Biotechnological Valorization of Waste Glycerol into Gaseous Biofuels—A Review
Abstract
:1. Introduction
2. Glycerol Production and Applications
3. Biomethane Production
4. Biohydrogen Production
4.1. Photofermentation
4.2. Dark Fermentation
4.3. Mixed Fermentation
5. Biohythane Production
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ballesteros, R.; Ramos, Á.; Sánchez-Valdepeñas, J. Particle-Bound PAH Emissions from a Waste Glycerine-Derived Fuel Blend in a Typical Automotive Diesel Engine. J. Energy Inst. 2020, 93, 1970–1977. [Google Scholar] [CrossRef]
- Mizik, T.; Gyarmati, G. Economic and Sustainability of Biodiesel Production—A Systematic Literature Review. Clean Technol. 2021, 3, 19–36. [Google Scholar] [CrossRef]
- Polprasert, S.; Choopakar, O.; Elefsiniotis, P. Bioethanol Production from Pretreated Palm Empty Fruit Bunch (PEFB) Using Sequential Enzymatic Hydrolysis and Yeast Fermentation. Biomass Bioenergy 2021, 149, 106088. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.M.; Zularisam, A.W.; Pandey, A. Glycerol Waste to Value Added Products and Its Potential Applications. Syst. Microbiol. Biomanufact. 2021, 1, 378–396. [Google Scholar] [CrossRef]
- OECD-FAO. Agricultural Outlook 2022–2031 by Variable. Available online: https://stats.oecd.org/index.aspx?queryid=30104 (accessed on 1 December 2023).
- Chilakamarry, C.R.; Sakinah, A.M.M.; Zularisam, A.W. Opportunities of Biodiesel Industry Waste Conversion into Value-Added Products. Mater. Today Proc. 2022, 57, 1014–1020. [Google Scholar] [CrossRef]
- Moklis, M.H.; Cheng, S.; Cross, J.S. Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products. Sustainability 2023, 15, 2979. [Google Scholar] [CrossRef]
- Lima, P.J.M.; da Silva, R.M.; Neto, C.A.C.G.; Gomes e Silva, N.C.; da Souza, J.E.S.; Nunes, Y.L.; Sousa dos Santos, J.C. An Overview on the Conversion of Glycerol to Value-Added Industrial Products via Chemical and Biochemical Routes. Biotechnol. Appl. Biochem. 2022, 69, 2794–2818. [Google Scholar] [CrossRef]
- Malaika, A.; Ptaszyńska, K.; Kozłowski, M. Conversion of Renewable Feedstock to Bio-Carbons Dedicated for the Production of Green Fuel Additives from Glycerol. Fuel 2021, 288, 119609. [Google Scholar] [CrossRef]
- Tabassum, N.; Pothu, R.; Pattnaik, A.; Boddula, R.; Balla, P.; Gundeboyina, R.; Challa, P.; Rajesh, R.; Perugopu, V.; Mameda, N.; et al. Heterogeneous Catalysts for Conversion of Biodiesel-Waste Glycerol into High-Added-Value Chemicals. Catalysts 2022, 12, 767. [Google Scholar] [CrossRef]
- Le, H.T.Q.; Nguyen, A.D.; Park, Y.R.; Lee, E.Y. Sustainable Biosynthesis of Chemicals from Methane and Glycerol via Reconstruction of Multi-Carbon Utilizing Pathway in Obligate Methanotrophic Bacteria. Microb. Biotechnol. 2021, 14, 2552–2565. [Google Scholar] [CrossRef]
- Minh Loy, A.C.; Ng, W.L.; Samudrala, S.P.; Bhattacharya, S. Technical, Economic, and Environmental Potential of Glycerol Hydrogenolysis: A Roadmap towards Sustainable Green Chemistry Future. Sustain. Energy Fuels 2023, 7, 2653–2669. [Google Scholar] [CrossRef]
- Tey, K.Y.; Tan, J.P.; Yeap, S.K.; He, N.; Bukhari, N.A.; Hui, Y.W.; Luthfi, A.A.I.; Manaf, S.F.A. Current Analysis on 1,3-Propanediol Production from Glycerol via Pure Wild Strain Fermentation. J. Environ. Chem. Eng. 2023, 11, 110998. [Google Scholar] [CrossRef]
- Mahendrasinh Kosamia, N.; Samavi, M.; Piok, K.; Kumar Rakshit, S. Perspectives for Scale up of Biorefineries Using Biochemical Conversion Pathways: Technology Status, Techno-Economic, and Sustainable Approaches. Fuel 2022, 324, 124532. [Google Scholar] [CrossRef]
- Ko, Y.S.; Kim, J.W.; Lee, J.A.; Han, T.; Kim, G.B.; Park, J.E.; Lee, S.Y. Tools and Strategies of Systems Metabolic Engineering for the Development of Microbial Cell Factories for Chemical Production. Chem. Soc. Rev. 2020, 49, 4615–4636. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.Y.; Moon, J.H.; Jung, G.Y. Recent Progress in Metabolic Engineering of Escherichia Coli for the Production of Various C4 and C5-Dicarboxylic Acids. J. Agric. Food Chem. 2023, 71, 10916–10931. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, D.; Budakoti, M.; Kumar, V. Strategies and Tools for the Biotechnological Valorization of Glycerol to 1, 3-Propanediol: Challenges, Recent Advancements and Future Outlook. Biotechnol. Adv. 2023, 66, 108177. [Google Scholar] [CrossRef] [PubMed]
- Igbokwe, V.C.; Ezugworie, F.N.; Onwosi, C.O.; Aliyu, G.O.; Obi, C.J. Biochemical Biorefinery: A Low-Cost and Non-Waste Concept for Promoting Sustainable Circular Bioeconomy. J. Environ. Manag. 2022, 305, 114333. [Google Scholar] [CrossRef]
- Pathania, R.; Srivastava, A.; Srivastava, S.; Shukla, P. Metabolic Systems Biology and Multi-Omics of Cyanobacteria: Perspectives and Future Directions. Bioresour. Technol. 2022, 343, 126007. [Google Scholar] [CrossRef]
- Miyuranga, K.A.V.; Arachchige, U.S.P.R.; Jayasinghe, R.A.; Samarakoon, G. Purification of Residual Glycerol from Biodiesel Production as a Value-Added Raw Material for Glycerolysis of Free Fatty Acids in Waste Cooking Oil. Energies 2022, 15, 8856. [Google Scholar] [CrossRef]
- García Martín, J.F.; Torres García, M.; Álvarez Mateos, P. Special Issue on “Biodiesel Production Processes and Technology”. Processes 2022, 11, 25. [Google Scholar] [CrossRef]
- Fasanya, O.O.; Osigbesan, A.A.; Avbenake, O.P. Biodiesel Production from Non-Edible and Waste Lipid Sources. In Biodiesel Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 389–427. [Google Scholar] [CrossRef]
- Nayab, R.; Imran, M.; Ramzan, M.; Tariq, M.; Taj, M.B.; Akhtar, M.N.; Iqbal, H.M.N. Sustainable Biodiesel Production via Catalytic and Non-Catalytic Transesterification of Feedstock Materials—A Review. Fuel 2022, 328, 125254. [Google Scholar] [CrossRef]
- Alagha, S.M.; Salih, R. Review the Studies of Mass Transfer and Kinetic Modeling for Production the Biodiesel by the Transesterification Method and the Impact of Some Selected Factors. IOP Conf. Ser. Earth Environ. Sci. 2023, 1232, 012014. [Google Scholar] [CrossRef]
- Shunaia, A.A.; Jazie, A.A. Applications of Super Critical Technology in Biodiesel Production. IOP Conf. Ser. Earth Environ. Sci. 2023, 1232, 012011. [Google Scholar] [CrossRef]
- Ma, Q.; Fu, K.; Zhang, J.; Li, M.; Han, X.; Chen, Z.; Ma, L.; Chang, C. New Bio-Based Polyurethane (PU) Foams Synthesized Using Crude Glycerol-Based Biopolyol and Humin-Based Byproducts from Biomass Hydrolysis. Ind. Crops Prod. 2023, 205, 117548. [Google Scholar] [CrossRef]
- Tardiolo, G.; Nicolò, M.S.; Drago, C.; Genovese, C.; Fava, G.; Gugliandolo, C.; D’antona, N. Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Nannochloropsis Oculata. Molecules 2023, 28, 6846. [Google Scholar] [CrossRef] [PubMed]
- Sawasdee, V.; Vikromvarasiri, N.; Pisutpaisal, N. Optimization of Ethanol Production from Co-Substrate of Waste Glycerol and Acetic Acid by Enterobacter Aerogenes. Biomass Convers. Biorefinery 2023, 13, 10505–10512. [Google Scholar] [CrossRef]
- Vivek, N.; Sindhu, R.; Madhavan, A.; Anju, A.J.; Castro, E.; Faraco, V.; Pandey, A.; Binod, P. Recent Advances in the Production of Value Added Chemicals and Lipids Utilizing Biodiesel Industry Generated Crude Glycerol as a Substrate—Metabolic Aspects, Challenges and Possibilities: An Overview. Bioresour. Technol. 2017, 239, 507–517. [Google Scholar] [CrossRef]
- Murashchenko, L.; Abbas, C.; Dmytruk, K.; Sibirny, A. Overexpression of the Truncated Version of ILV2 Enhances Glycerol Production in Saccharomyces Cerevisiae. Yeast 2016, 33, 463–469. [Google Scholar] [CrossRef]
- Stoumpou, V.; Novakovic, J.; Kontogianni, N.; Barampouti, E.M.; Mai, S.; Moustakas, K.; Malamis, D.; Loizidou, M. Assessing Straw Digestate as Feedstock for Bioethanol Production. Renew. Energy 2020, 153, 261–269. [Google Scholar] [CrossRef]
