chang, H.M.; Pasawan, M. Significance of membrane applications for high-quality biodiesel and byproduct (glycerol) in biofuel Industries—Review. Curr. Pollut. Rep. 2021, 7, 128–145. [Google Scholar] [CrossRef]
- Esan, A.O.; Smith, S.M.; Ganesan, S. A non-conventional sustainable process route via methyl acetate esterification for glycerol-free biodiesel production from palm oil industry wastes. Process Saf. Environ. Prot. 2022, 166, 402–413. [Google Scholar] [CrossRef]
- Supang, W.; Ngamprasertsith, S.; Sakdasri, W.; Sawangkeaw, R. Ethyl acetate as extracting solvent and reactant for producing biodiesel from spent coffee grounds: A catalyst- and glycerol-free process. J. Supercrit. Fluids 2022, 186, 105586. [Google Scholar] [CrossRef]
- Sustere, Z.; Kampars, V. The influence of acyl and alkohol moieties of carboxylate esters on rapeseed oil chemical interesterification. Mater. Methods Technol. 2017, 11, 1–7. [Google Scholar]
- EN 590; Automotive Fuels. Diesel. Requirements and Test Methods. International Organization for Standardization: Geneva, Switzerland, 2022.
- EN ISO 659; Oilseeds—Determination of Oil Content (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2009.
- EN 14214; Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods (Includes Amendment: 2019). International Organization for Standardization: Geneva, Switzerland, 2019.
- Surendhiran, D.; Vijay, M.; Sirajunnisa, A.R. Biodiesel production from marine microalga Chlorella salina using whole cell yeast immobilized on sugarcane bagasse. J. Environ. Chem. Eng. 2014, 2, 1294–1300. [Google Scholar] [CrossRef]
- Du, W.; Xu, Y.; Liu, D.; Zeng, J. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B Enzym. 2004, 30, 125–129. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Lian, S.H.; Chen, S.S.; Suc, C.H.; Lin, J.H.; Chienc, C.C. Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization by using response surface methodology. Energy Convers. Manag. 2018, 158, 168–175. [Google Scholar] [CrossRef]
- Tavares, G.R.; Goncalves, J.E.; dos Santos, W.D.; da Silva, C. Enzymatic interesterification of crambe oil assisted by ultrasound. Ind. Crops Prod. 2017, 97, 218–223. [Google Scholar] [CrossRef]
- Makarevičienė, V.; Kazancev, K.; Sendžikienė, E.; Gumbytė, M. Glycerol free biodiesel synthesis by application of methyl formate in enzymatic interesterification of rapeseed oil. Green Chem. Lett. Rev. 2023, 16, 2215259. [Google Scholar] [CrossRef]
- Modi, M.K.; Reddy, J.R.C.; Rao, B.V.S.K.; Prasad, R.B.N. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour. Technol. 2007, 98, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jan, Y. Lipase-Catalyzed Biodiesel Production with Methyl Acetate as Acyl Acceptor. Naturforsch. C J. Biosci. 2008, 63, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Imahara, H.; Minami, E.; Hari, S.; Saka, S. Thermal stability of biodiesel in supercritical methanol. Fuel 2008, 87, 1–6. [Google Scholar] [CrossRef]
- Galia, A.; Centineo, A.; Saracco, G.; Schiavo, B.; Scialdone, O. Interesterification of rapeseed oil catalyzed by tin octoate. Biomass Bioenergy 2014, 67, 193–200. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Y.; Zhang, J.; Li, G. In situ reactive extraction of cottonseeds with methyl acetate for biodiesel production using magnetic solid acid catalysts. Bioresour. Technol. 2014, 174, 182–189. [Google Scholar] [CrossRef]
- ASTM 6751; Standard Specification for Biodiesel Fuel Blendstock (B100) for Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2023.