- Osman, A.I.; Qasim, U.; Jamil, F.; Al-Muhtaseb, A.H.; Jrai, A.A.; Al-Riyami, M.; Al-Maawali, S.; Al-Haj, L.; Al-Hinai, A.; Al-Abri, M.; et al. Bioethanol and Biodiesel: Bibliometric Mapping, Policies and Future Needs. Renew. Sustain. Energy Rev. 2021, 152, 111677. [Google Scholar] [CrossRef]
- Blomberg, A.; Morrissey, J. Yeast Osmoregulation—Glycerol Still in Pole Position. FEMS Yeast Res. 2022, 22, foac035. [Google Scholar] [CrossRef] [PubMed]
- Tse, T.J.; Wiens, D.J.; Reaney, M.J.T. Production of Bioethanol—A Review of Factors Affecting Ethanol Yield. Fermentation 2021, 7, 268. [Google Scholar] [CrossRef]
- Moshtagh, B.; Hawboldt, K.; Zhang, B. Biosurfactant Production by Native Marine Bacteria (Acinetobacter Calcoaceticus P1-1A) Using Waste Carbon Sources: Impact of Process Conditions. Can. J. Chem. Eng. 2021, 99, 2386–2397. [Google Scholar] [CrossRef]
- Zahid, I.; Ayoub, M.; Abdullah, B.B.; Nazir, M.H.; Ameen, M.; Zulqarnain; Mohd Yusoff, M.H.; Inayat, A.; Danish, M. Production of Fuel Additive Solketal via Catalytic Conversion of Biodiesel-Derived Glycerol. Ind. Eng. Chem. Res. 2020, 59, 20961–20978. [Google Scholar] [CrossRef]
- Asopa, R.P.; Bhoi, R.; Saharan, V.K. Valorization of Glycerol into Value-Added Products: A Comprehensive Review on Biochemical Route. Bioresour. Technol. Rep. 2022, 20, 101290. [Google Scholar] [CrossRef]
- Pirzadi, Z.; Meshkani, F. From Glycerol Production to Its Value-Added Uses: A Critical Review. Fuel 2022, 329, 125044. [Google Scholar] [CrossRef]
- Dimian, A.C.; Kiss, A.A. Eco-Efficient Processes for Biodiesel Production from Waste Lipids. J. Clean. Prod. 2019, 239, 118073. [Google Scholar] [CrossRef]
- Kongjan, P.; Reungsang, A.; Sittijunda, S. Conversion of Glycerol Derived from Biodiesel Production to Butanol and 1,3-Propanediol. In Chemical Substitutes from Agricultural and Industrial By-Products; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 337–353. [Google Scholar] [CrossRef]
- Ayude, M.A.; Doumic, L.I.; Cassanello, M.C.; Nigam, K.D.P. Clean Catalytic Oxidation for Derivatization of Key Biobased Platform Chemicals: Ethanol, Glycerol, and Hydroxymethyl Furfural. Ind. Eng. Chem. Res. 2019, 58, 16077–16095. [Google Scholar] [CrossRef]
- Sedghi, R.; Shahbeik, H.; Rastegari, H.; Rafiee, S.; Peng, W.; Nizami, A.S.; Gupta, V.K.; Chen, W.H.; Lam, S.S.; Pan, J.; et al. Turning Biodiesel Glycerol into Oxygenated Fuel Additives and Their Effects on the Behavior of Internal Combustion Engines: A Comprehensive Systematic Review. Renew. Sustain. Energy Rev. 2022, 167, 112805. [Google Scholar] [CrossRef]
- Salgaonkar, N.; Kadamkode, V.; Kumaran, S.; Mallemala, P.; Christy, E.; Appavoo, S.; Majumdar, A.; Mitra, R.; Dasgupta, A. Glycerol Fermentation by Skin Bacteria Generates Lactic Acid and Upregulates the Expression Levels of Genes Associated with the Skin Barrier Function. Exp. Dermatol. 2022, 31, 1364–1372. [Google Scholar] [CrossRef]
- Guerfali, M.; Ayadi, I.; Sassi, H.E.; Belhassen, A.; Gargouri, A.; Belghith, H. Biodiesel-Derived Crude Glycerol as Alternative Feedstock for Single Cell Oil Production by the Oleaginous Yeast Candida Viswanathii Y-E4. Ind. Crops Prod. 2020, 145, 112103. [Google Scholar] [CrossRef]
- Marciniak, P.; Możejko-Ciesielska, J. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? Polymers 2021, 13, 1731. [Google Scholar] [CrossRef]
- Banaszuk, P.; Kamocki, A.K.; Wysocka-Czubaszek, A.; Czubaszek, R.; Roj-Rojewski, S. Closing the Loop—Recovery of Nutrients and Energy from Wetland Biomass. Ecol. Eng. 2020, 143, 105643. [Google Scholar] [CrossRef]
- Kisielewska, M.; Dębowski, M.; Zieliński, M.; Kazimierowicz, J.; Quattrocelli, P.; Bordiean, A. Effects of Liquid Digestate Treatment on Sustainable Microalgae Biomass Production. Bioenergy Res. 2022, 15, 357–370. [Google Scholar] [CrossRef]
- Teleszewski, T.J.; Z’ukowski, M. Analysis of Heat Loss of a Biogas Anaerobic Digester in Weather Conditions in Poland. J. Ecol. Eng. 2018, 19, 242–250. [Google Scholar] [CrossRef]
- Czubaszek, R.; Wysocka-Czubaszek, A.; Wichtmann, W.; Banaszuk, P. Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies. Energies 2021, 14, 8373. [Google Scholar] [CrossRef]
- Czubaszek, R.; Wysocka-Czubaszek, A.; Banaszuk, P. GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass. Energies 2020, 13, 6497. [Google Scholar] [CrossRef]
- Teleszewski, T.; Żukowski, M. The Influence of Sludge on Thermal Performance of Heat Exchanger Tubes Inside in an Anaerobic Digester. Annu. Set Environ. Prot. 2018, 20, 763–779. [Google Scholar]
- Kazimierowicz, J.; Dębowski, M. Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives. Sustainability 2022, 14, 10904. [Google Scholar] [CrossRef]
- Khalid, S.A.; Elsherif, W.M. Types of Microorganisms for Biodegradation. In Handbook of Biodegradable Materials; Springer: Cham, Switzerland, 2022; pp. 1–27. [Google Scholar] [CrossRef]
- Gnanasekaran, L.; Priya, A.K.; Thanigaivel, S.; Hoang, T.K.A.; Soto-Moscoso, M. The Conversion of Biomass to Fuels via Cutting-Edge Technologies: Explorations from Natural Utilization Systems. Fuel 2023, 331, 125668. [Google Scholar] [CrossRef]
- Detman, A.; Bucha, M.; Treu, L.; Chojnacka, A.; Pleśniak, Ł.; Salamon, A.; Łupikasza, E.; Gromadka, R.; Gawor, J.; Gromadka, A.; et al. Evaluation of Acidogenesis Products’ Effect on Biogas Production Performed with Metagenomics and Isotopic Approaches. Biotechnol. Biofuels 2021, 14, 125. [Google Scholar] [CrossRef]
- Cardoso, W.; di Felice, R.; Baptista, R.C. A Critical Overview of Development and Innovations in Biogas Upgrading. Smart Innov. Syst. Technol. 2022, 295 SIST, 42–50. [Google Scholar] [CrossRef]
- Vítězová, M.; Kohoutová, A.; Vítěz, T.; Hanišáková, N.; Kushkevych, I. Methanogenic Microorganisms in Industrial Wastewater Anaerobic Treatment. Processes 2020, 8, 1546. [Google Scholar] [CrossRef]
- Ahmad, I. Implementation and Optimizing Methane Content in Biogas for the Production of Electricity. Int. J. Eng. Res. Technol. 2015, 4, 1326–1329. [Google Scholar]
- Santibáñez, C.; Varnero, M.T.; Bustamante, M. Glicerol Residual de La Producción de Biodiesel, Residuo o Potencial Fuente de Energía: Una Revisión. Chil. J. Agric. Res. 2011, 71, 469–475. [Google Scholar] [CrossRef]
- Battista, F.; Strazzera, G.; Valentino, F.; Gottardo, M.; Villano, M.; Matos, M.; Silva, F.M.; Reis, M.A.; Mata-Alvarez, J.; Astals, S.; et al. New Insights in Food Waste, Sewage Sludge and Green Waste Anaerobic Fermentation for Short-Chain Volatile Fatty Acids Production: A Review. J. Environ. Chem. Eng. 2022, 10, 108319. [Google Scholar] [CrossRef]
- Adames, L.V.; Jacobus, A.P.; Sakamoto, I.K.; Lazaro, C.Z.; Pires, L.O.; Maintinguer, S.I. Bioenergy Recovery from Anaerobic Co-Digestion of Crude Glycerol and Domestic Sewage In-Series Reactor: Microbial Characterization and System Performance. Bioenergy Res. 2022, 15, 2145–2158. [Google Scholar] [CrossRef]
- Ferreira, C.M.; Akisue, R.A.; de Sousa Júnior, R. Mathematical Modeling and Computational Simulation Applied to the Study of Glycerol and/or Molasses Anaerobic Co-Digestion Processes. Processes 2023, 11, 2121. [Google Scholar] [CrossRef]
- Adames, L.V.; Pires, L.O.; Maintinguer, S.I. Continuous Long-Term Anaerobic Co-Digestion of Crude Glycerol and Domestic Sewage: Plug-Flow In-Series Reactor Performance and Microbiota Acclimatization. Bioenergy Res. 2023, 16, 1876–1888. [Google Scholar] [CrossRef]
- Bułkowska, K.; Mikucka, W.; Pokój, T. Enhancement of Biogas Production from Cattle Manure Using Glycerine Phase as a Co-Substrate in Anaerobic Digestion. Fuel 2022, 317, 123456. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kazimierowicz, J.; Kujawska, N.; Talbierz, S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. Sustainability 2020, 12, 9980. [Google Scholar] [CrossRef]
- Catenacci, A.; Boniardi, G.; Mainardis, M.; Gievers, F.; Farru, G.; Asunis, F.; Malpei, F.; Goi, D.; Cappai, G.; Canziani, R. Processes, Applications and Legislative Framework for Carbonized Anaerobic Digestate: Opportunities and Bottlenecks. A Critical Review. Energy Convers. Manag. 2022, 263, 115691. [Google Scholar] [CrossRef]
- Fan, Q. Methane Potential of Municipal Sludge in Anaerobic Co- Digestion Process Boosted with Glycerol. Ph.D. Thesis, Savonia-ammattikorkeakoulu, Kuopio, Finland, 2018. [Google Scholar]
- Sittijunda, S.; Reungsang, A. Methane Production from the Co-Digestion of Algal Biomass with Crude Glycerol by Anaerobic Mixed Cultures. Waste Biomass Valorization 2020, 11, 1873–1881. [Google Scholar] [CrossRef]
- Dos Santos Ferreira, J.; Volschan, I.; Cammarota, M.C. Co-Digestion of Sewage Sludge with Crude or Pretreated Glycerol to Increase Biogas Production. Environ. Sci. Pollut. Res. 2018, 25, 21811–21821. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.; Rivero, M.; Solera, R.; Perez, M. Mesophilic Anaerobic Co-Digestion of Sewage Sludge with Glycerine: Effect of Solids Retention Time. Fuel 2018, 215, 285–289. [Google Scholar] [CrossRef]
- He, Q.; McNutt, J.; Yang, J. Utilization of the Residual Glycerol from Biodiesel Production for Renewable Energy Generation. Renew. Sustain. Energy Rev. 2017, 71, 63–76. [Google Scholar] [CrossRef]
- Nartker, S.; Ammerman, M.; Aurandt, J.; Stogsdil, M.; Hayden, O.; Antle, C. Increasing Biogas Production from Sewage Sludge Anaerobic Co-Digestion Process by Adding Crude Glycerol from Biodiesel Industry. Waste Manag. 2014, 34, 2567–2571. [Google Scholar] [CrossRef]
- Baba, Y.; Tada, C.; Watanabe, R.; Fukuda, Y.; Chida, N.; Nakai, Y. Anaerobic Digestion of Crude Glycerol from Biodiesel Manufacturing Using a Large-Scale Pilot Plant: Methane Production and Application of Digested Sludge as Fertilizer. Bioresour. Technol. 2013, 140, 342–348. [Google Scholar] [CrossRef]
- Athanasoulia, E.; Melidis, P.; Aivasidis, A. Co-Digestion of Sewage Sludge and Crude Glycerol from Biodiesel Production. Renew. Energy 2014, 62, 73–78. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Nguyen, T.T.; Manassa, P.; Fitzgerald, S.K.; Dawson, M.; Vierboom, S. Co-Digestion of Sewage Sludge and Crude Glycerol for on-Demand Biogas Production. Int. Biodeterior. Biodegrad. 2014, 95, 160–166. [Google Scholar] [CrossRef]
- Silvestre, G.; Fernández, B.; Bonmatí, A. Addition of Crude Glycerine as Strategy to Balance the C/N Ratio on Sewage Sludge Thermophilic and Mesophilic Anaerobic Co-Digestion. Bioresour. Technol. 2015, 193, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.D.; Astals, S.; Lu, Y.; Devadas, M.; Batstone, D.J. Anaerobic Codigestion of Sewage Sludge and Glycerol, Focusing on Process Kinetics, Microbial Dynamics and Sludge Dewaterability. Water Res. 2014, 67, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Alves, I.R.F.S.; Mahler, C.F.; Oliveira, L.B.; Reis, M.M.; Bassin, J.P. Assessing the Use of Crude Glycerol from Biodiesel Production as an Alternative to Boost Methane Generation by Anaerobic Co-Digestion of Sewage Sludge. Biomass Bioenergy 2020, 143, 105831. [Google Scholar] [CrossRef]
- Alves, I.R.F.S.; Mahler, C.F.; Oliveira, L.B.; Reis, M.M.; Bassin, J.P. Investigating the Effect of Crude Glycerol from Biodiesel Industry on the Anaerobic Co-Digestion of Sewage Sludge and Food Waste in Ternary Mixtures. Energy 2022, 241, 122818. [Google Scholar] [CrossRef]
- Siles, J.A.; Martín, M.A.; Chica, A.F.; Martín, A. Anaerobic Co-Digestion of Glycerol and Wastewater Derived from Biodiesel Manufacturing. Bioresour. Technol. 2010, 101, 6315–6321. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, M.S.; Manios, T. Enhanced Methane and Hydrogen Production from Municipal Solid Waste and Agro-Industrial by-Products Co-Digested with Crude Glycerol. Bioresour. Technol. 2009, 100, 3043–3047. [Google Scholar] [CrossRef] [PubMed]
- Astals, S.; Nolla-Ardèvol, V.; Mata-Alvarez, J. Thermophilic Co-Digestion of Pig Manure and Crude Glycerol: Process Performance and Digestate Stability. J. Biotechnol. 2013, 166, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Astals, S.; Nolla-Ardèvol, V.; Mata-Alvarez, J. Anaerobic Co-Digestion of Pig Manure and Crude Glycerol at Mesophilic Conditions: Biogas and Digestate. Bioresour. Technol. 2012, 110, 63–70. [Google Scholar] [CrossRef]
- Jasińska, A.; Grosser, A.; Meers, E. Possibilities and Limitations of Anaerobic Co-Digestion of Animal Manure—A Critical Review. Energies 2023, 16, 3885. [Google Scholar] [CrossRef]
- Logan, M.; Visvanathan, C. Management Strategies for Anaerobic Digestate of Organic Fraction of Municipal Solid Waste: Current Status and Future Prospects. Waste Manag. Res. 2019, 37 (Suppl. S1), 27–39. [Google Scholar] [CrossRef]
- Romaniuk, W.; Rogovskii, I.; Polishchuk, V.; Titova, L.; Borek, K.; Wardal, W.J.; Shvorov, S.; Dvornyk, Y.; Sivak, I.; Drahniev, S.; et al. Study of Methane Fermentation of Cattle Manure in the Mesophilic Regime with the Addition of Crude Glycerine. Energies 2022, 15, 3439. [Google Scholar] [CrossRef]
- Usack, J.G.; Angenent, L.T. Comparing the Inhibitory Thresholds of Dairy Manure Co-Digesters after Prolonged Acclimation Periods: Part 1—Performance and Operating Limits. Water Res. 2015, 87, 446–457. [Google Scholar] [CrossRef]
- Patra, F.; Duary, R.K. Waste from Dairy Processing Industries and Its Sustainable Utilization. In Sustainable Food Waste Management Concepts and Innovations; Springer: Cham, Switzerland, 2021; pp. 127–154. [Google Scholar] [CrossRef]
- Do Borges, A.V.; Fuess, L.T.; Takeda, P.Y.; Alves, I.; Dias, M.E.S.; Damianovic, M.H.R.Z. Co-Digestion of Biofuel by-Products: Enhanced Biofilm Formation Maintains High Organic Matter Removal When Methanogenesis Fails. J. Environ. Manag. 2022, 310, 114768. [Google Scholar] [CrossRef] [PubMed]
- Haider, U.; Munir, A.; Ghafoor, A. Design of Biogas Fermentation Chamber And Techniques To Enrich Bio-Methanation. Artic. Pak. J. Agric. Res. 2021, 56, 1617–1627. [Google Scholar]
- Li, Y.; Chen, Y.; Wu, J. Enhancement of Methane Production in Anaerobic Digestion Process: A Review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Fierro, J.; Martinez, E.J.; Rosas, J.G.; Fernández, R.A.; López, R.; Gomez, X. Co-Digestion of Swine Manure and Crude Glycerine: Increasing Glycerine Ratio Results in Preferential Degradation of Labile Compounds. Water Air Soil Pollut. 2016, 227, 78. [Google Scholar] [CrossRef]
- Prasertsan, P.; Leamdum, C.; Chantong, S.; Mamimin, C.; Kongjan, P.; O-Thong, S. Enhanced Biogas Production by Co-Digestion of Crude Glycerol and Ethanol with Palm Oil Mill Effluent and Microbial Community Analysis. Biomass Bioenergy 2021, 148, 106037. [Google Scholar] [CrossRef]
- Silva, F.M.S.; Mahler, C.F.; Oliveira, L.B.; Bassin, J.P. Hydrogen and Methane Production in a Two-Stage Anaerobic Digestion System by Co-Digestion of Food Waste, Sewage Sludge and Glycerol. Waste Manag. 2018, 76, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Sevillano, C.A.; Pesantes, A.A.; Peña Carpio, E.; Martínez, E.J.; Gómez, X. Anaerobic Digestion for Producing Renewable Energy—The Evolution of This Technology in a New Uncertain Scenario. Entropy 2021, 23, 145. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dzienis, L.; Dębowski, M.; Zieliński, M. Optimisation of Methane Fermentation as a Valorisation Method for Food Waste Products. Biomass Bioenergy 2021, 144, 105913. [Google Scholar] [CrossRef]