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 13,741.27 | 9 | 1526.81 | 772.49 | <0.0001 | significant |
A—methyl formate to seed (m/m) | 11,793.67 | 1 | 11,793.67 | 5967.01 | <0.0001 | |
B—catalyst amount | 540.41 | 1 | 540.41 | 273.42 | <0.0001 | |
C—duration | 388.39 | 1 | 388.39 | 196.51 | <0.0001 | |
AB | 118.28 | 1 | 118.28 | 59.84 | <0.0001 | |
AC | 439.96 | 1 | 439.96 | 222.60 | <0.0001 | |
BC | 18.19 | 1 | 18.19 | 9.20 | 0.0063 | |
A2 | 37.70 | 1 | 37.70 | 19.07 | 0.0003 | |
B2 | 11.34 | 1 | 11.34 | 5.74 | 0.0260 | |
C2 | 355.83 | 1 | 355.83 | 180.03 | <0.0001 | |
Residual | 41.51 | 21 | 1.98 | |||
Lack of Fit | 14.84 | 5 | 2.97 | 1.78 | 0.1739 | not significant |
Pure Error | 26.67 | 16 | 1.67 | |||
Cor Total | 13,782.77 | 30 | ||||
C. V.% = 4.16 | R2 = 0.9970 | Adeq Precision = 81.3767 | ||||
R2Adj = 0.9957 | R2Pred = 0.9932 |
Methyl Formate to Rapeseed Mass Ratio | Amount of Lipase (% of Oil Mass) | Duration (h) | RME Yield (%) | Desirability |
---|---|---|---|---|
6.000 | 23.000 | 70.000 | 75.000 | 1.000 |
Parameter | Unit | EN 14214 | EN 590 | Product of In Situ Interesterification with Methyl Formate in Diesel Fuel Media |
---|---|---|---|---|
Ester content | % (m/m) | Min 96.5 | 7 | 7.6 ± 0.08 |
Density at 15 °C | kg/m3 | 860–900 | 820 -845 | 876 ± 0.56 |
Viscosity at 40 °C | mm2/s | 3.5–5 | 2.0–4.5 | 4.95 ± 0.48 |
Acid value | mg KOH/g | 0.5 max | 0.08 ± 0.38 | |
Free glycerol | % (m/m) | 0.02 max | - | |
Monoglyceride content | % (m/m) | 0.8 max | - | |
Diglyceride content | % (m/m) | 0.2 max | - | |
Triglyceride content | % (m/m) | 0.2 max | 0.03 ± 0.01 | |
Calorific value | MJ/kg | 39.5 ± 0.3 | ||
Monoformydilglyceride | % (m/m) | 0.07 ± 0.01 | ||
Diformylmonoglyceride | % (m/m) | 1.8 ± 0.05 | ||
Triformylglycerol | % (m/m) | 0.6 ± 0.08 | ||
Oxidation stability | h | 8 min (EN 14214) | 25 (EN 590) | 24.4 ± 0.06 (EN 590) |
Cold filter plugging point | °C | −5 °C (in summer) −32 °C (in winter) | −20 to −44 | −20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makareviciene, V.; Kazancev, K.; Sendzikiene, E.; Gumbyte, M. Enzymatic In Situ Interesterification of Rapeseed Oil with Methyl Formate in Diesel Fuel Medium. Energies 2024, 17, 282. https://doi.org/10.3390/en17020282
Makareviciene V, Kazancev K, Sendzikiene E, Gumbyte M. Enzymatic In Situ Interesterification of Rapeseed Oil with Methyl Formate in Diesel Fuel Medium. Energies. 2024; 17(2):282. https://doi.org/10.3390/en17020282
Chicago/Turabian StyleMakareviciene, Violeta, Kiril Kazancev, Egle Sendzikiene, and Milda Gumbyte. 2024. "Enzymatic In Situ Interesterification of Rapeseed Oil with Methyl Formate in Diesel Fuel Medium" Energies 17, no. 2: 282. https://doi.org/10.3390/en17020282
APA StyleMakareviciene, V., Kazancev, K., Sendzikiene, E., & Gumbyte, M. (2024). Enzymatic In Situ Interesterification of Rapeseed Oil with Methyl Formate in Diesel Fuel Medium. Energies, 17(2), 282. https://doi.org/10.3390/en17020282