- Zieliński, M.; Kazimierowicz, J.; Dębowski, M. Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations. Energies 2022, 16, 83. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Zhang, K.; Ma, Y.; Liu, F.; Li, Z.; Gao, X.; Gao, W.; Du, L. Effects of Initial Volatile Fatty Acid Concentrations on Process Characteristics, Microbial Communities, and Metabolic Pathways on Solid-State Anaerobic Digestion. Bioresour. Technol. 2023, 369, 128461. [Google Scholar] [CrossRef] [PubMed]
- Viancelli, A.; Schneider, T.M.; Demczuk, T.; Delmoral, A.P.G.; Petry, B.; Collato, M.M.; Michelon, W. Unlocking the Value of Biomass: Exploring Microbial Strategies for Biogas and Volatile Fatty Acids Generation. Bioresour. Technol. Rep. 2023, 23, 101552. [Google Scholar] [CrossRef]
- Oliveira, J.V.; Alves, M.M.; Costa, J.C. Optimization of Biogas Production from Sargassum Sp. Using a Design of Experiments to Assess the Co-Digestion with Glycerol and Waste Frying Oil. Bioresour. Technol. 2015, 175, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Takeda, P.Y.; Gotardo, J.T.; Gomes, S.D. Anaerobic Co-Digestion of Leachate and Glycerol for Renewable Energy Generation. Environ. Technol. 2022, 43, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Farghali, M.; Mohamed, I.M.A.; Hassan, D.; Iwasaki, M.; Yoshida, G.; Umetsu, K.; Ihara, I. Kinetic Modeling of Anaerobic Co-Digestion with Glycerol: Implications for Process Stability and Organic Overloads. Biochem. Eng. J. 2023, 199, 109061. [Google Scholar] [CrossRef]
- Fernández-Palacios, E.; Lafuente, J.; Mora, M.; Gabriel, D. Exploring the Performance Limits of a Sulfidogenic UASB during the Long-Term Use of Crude Glycerol as Electron Donor. Sci. Total Environ. 2019, 688, 1184–1192. [Google Scholar] [CrossRef]
- Strzelec, E.; Chmiel, M.J. Laboratory-Scale Fermentation of Raw Glycerol with Lactobacillus Brevis WLP 672. In Contemporary Problems of Power Engineering and Environmental Protection 2022; Silesian University of Technology (PolSL): Gliwice, Poland, 2023; p. 87. [Google Scholar]
- González, R.; Smith, R.; Blanco, D.; Fierro, J.; Gómez, X. Application of Thermal Analysis for Evaluating the Effect of Glycerine Addition on the Digestion of Swine Manure. J. Therm. Anal. Calorim. 2019, 135, 2277–2286. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, P. Biomass-Based Biorefineries: An Important Architype towards a Circular Economy. Fuel 2021, 288, 119622. [Google Scholar] [CrossRef]
- Vasconcelos, E.A.F.; Santaella, S.T.; Viana, M.B.; dos Santos, A.B.; Pinheiro, G.C.; Leitão, R.C. Composition and Ecology of Bacterial and Archaeal Communities in Anaerobic Reactor Fed with Residual Glycerol. Anaerobe 2019, 59, 145–153. [Google Scholar] [CrossRef]
- Wang, Z.; Watson, J.; Wang, T.; Yi, S.; Si, B.; Zhang, Y. Enhancing Energy Recovery via Two Stage Co-Fermentation of Hydrothermal Liquefaction Aqueous Phase and Crude Glycerol. Energy Convers. Manag. 2021, 231, 113855. [Google Scholar] [CrossRef]
- Seekao, N.; Sangsri, S.; Rakmak, N.; Dechapanya, W.; Siripatana, C. Co-Digestion of Palm Oil Mill Effluent with Chicken Manure and Crude Glycerol: Biochemical Methane Potential by Monod Kinetics. Heliyon 2021, 7, e06204. [Google Scholar] [CrossRef] [PubMed]
- Farias, C.B.B.; Barreiros, R.C.S.; da Silva, M.F.; Casazza, A.A.; Converti, A.; Sarubbo, L.A. Use of Hydrogen as Fuel: A Trend of the 21st Century. Energies 2022, 15, 311. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M.; Zieliński, M. Effectiveness of Hydrogen Production by Bacteroides Vulgatus in Psychrophilic Fermentation of Cattle Slurry. Clean Technol. 2022, 4, 806–814. [Google Scholar] [CrossRef]
- Dębowski, M.; Dudek, M.; Zieliński, M.; Nowicka, A.; Kazimierowicz, J. Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review. Energies 2021, 14, 6025. [Google Scholar] [CrossRef]
- Meier, K.; Kurtz, C.; Weckerle, C.; Hubner, M.; Bürger, I. Air-Conditioning System for Vehicles with on-Board Hydrogen. Appl. Therm. Eng. 2018, 129, 1150–1159. [Google Scholar] [CrossRef]
- Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the Role of Hydrogen in the 21st Century Energy Transition. Energy Convers. Manag. 2022, 251, 114898. [Google Scholar] [CrossRef]
- Tashie-Lewis, B.C.; Nnabuife, S.G. Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy—A Technology Review. Chem. Eng. J. Adv. 2021, 8, 100172. [Google Scholar] [CrossRef]
- Younas, M.; Shafique, S.; Hafeez, A.; Javed, F.; Rehman, F. An Overview of Hydrogen Production: Current Status, Potential, and Challenges. Fuel 2022, 316, 123317. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Rafa, N.; Musharrat, A.; Lam, S.S.; Boretti, A. Sustainable Hydrogen Production: Technological Advancements and Economic Analysis. Int. J. Hydrogen Energy 2022, 47, 37227–37255. [Google Scholar] [CrossRef]
- Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights into Renewable Hydrogen Energy: Recent Advances and Prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Rajendran, K.; Pugazhendhi, A.; Rao, C.V.; Atabani, A.E.; Kumar, G.; Yang, Y.H. Renewable Biohydrogen Production from Lignocellulosic Biomass Using Fermentation and Integration of Systems with Other Energy Generation Technologies. Sci. Total Environ. 2021, 765, 144429. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Burgos, W.J.; de Souza Candeo, E.; Pedroni Medeiros, A.B.; Cesar de Carvalho, J.; Oliveira de Andrade Tanobe, V.; Soccol, C.R.; Sydney, E.B. Hydrogen: Current Advances and Patented Technologies of Its Renewable Production. J. Clean. Prod. 2021, 286, 124970. [Google Scholar] [CrossRef]
- Akroum-Amrouche, D.; Akroum, H.; Lounici, H. Green Hydrogen Production by Rhodobacter Sphaeroides. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 2862–2880. [Google Scholar] [CrossRef]
- Sağır, E.; Hallenbeck, P.C. Photofermentative Hydrogen Production. In Biomass, Biofuels and Biochemical: Biohydrogen, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 141–157. [Google Scholar] [CrossRef]
- Ghiasian, M. Biophotolysis-Based Hydrogen Production by Cyanobacteria. Prospect. Renew. Bioprocess. Future Energy Syst. 2019, 10, 161–184. [Google Scholar] [CrossRef]
- Budiman, P.M.; Wu, T.Y. Role of Chemicals Addition in Affecting Biohydrogen Production through Photofermentation. Energy Convers. Manag. 2018, 165, 509–527. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Najafpour-Darzi, G. A Comprehensive Review on Biological Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 22492–22512. [Google Scholar] [CrossRef]
- Du Toit, J.P.; Pott, R.W.M. Heat-Acclimatised Strains of Rhodopseudomonas palustris Reveal Higher Temperature Optima with Concomitantly Enhanced Biohydrogen Production Rates. Int. J. Hydrogen Energy 2021, 46, 11564–11572. [Google Scholar] [CrossRef]
- Pott, R.W.M.; Howe, C.J.; Dennis, J.S. Photofermentation of Crude Glycerol from Biodiesel Using Rhodopseudomonas palustris: Comparison with Organic Acids and the Identification of Inhibitory Compounds. Bioresour. Technol. 2013, 130, 725–730. [Google Scholar] [CrossRef]
- Sabourin-Provost, G.; Hallenbeck, P.C. High Yield Conversion of a Crude Glycerol Fraction from Biodiesel Production to Hydrogen by Photofermentation. Bioresour. Technol. 2009, 100, 3513–3517. [Google Scholar] [CrossRef]
- Ghosh, D.; Sobro, I.F.; Hallenbeck, P.C. Stoichiometric Conversion of Biodiesel Derived Crude Glycerol to Hydrogen: Response Surface Methodology Study of the Effects of Light Intensity and Crude Glycerol and Glutamate Concentration. Bioresour. Technol. 2012, 106, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xiao, N.; Mahbubani, K.T.; del Rio-Chanona, E.A.; Slater, N.K.H.; Vassiliadis, V.S. Bioprocess Modelling of Biohydrogen Production by Rhodopseudomonas palustris: Model Development and Effects of Operating Conditions on Hydrogen Yield and Glycerol Conversion Efficiency. Chem. Eng. Sci. 2015, 130, 68–78. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, X.; Ge, X.; Yue, T.; Zhang, T.; Zhang, Y.; Zhang, Z.; He, C.; Lu, C.; Zhang, Q. Insights into Correlation between Hydrogen Yield Improvement and Glycerol Addition in Photo-Fermentation of Arundo donax, L. Bioresour. Technol. 2021, 321, 124467. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wang, D.; Li, X.; Yang, Q.; Xu, Q.; Ni, B.J.; Wang, Q.; Liu, X. Towards Hydrogen Production from Waste Activated Sludge: Principles, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110283. [Google Scholar] [CrossRef]
- Montiel Corona, V.; Le Borgne, S.; Revah, S.; Morales, M. Effect of Light-Dark Cycles on Hydrogen and Poly-β-Hydroxybutyrate Production by a Photoheterotrophic Culture and Rhodobacter capsulatus Using a Dark Fermentation Effluent as Substrate. Bioresour. Technol. 2017, 226, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Carolin Christopher, F.; Kumar, P.S.; Vo, D.V.N.; Joshiba, G.J. A Review on Critical Assessment of Advanced Bioreactor Options for Sustainable Hydrogen Production. Int. J. Hydrogen Energy 2021, 46, 7113–7136. [Google Scholar] [CrossRef]
- Bolatkhan, K.; Kossalbayev, B.D.; Zayadan, B.K.; Tomo, T.; Veziroglu, T.N.; Allakhverdiev, S.I. Hydrogen Production from Phototrophic Microorganisms: Reality and Perspectives. Int. J. Hydrogen Energy 2019, 44, 5799–5811. [Google Scholar] [CrossRef]
- Bosman, C.E.; Pott, R.W.M.C.; Bradshaw, S.M. Design, Modelling and Simulation of a Thermosiphon Photobioreactor for Photofermentative Hydrogen Production. Biochem. Eng. J. 2022, 186, 108582. [Google Scholar] [CrossRef]
- Sirohi, R.; Kumar Pandey, A.; Ranganathan, P.; Singh, S.; Udayan, A.; Kumar Awasthi, M.; Hoang, A.T.; Chilakamarry, C.R.; Kim, S.H.; Sim, S.J. Design and Applications of Photobioreactors—A Review. Bioresour. Technol. 2022, 349, 126858. [Google Scholar] [CrossRef]
- Ross, B.S.; Pott, R.W.M. Hydrogen Production by Immobilized Rhodopseudomonas palustris in Packed or Fluidized Bed Photobioreactor Systems. Int. J. Hydrogen Energy 2021, 46, 1715–1727. [Google Scholar] [CrossRef]
- Du Toit, J.P.; Pott, R.W.M. Transparent Polyvinyl-Alcohol Cryogel as Immobilisation Matrix for Continuous Biohydrogen Production by Phototrophic Bacteria. Biotechnol. Biofuels 2020, 13, 105. [Google Scholar] [CrossRef]
- Aziz, M.; Darmawan, A.; Juangsa, F.B. Hydrogen Production from Biomasses and Wastes: A Technological Review. Int. J. Hydrogen Energy 2021, 46, 33756–33781. [Google Scholar] [CrossRef]
- Rodrigues, C.V.; Nespeca, M.G.; Sakamoto, I.K.; de Oliveira, J.E.; Amâncio Varesche, M.B.; Maintinguer, S.I. Bioconversion of Crude Glycerol from Waste Cooking Oils into Hydrogen by Sub-Tropical Mixed and Pure Cultures. Int. J. Hydrogen Energy 2019, 44, 144–154. [Google Scholar] [CrossRef]
- Baeyens, J.; Zhang, H.; Nie, J.; Appels, L.; Dewil, R.; Ansart, R.; Deng, Y. Reviewing the Potential of Bio-Hydrogen Production by Fermentation. Renew. Sustain. Energy Rev. 2020, 131, 110023. [Google Scholar] [CrossRef]
- Bernal, M.; Tinoco, L.K.; Torres, L.; Malagón-Romero, D.; Montoya, D. Evaluating Colombian Clostridium Spp. Strains’ Hydrogen Production Using Glycerol as Substrate. Electron. J. Biotechnol. 2013, 16, 6. [Google Scholar] [CrossRef]
- Zahedi, S.; Solera, R.; García-Morales, J.L.; Sales, D. Effect of the Addition of Glycerol on Hydrogen Production from Industrial Municipal Solid Waste. Fuel 2016, 180, 343–347. [Google Scholar] [CrossRef]
- Trchounian, K.; Trchounian, A. Hydrogen Production from Glycerol by Escherichia Coli and Other Bacteria: An Overview and Perspectives. Appl. Energy 2015, 156, 174–184. [Google Scholar] [CrossRef]
- Hu, H.; Wood, T.K. An Evolved Escherichia Coli Strain for Producing Hydrogen and Ethanol from Glycerol. Biochem. Biophys. Res. Commun. 2010, 391, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Torres, V.; Mohd Yusoff, M.Z.; Nakano, C.; Maeda, T.; Ogawa, H.I.; Wood, T.K. Influence of Escherichia Coli Hydrogenases on Hydrogen Fermentation from Glycerol. Int. J. Hydrogen Energy 2013, 38, 3905–3912. [Google Scholar] [CrossRef]
- Tran, K.T.; Maeda, T.; Sanchez-Torres, V.; Wood, T.K. Beneficial Knockouts in Escherichia Coli for Producing Hydrogen from Glycerol. Appl. Microbiol. Biotechnol. 2015, 99, 2573–2581. [Google Scholar] [CrossRef]
- Trchounian, A. Mechanisms for Hydrogen Production by Different Bacteria during Mixed-Acid and Photo-Fermentation and Perspectives of Hydrogen Production Biotechnology. Crit. Rev. Biotechnol. 2015, 35, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.C.; Chen, X.J.; Huang, C.Y.; Yuan, Y.J.; Chang, J.S. Dark Fermentative Hydrogen Production with Crude Glycerol from Biodiesel Industry Using Indigenous Hydrogen-Producing Bacteria. Int. J. Hydrogen Energy 2013, 38, 15815–15822. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, R.; Ray, S.; Mehariya, S.; Patel, S.K.S.; Lee, J.K.; Kalia, V.C. Dark Fermentative Bioconversion of Glycerol to Hydrogen by Bacillus Thuringiensis. Bioresour. Technol. 2015, 182, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Nakashimada, Y.; Senba, K.; Matsui, T.; Nishio, N. Hydrogen and Ethanol Production from Glycerol-Containing Wastes Discharged after Biodiesel Manufacturing Process. J. Biosci. Bioeng. 2005, 100, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Trchounian, K.; Abrahamyan, V.; Poladyan, A.; Trchounian, A. Escherichia Coli Growth and Hydrogen Production in Batch Culture upon Formate Alone and with Glycerol Co-Fermentation at Different PHs. Int. J. Hydrogen Energy 2015, 40, 9935–9941. [Google Scholar] [CrossRef]
- Trchounian, K.; Poladyan, A.; Trchounian, A. Enhancement of Escherichia Coli Bacterial Biomass and Hydrogen Production by Some Heavy Metal Ions and Their Mixtures during Glycerol vs. Glucose Fermentation at a Relatively Wide Range of PH. Int. J. Hydrogen Energy 2017, 42, 6590–6597. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Sarma, S.J.; Brar, S.K.; Le Bihan, Y.; Buelna, G.; Verma, M. Surfactant Mediated Enhanced Glycerol Uptake and Hydrogen Production from Biodiesel Waste Using Co-Culture of Enterobacter Aerogenes and Clostridium Butyricum. Renew. Energy 2016, 95, 542–551. [Google Scholar] [CrossRef]
- De Faber, M.O.; Ferreira-Leitão, V.S. Optimization of Biohydrogen Yield Produced by Bacterial Consortia Using Residual Glycerin from Biodiesel Production. Bioresour. Technol. 2016, 219, 365–370. [Google Scholar] [CrossRef]
- Sharma, Y.; Parnas, R.; Li, B. Bioenergy Production from Glycerol in Hydrogen Producing Bioreactors (HPBs) and Microbial Fuel Cells (MFCs). Int. J. Hydrogen Energy 2011, 36, 3853–3861. [Google Scholar] [CrossRef]
- Chookaew, T.; Prasertsan, P.; Ren, Z.J. Two-Stage Conversion of Crude Glycerol to Energy Using Dark Fermentation Linked with Microbial Fuel Cell or Microbial Electrolysis Cell. New Biotechnol. 2014, 31, 179–184. [Google Scholar] [CrossRef]
- Khalil, M.E.; Jain, A.; Das, E.; Yang, K.L.; Rajagopalan, G. A Robust and Efficient Bioprocess of Hydrogen Production from Crude Glycerol by Clostridium Beijerinckii G117. Int. J. Hydrogen Energy 2023, 48, 7604–7620. [Google Scholar] [CrossRef]
- Sinharoy, A.; Kumar, M.; Pakshirajan, K. An Overview of Bioreactor Configurations and Operational Strategies for Dark Fermentative Biohydrogen Production. In Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions; Academic Press: Cambridge, MA, USA, 2020; pp. 249–288. [Google Scholar] [CrossRef]
- Toledo-Alarcón, J.; Cabrol, L.; Jeison, D.; Trably, E.; Steyer, J.P.; Tapia-Venegas, E. Impact of the Microbial Inoculum Source on Pre-Treatment Efficiency for Fermentative H2 Production from Glycerol. Int. J. Hydrogen Energy 2020, 45, 1597–1607. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Shanmugam, S.; Sekar, M.; Mathimani, T.; Incharoensakdi, A.; Kim, S.H.; Parthiban, A.; Edwin Geo, V.; Brindhadevi, K.; Pugazhendhi, A. Insights on Biological Hydrogen Production Routes and Potential Microorganisms for High Hydrogen Yield. Fuel 2021, 291, 120136. [Google Scholar] [CrossRef]
- Magrini, F.E.; de Almeida, G.M.; da Maia Soares, D.; Fuentes, L.; Ecthebehere, C.; Beal, L.L.; da Silveira, M.M.; Paesi, S. Effect of Different Heat Treatments of Inoculum on the Production of Hydrogen and Volatile Fatty Acids by Dark Fermentation of Sugarcane Vinasse. Biomass Convers. Biorefinery 2021, 11, 2443–2456. [Google Scholar] [CrossRef]
- Hernández, C.; Alamilla-Ortiz, Z.L.; Escalante, A.E.; Navarro-Díaz, M.; Carrillo-Reyes, J.; Moreno-Andrade, I.; Valdez-Vazquez, I. Heat-Shock Treatment Applied to Inocula for H2 Production Decreases Microbial Diversities, Interspecific Interactions and Performance Using Cellulose as Substrate. Int. J. Hydrogen Energy 2019, 44, 13126–13134. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Progress in Microbiology for Fermentative Hydrogen Production from Organic Wastes. Crit. Rev. Environ. Sci. Technol. 2019, 49, 825–865. [Google Scholar] [CrossRef]
- Mıynat, M.E.; Argun, H. Prevention of Substrate and Product Inhibitions by Using a Dilution Strategy during Dark Fermentative Hydrogen Production from Molasses. Int. J. Hydrogen Energy 2020, 45, 34695–34706. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Wang, J. Influence of Butyrate on Fermentative Hydrogen Production and Microbial Community Analysis. Int. J. Hydrogen Energy 2021, 46, 26825–26833. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, Y.; Zhang, B.; Sun, H.; Wang, N.; Wang, L.; Zhang, J.; Xue, R. Comparison of Magnetite/Reduced Graphene Oxide Nanocomposites and Magnetite Nanoparticles on Enhancing Hydrogen Production in Dark Fermentation. Int. J. Hydrogen Energy 2022, 47, 22359–22370. [Google Scholar] [CrossRef]
- Niño-Navarro, C.; Chairez, I.; Christen, P.; Canul-Chan, M.; García-Peña, E.I. Enhanced Hydrogen Production by a Sequential Dark and Photo Fermentation Process: Effects of Initial Feedstock Composition, Dilution and Microbial Population. Renew. Energy 2020, 147, 924–936. [Google Scholar] [CrossRef]
- Mishra, P.; Krishnan, S.; Rana, S.; Singh, L.; Sakinah, M.; Ab Wahid, Z. Outlook of Fermentative Hydrogen Production Techniques: An Overview of Dark, Photo and Integrated Dark-Photo Fermentative Approach to Biomass. Energy Strateg. Rev. 2019, 24, 27–37. [Google Scholar] [CrossRef]
- Manish, S.; Banerjee, R. Comparison of Biohydrogen Production Processes. Int. J. Hydrogen Energy 2008, 33, 279–286. [Google Scholar] [CrossRef]
- Szewczyk, K.W. Biological Production of Hydrogen. Prog. Microbiol. 2008, 47, 241–247. [Google Scholar]
- Chookaew, T.; O-Thong, S.; Prasertsan, P. Biohydrogen Production from Crude Glycerol by Immobilized Klebsiella Sp. TR17 in a UASB Reactor and Bacterial Quantification under Non-Sterile Conditions. Int. J. Hydrogen Energy 2014, 39, 9580–9587. [Google Scholar] [CrossRef]
- Chookaew, T.; O-Thong, S.; Prasertsan, P. Biohydrogen Production from Crude Glycerol by Two Stage of Dark and Photo Fermentation. Int. J. Hydrogen Energy 2015, 40, 7433–7438. [Google Scholar] [CrossRef]
- Rodrigues, C.V.; Rios Alcaraz, F.A.; Nespeca, M.G.; Rodrigues, A.V.; Motteran, F.; Tallarico Adorno, M.A.; Varesche, M.B.A.; Maintinguer, S.I. Biohydrogen Production in an Integrated Biosystem Using Crude Glycerol from Waste Cooking Oils. Renew. Energy 2020, 162, 701–711. [Google Scholar] [CrossRef]
- Sarma, S.J.; Brar, S.K.; Le Bihan, Y.; Buelna, G. Bio-Hydrogen Production by Biodiesel-Derived Crude Glycerol Bioconversion: A Techno-Economic Evaluation. Bioprocess Biosyst. Eng. 2013, 36, 1–10. [Google Scholar] [CrossRef]
- Ghosh, D.; Tourigny, A.; Hallenbeck, P.C. Near Stoichiometric Reforming of Biodiesel Derived Crude Glycerol to Hydrogen by Photofermentation. Int. J. Hydrogen Energy 2012, 37, 2273–2277. [Google Scholar] [CrossRef]
- Ngo, T.A.; Sim, S.J. Dark Fermentation of Hydrogen from Waste Glycerol Using Hyperthermophilic Eubacterium Thermotoga Neapolitana. Environ. Prog. Sustain. Energy 2012, 31, 466–473. [Google Scholar] [CrossRef]
- Varrone, C.; Giussani, B.; Izzo, G.; Massini, G.; Marone, A.; Signorini, A.; Wang, A. Statistical Optimization of Biohydrogen and Ethanol Production from Crude Glycerol by Microbial Mixed Culture. Int. J. Hydrogen Energy 2012, 37, 16479–16488. [Google Scholar] [CrossRef]
- Varrone, C.; Rosa, S.; Fiocchetti, F.; Giussani, B.; Izzo, G.; Massini, G.; Marone, A.; Signorini, A.; Wang, A. Enrichment of Activated Sludge for Enhanced Hydrogen Production from Crude Glycerol. Int. J. Hydrogen Energy 2013, 38, 1319–1331. [Google Scholar] [CrossRef]
- Mangayil, R.; Aho, T.; Karp, M.; Santala, V. Improved Bioconversion of Crude Glycerol to Hydrogen by Statistical Optimization of Media Components. Renew. Energy 2015, 75, 583–589. [Google Scholar] [CrossRef]
- Dounavis, A.S.; Ntaikou, I.; Lyberatos, G. Production of Biohydrogen from Crude Glycerol in an Upflow Column Bioreactor. Bioresour. Technol. 2015, 198, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Christiansen, K.; Parnas, R.; Xu, Z.; Li, B. Optimizing the Production of Hydrogen and 1,3-Propanediol in Anaerobic Fermentation of Biodiesel Glycerol. Int. J. Hydrogen Energy 2013, 38, 3196–3205. [Google Scholar] [CrossRef]
- Sarma, S.; Ortega, D.; Minton, N.P.; Dubey, V.K.; Moholkar, V.S. Homologous Overexpression of Hydrogenase and Glycerol Dehydrogenase in Clostridium Pasteurianum to Enhance Hydrogen Production from Crude Glycerol. Bioresour. Technol. 2019, 284, 168–177. [Google Scholar] [CrossRef] [PubMed]
- De Paranhos, A.G.O.; Silva, E.L. Statistical Optimization of H2, 1,3-Propanediol and Propionic Acid Production from Crude Glycerol Using an Anaerobic Fluidized Bed Reactor: Interaction Effects of Substrate Concentration and Hydraulic Retention Time. Biomass Bioenergy 2020, 138, 105575. [Google Scholar] [CrossRef]
- De Almeida Silva, M.C.; Monteggia, L.O.; Alves Barroso Júnior, J.C.; Granada, C.E.; Giongo, A. Evaluation of Semi-Continuous Operation to Hydrogen and Volatile Fatty Acids Production Using Raw Glycerol as Substrate. Renew. Energy 2020, 153, 701–710. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M.; Zieliński, M. Biohythane Production in Hydrogen-Oriented Dark Fermentation of Aerobic Granular Sludge (AGS) Pretreated with Solidified Carbon Dioxide (SCO2). Int. J. Mol. Sci. 2023, 24, 4442. [Google Scholar] [CrossRef]
- Roy, S.; Das, D. Biohythane Production from Organic Wastes: Present State of Art. Environ. Sci. Pollut. Res. 2016, 23, 9391–9410. [Google Scholar] [CrossRef]
- Liu, X.; Li, R.; Ji, M.; Han, L. Hydrogen and Methane Production by Co-Digestion of Waste Activated Sludge and Food Waste in the Two-Stage Fermentation Process: Substrate Conversion and Energy Yield. Bioresour. Technol. 2013, 146, 317–323. [Google Scholar] [CrossRef]
- Fu, S.F.; Xu, X.H.; Dai, M.; Yuan, X.Z.; Guo, R.B. Hydrogen and Methane Production from Vinasse Using Two-Stage Anaerobic Digestion. Process Saf. Environ. Prot. 2017, 107, 81–86. [Google Scholar] [CrossRef]
- Nkemka, V.N.; Gilroyed, B.; Yanke, J.; Gruninger, R.; Vedres, D.; McAllister, T.; Hao, X. Bioaugmentation with an Anaerobic Fungus in a Two-Stage Process for Biohydrogen and Biogas Production Using Corn Silage and Cattail. Bioresour. Technol. 2015, 185, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Liu, Y.; Lin, R.; Xia, A.; Zhou, J.; Cen, K. Cogeneration of Hydrogen and Methane from the Pretreated Biomass of Algae Bloom in Taihu Lake. Int. J. Hydrogen Energy 2014, 39, 18793–18802. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.-c. A Bench Scale Study of Fermentative Hydrogen and Methane Production from Food Waste in Integrated Two-Stage Process. Int. J. Hydrogen Energy 2009, 34, 245–254. [Google Scholar] [CrossRef]
- Lateef, S.A.; Beneragama, N.; Yamashiro, T.; Iwasaki, M.; Umetsu, K. Batch Anaerobic Co-Digestion of Cow Manure and Waste Milk in Two-Stage Process for Hydrogen and Methane Productions. Bioprocess Biosyst. Eng. 2014, 37, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.F.; Li, Y.Y.; Xu, K.Q.; Ebie, Y.; Inamori, Y.; Kong, H.N. A PH- and Temperature-Phased Two-Stage Process for Hydrogen and Methane Production from Food Waste. Int. J. Hydrogen Energy 2008, 33, 4739–4746. [Google Scholar] [CrossRef]
- Luo, G.; Xie, L.; Zou, Z.; Wang, W.; Zhou, Q.; Shim, H. Anaerobic Treatment of Cassava Stillage for Hydrogen and Methane Production in Continuously Stirred Tank Reactor (CSTR) under High Organic Loading Rate (OLR). Int. J. Hydrogen Energy 2010, 35, 11733–11737. [Google Scholar] [CrossRef]
- Buitrón, G.; Kumar, G.; Martinez-Arce, A.; Moreno, G. Hydrogen and Methane Production via a Two-Stage Processes (H2-SBR + CH4-UASB) Using Tequila Vinasses. Int. J. Hydrogen Energy 2014, 39, 19249–19255. [Google Scholar] [CrossRef]
- Kongjan, P.; Jariyaboon, R.; O-Thong, S. Anaerobic Digestion of Skim Latex Serum (SLS) for Hydrogen and Methane Production Using a Two-Stage Process in a Series of up-Flow Anaerobic Sludge Blanket (UASB) Reactor. Int. J. Hydrogen Energy 2014, 39, 19343–19348. [Google Scholar] [CrossRef]
- Rivero, M.; Solera, R.; Perez, M. Anaerobic Mesophilic Co-Digestion of Sewage Sludge with Glycerol: Enhanced Biohydrogen Production. Int. J. Hydrogen Energy 2014, 39, 2481–2488. [Google Scholar] [CrossRef]
- Jehlee, A.; Rodjaroen, S.; Waewsak, J.; Reungsang, A.; O-Thong, S. Improvement of Biohythane Production from Chlorella Sp. TISTR 8411 Biomass by Co-Digestion with Organic Wastes in a Two-Stage Fermentation. Int. J. Hydrogen Energy 2019, 44, 17238–17247. [Google Scholar] [CrossRef]
- Dounavis, A.; Νtaikou, Ι.; Lyberatos, G. Production of Advanced Biobased Hydrogen Enriched Methane from Waste Glycerol in a Two-Stage Continuous System. Waste Biomass Valorization 2016, 7, 677–689. [Google Scholar] [CrossRef]
- Sittijunda, S.; Sitthikitpanya, N.; Plangklang, P.; Reungsang, A. Two-Stage Anaerobic Codigestion of Crude Glycerol and Micro-Algal Biomass for Biohydrogen and Methane Production by Anaerobic Sludge Consortium. Fermentation 2021, 7, 175. [Google Scholar] [CrossRef]
- Sarkar, O.; Santhosh, J.; Dhar, A.; Venkata Mohan, S. Green Hythane Production from Food Waste: Integration of Dark-Fermentation and Methanogenic Process towards Biogas up-Gradation. Int. J. Hydrogen Energy 2021, 46, 18832–18843. [Google Scholar] [CrossRef]
- Eryildiz, B.; Lukitawesa; Taherzadeh, M.J. Effect of PH, Substrate Loading, Oxygen, and Methanogens Inhibitors on Volatile Fatty Acid (VFA) Production from Citrus Waste by Anaerobic Digestion. Bioresour. Technol. 2020, 302, 122800. [Google Scholar] [CrossRef]
- Kanchanasuta, S.; Sillaparassamee, O. Enhancement of Hydrogen and Methane Production from Co-Digestion of Palm Oil Decanter Cake and Crude Glycerol Using Two Stage Thermophilic and Mesophilic Fermentation. Int. J. Hydrogen Energy 2017, 42, 3440–3446. [Google Scholar] [CrossRef]
Base Substrate | Experimental Parameters | Glycerol Volume | Methane/Biogas Production/Yield | Ref. |
---|---|---|---|---|
70% primary sludge and 30% activated sludge | 5.5 L CSTR reactor, 56 °C, 25 rpm, pH 6.8 ± 0.1, HRT 20 ± 1 days, OLR 2.5 g COD/L/d | 1.5% v/v | 0.25 ± 0.04 L CH4/L/d | [76] |
5.5 L CSTR reactor, 56 ± 1 °C, 25 rpm, pH 7.1 ± 0.2, HRT 22 ± 2 days, OLR 2.4 ± 0.1 g COD/L/d | 1.6% v/v | 0.23 ± 0.01 L CH4/L/d | ||
5.5 L CSTR reactor, 56 ± 6 °C, 25 rpm, pH 6.9 ± 0.1, HRT 18 ± 3 days, OLR 3.6 ± 0.6 g COD/L/d | 2% v/v | 0.53 ± 0.14 L CH4/L/d | ||
5.5 L CSTR reactor, 55 °C, 25 rpm, pH 6.4 ± 0.2, HRT 19 ± 1 days, OLR 3.4 ± 0.5 g COD/L/d | 3% v/v | 0.33 ± 0.15 L CH4/L/d | ||
5.5 L CSTR reactor, 36 ± 1 °C, 25 rpm, pH 7.6 ± 0.2, HRT 20 ± 2 days, OLR 3.0 ± 0.3 g COD/L/d | 1.2% v/v | 0.62 ± 0.07 L CH4/L/d | ||
5.5 L CSTR reactor, 36 ± 1 °C, 25 rpm, pH 7.2 ± 0.2, HRT 20 ± 1 days, OLR 3.2 ± 0.4 g COD/L/d | 2.4% v/v | 0.66 ± 0.09 L CH4/L/d | ||
Waste activated sludge (WAS) | 60 L CSTR, 37 °C, pH 6.8–7.2, HRT 14 days | 2% v/v | 100 ± 8 L biogas/d | [74] |
60 L CSTR, 37 °C, pH 6.8–7.2, HRT 16.4 days | 3% v/v | 90 ± 2.8 L biogas/d | ||
60 L CSTR, 37 °C, pH 6.8–7.2, HRT 19.7 days | 4% v/v | 80 ± 2.6 L biogas/d | ||
Primary sewage sludge | 50 L CSTR, 35 ± 0.1 °C, HRT 20 days | 0.63% v/v | 1.3 m3 CH4/L crude glycerol | [75] |
Primary sewage sludge | 37 °C, pH 7.24, 20 days | 1% v/v | 223.8 mL CH4/g VS | [78] |
3% v/v | 368.8 mL CH4/g VS | |||
Primary sewage sludge and food waste | 37 °C, pH 7.48–7.13, 20 days | 1% v/v | 432.4 mL biogas/g VS; 343.3 mL CH4/g VS | [79] |
3% v/v | 692.6 mL biogas/g VS; 525.7 mL CH4/g VS | |||
Wastewater from the biodiesel production process | 1 L Pyrex reactors, 37 °C, pH 7.38 | 15% v/v | 310 mL CH4/g COD removed | [80] |
Olive mill wastewater and slaughterhouse wastewater | 4 L CSTR with 3 L working volume, 35 °C, pH 7–7.5, 46 days, HRT 23–25 d | 1% v/v | 1210 ± 205 mL CH4/d | [81] |
Organic fraction of municipal solid waste (40% fruit, 25% potatoes, 25% vegetables, 8% bread, and 2% paper) | 4 L CSTR with 3 L working volume, 35 °C, pH 7–7.5, 46 days, HRT 23–25 d | 1% v/v | 2094 ± 92 mL CH4/d | |
Landfill leachate | 1 L batch reactor, 0.8 L reaction volume, 37 °C, pH 7, 33.2 days | 1.71% | 403.15 mL biogas/g VSS | [101] |
Sargassum sp. | Work volume of 50 mL, 37 °C, pH 7.24, 42 days | 3 g/L | 283 ± 18 mL CH4/d | [100] |
Cattle manure and noodle factorysludge | 50 m3 pilot plant (30-m3 working volume), 35 °C | 1 mL glycerol/L/d, (47% purity) | 358 mL CH4/g COD removed; 149.1 mL CH4/g COD | [73] |
Dairy manure | 4.5 L reactor, 37 °C, 900 days, HRT 25 days, OLR 2.93–3.90 g VS/L/d | Dairy manure– glycerol proportion: 91:9; 75:25; 62:38; 51:49 | 1.4 L CH4/L/d CH4 yield: 549 L/kg VS | [87] |
Pig manure | 5.5 L semi-CSTR, 55 °C, 60 rpm | 3% v/v | 0.47 L biogas/g VS (180% higher) | [82] |
Swine manure | 25 L reactor, 34 °C, 80 days | 2–8% v/v | 1.4 L CH4/L/d CH4 yield: 380 L/kg VS | [92] |
Swine effluent | 5.5 L semi-continuous stirred tank reactors with a working volume of 4 L, 35 °C, pH 6.5, 60 rpm, 20 days, OLR 1.9 ± 0.1 g VS/L/d | 4% v/v | 0.74 ± 0.03 L biogas/g VS | [83] |
5.5 L semi-continuous stirred tank reactors with a working volume of 4 L, 35 °C, pH 6.5, 60 rpm, 20 days, OLR 1.7 ± 0.1 g VS/L/d | 0.78 ± 0.02 L biogas/g VS |
Method | Base Substrate | Experimental Parameters | Glycerol Volume | Production/Yield | Ref. |
---|---|---|---|---|---|
Photofermentation | R. palustris | 125 mL serum bottles, 30 °C, 200 W/m2 | 10 mM | 6.1 moles H2/mole crude glycerol (87%) | [177] |
R. palustris | 125 mL serum bottles, 30 °C, 50 W halogen light | 10 mM | 6 moles H2/mole glycerol | [128] | |
R. palustris | 125 mL serum bottles, 30 °C, 200 W/m2 | 30 mM | 6.69 moles H2/mole crude glycerol | [129] | |
Arundo donax | 200 mL reactor, 30 ± 1 °C, pH 7.0, incubator with 2000 Lux illumination for 72 h | 10 g/L | 32.14 mL/g substrate | [131] | |
15 g/L | 79.15 mL/g substrate | ||||
20 g/L | 51.06 mL/g substrate | ||||
30 g/L | 12.43 mL/g substrate | ||||
R. palustris | Fluidized bed PBR (FB), immobilized, 28 ± 1 °C, pH 7, 100 W/m2 | 50 mM | 14.7 mL/g/h | [138] | |
Packed bed PBR (PB), immobilized, 28 ± 1 °C, pH 7, 100 W/m2 | 4.53 mL/g/h | ||||
Column PBR, planktonic, 28 ± 1 °C, pH 7, 100 W/m2 | 12.68 mL/g/h | ||||
R. palustris | 500 mL bioreactors, planktonic, 35 ± 0.2 °C, pH 7, 250 ± 20 W/m2 | 50 mM | 5.1 mL/g/h | [139] | |
500 mL bioreactors, immobilized, 35 ± 0.2 °C, pH 7, 250 ± 20 W/m2 | 8 mL/g/h | ||||
Dark fermentation | Enterobacter aerogenes and C. butyricum | 125 mL serum bottles, 36 °C, pH 6.5, 150 rpm | 17.5 g/L | 1.8 mmol H2/g glycerol | [155] |
Industrial and municipal solid waste (Eubacteria and Archaea) | 2 L reactor with a useful volume of 1.7 L, pH 6.61 ± 0.12, 23 rpm | 1% v/v | 51 ± 4 LH2/kg VS | [144] | |
Enterobacter aerogenes HU-101 | Cylindrical glass column reactor with a working volume of 60 mL, 37 °C, pH 6.8 | 1.7 g/L | 1.12 moles H2/mole glycerol | [152] | |
3.3 g/L | 0.9 moles H2/mole glycerol | ||||
10 g/L | 0.71 moles H2/mole glycerol | ||||
25 g/L | 0.71 moles H2/mole glycerol | ||||
Bacillus thuringiensis EGU45 | Batch, 37 °C, pH 7, 1% w/v NH4Cl | 1% v/v | 0.261 moles H2/mole glycerol | [151] | |
2% v/v | 0.452 moles H2/mole glycerol | ||||
3% v/v | 0.252 moles H2/mole glycerol | ||||
Batch, 37 °C, pH 7, 1% w/v NaNO3 | 1% v/v | 0.748 moles H2/mole glycerol | |||
2% v/v | 0.570 moles H2/mole glycerol | ||||
3% v/v | 0.314 moles H2/mole glycerol | ||||
Batch, 37 °C, pH 7, 1% w/v NH4NO3 | 1% v/v | 0.547 moles H2/mole glycerol | |||
2% v/v | 0.646 moles H2/mole glycerol | ||||
3% v/v | 0.299 moles H2/mole glycerol | ||||
Aspirator bottles, 1.2 L capacity with working a volume of 1.0 L, 37 °C, pH 7, 1% (w/v) NH4Cl, support material: free-floating (FF), HRT 2 days | 2% v/v | 0.188 moles H2/mole glycerol | |||
5% v/v | 0.046 moles H2/mole glycerol | ||||
Aspirator bottles, 1.2 L capacity with working a volume of 1.0 L, 37 °C, pH 7, 1% (w/v) NH4Cl, support material: banana leaves (BL), HRT 2 days | 2% v/v | 0.273 moles H2/mole glycerol | |||
5% v/v | 0.113 moles H2/mole glycerol | ||||
Aspirator bottles, 1.2 L capacity with working a volume of 1.0 L, 37 °C, pH 7, 1% (w/v) NH4Cl, support material: coconut coir (CC), HRT 2 days | 2% v/v | 0.237 moles H2/mole glycerol | |||
5% v/v | 0.116 moles H2/mole glycerol | ||||
Aspirator bottles, 1.2 L capacity with working a volume of 1.0 L, 37 °C, pH 7, 1% (w/v) NH4Cl, support material: free-floating (FF), HRT 4 days | 2% v/v | 0.283 moles H2/mole glycerol | |||
5% v/v | 0.146 moles H2/mole glycerol | ||||
Aspirator bottles, 1.2 L capacity with working a volume of 1.0 L, 37 °C, pH 7, 1% (w/v) NH4Cl, support material: banana leaves (BL), HRT 4 days | 2% v/v | 0.410 moles H2/mole glycerol | |||
5% v/v | 0.366 moles H2/mole glycerol | ||||
Aspirator bottles, 1.2 L capacity with working a volume of 1.0 L, 37 °C, pH 7, 1% (w/v) NH4Cl, support material: coconut coir (CC), HRT 4 days | 2% v/v | 0.288 moles H2/mole glycerol | |||
5% v/v | 0.286 moles H2/mole glycerol | ||||
C. pasteurianum CH4 | Batch, 35 °C, pH 7, 200 rpm | 10 g/L of pure glycerol | 1.11 ± 0.16 moles H2/mole glycerol, 256.8 ± 8.1 mL/h/L | [150] | |
CSTR, HRT 12 h, 35 °C | 10 g/L of pure glycerol | 0.50 ± 0.02 moles H2/mole glycerol, 103.1 ± 8.1 mL/h/L | |||
10 g/L of crude glycerol | 0.77 ± 0.05 moles H2/mole glycerol, 166.0 ± 8.7 mL/h/L | ||||
Klebsiella sp. TR17 | Immobilized, 40 °C, up-flow anaerobic sludge blanket reactor, 4 h | 50% glycerol | 29.00–44.27 mmol H2/g glycerol | [173] | |
T. neapolitana | 75 °C, pH 7.0–7.5, itaconic acid | - | - | [178] | |
bd | 125 mL serum bottles, 37 °C, pH 7.9 | 15 g/L | 0.96 moles H2/mole glycerol (2.2 L/L/d) 7.92 g ethanol/L | [179] | |
Enterobacteriaceae (90%), with the genera Klebsiella and Escherichia/Shigella, followed by Burkholderiaceae (10%) with the genus Cupriavidus | 3 L bioreactor, 37 °C, pH 6.8, 120 rpm | 15 g/L | 0.9 moles H2/mole glycerol (2960 mL H2/L/d) | [180] | |
bd | 120 mL serum bottles, 40 °C, 150 rpm | 1 g/L | 1.41 moles H2/mole glycerol consumed | [181] | |
bd | Up-flow column reactor, 35 °C, HRT 24 h, pH 7, OLR 29.7 ± 0.5 g COD/d/L | 4.2 ± 1.2 g/L | 107.3 L H2/kg waste glycerol | [182] | |
bd | 160 mL serum bottles, 30 °C, pH 5.5, 350 rpm, GCI/IGCT 2.5 h/20 h | 7 g/L | 0.75 moles H2/mole glycerol | [183] | |
bd | 120 mL serum bottles, 35 °C, 48 h | 10 g/L | 0.55 moles H2/mole glycerol (332.04 mL H2/L) | [158] | |
C. pasteurianum | Batch, 37 °C, pH 7 | 60 g/L | 0.93 moles H2/mole glycerol | [184] | |
Granular sludge from a mesophilic UASB reactor used for the treatment of poultry slaughterhouse wastewater | Anaerobic fluidized bed reactor, 30 °C, pH 4.5 | 18 g/L | 0.17 moles H2/mole glycerol | [185] | |
Granular sludge from a UASB reactor from an effluent treatment plant of a soybean processing company | Semi-continuous, 35 °C, pH 5.5 | 50 g/L | 0.01 moles H2/mole glycerol | [186] | |
Dark fermentation and photofermentation | Dark fermentation: Klebsiella sp., Photofermentation: Rhodopseudomonas palustris TN1 | Dark fermentation: 60 mL serum bottle with a 36 mL working volume, 40 °C, pH 8; Photofermentation: 60 mL of serum bottle with a 36 mL working volume, 30 °C, pH 7, anaerobic-light (3000 lux) condition | 11.14 g/L glycerol (50% purity) | 6.42 mmol H2/g COD consumed (80.21% glycerol conversion rate) | [174] |
R. palustris | 30 °C, 175 W/m2 | 85% glycerol, <0.5% methanol | 6.69 moles H2/mole glycerol | [176] | |
Dark fermentation: Clostridiales, Photofermentation: Rhizobiales and Clostridiales | Dark fermentation feed: peptone 5 g/L, meat extract 5 g/L, and yeast extract 5 g/L, pH 5.5, 37 °C. Photofermentation: 37 °C, pH 7.0, and 18.50 W/m2 | Dark fermentation: 20 g/L COD from crude glycerol; photofermentation: 1 g/L COD from DFE | 28 mmol H2/g COD consumed | [175] | |
Dark fermentation: 20 g/L COD from crude glycerol; Photofermentation: 2 g/L COD from DFE | 25.51 mmol H2/g COD consumed | ||||
Dark fermentation: 20 g/L COD from crude glycerol; photofermentation: 3 g/L COD from DFE | 24.91 mmol H2/g COD consumed |
Base Substrate | Experimental Parameters (Step 1) | Glycerol Volume | H2 Production/Yield | Experimental Parameters (Step 2) | CH4 Production/Yield | Ref. | ||
---|---|---|---|---|---|---|---|---|
Chlorella sp. TISTR 8411 | 250 mL serum bottles with a working volume of 200 mL, 55 °C, pH 5.5 | 2% | 39.8 mL/g VS | 250 mL serum bottles with a working volume of 200 mL, 55 °C | 577.33 mL/g VS | [200] | ||
4% | 29.44 mL/g VS | 214.98 mL/g VS | ||||||
6% | 20.93 mL/g VS | 130.67 mL/g VS | ||||||
8% | 8.86 mL/g VS | 78.11 mL/g VS | ||||||
11% | 4.28 mL/g VS | 54.32 mL/g VS | ||||||
15% | 2.4 mL/g VS | 41.02 mL/g VS | ||||||
Glycerol | PVC up-flow, packed bed column bioreactor, 35 ± 0.5 °C, 600 m2/L; | pH 6 | 20 g/L, purity 92.2 ± 0.3% | 0.051 L/g COD | Continuous Stirred Tank Reactor (CSTR), 35 °C, HRT 20 day | Effluents from the hydrogenogenic stage (1st stage) diluted with water to 5 g COD/L | 0.198 L/g COD | [201] |
pH 6.5 | 0.070 L/g COD | Effluents from the hydrogenogenic stage (1st stage) diluted with water to 7.5 g COD/L | 0.242 L/g COD | |||||
pH 7 | 0.094 L/g COD | Effluents from the hydrogenogenic stage (1st stage) diluted with water to 10 g COD/L | 0.273 L/g COD | |||||
Chlorella sp. | Serum bottles of 120 mL with 70 mL working volumes, 35 ± 4 °C, pH 6, 150 rpm | Inoculum concentration of 6.17% v/v, algal biomass concentration of 4.62 g VS/L | 10 g/L | 252.56 ± 2.27 mL H2/L | Serum bottles of 120 mL with 70 mL working volumes, pH 7.5, inoculum concentration 25% v/v | Effluent from fermentative hydrogen production at 10 g/L of glycerol | 387.4 ± 20.04 mL CH4/L | [202] |
Inoculum concentration of 25% v/v, algal biomass concentration of 23.1 g VS/L | 40 g/L | 140.67 ± 3.41 mL H2/L | Effluent from fermentative hydrogen production at 40 g/L glycerol | 428.0 ± 13.12 mL CH4/L | ||||
Inoculum concentration of 10.31% v/v, algal biomass concentration of 23.1 g VS/L | 13.83 g/L | 655.12 ± 1.64 m LH2/L | Effluent from fermentative hydrogen production at 13.83 g/L glycerol | 868.7 ± 19.98 mL CH4/L | ||||
Food waste, sewage sludge | 250 mL glass bottles, 35 ± 1 °C, pH 5.5, 150 rpm | 1% v/v | 140.2 mL H2/g VS | 250 mL glass bottles, 35 °C, pH 7, 150 rpm | 342 mL CH4/g VS | [94] | ||
3% v/v | 177 mL H2/g VS | 224.4 mL CH4/g VS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimierowicz, J.; Dębowski, M.; Zieliński, M.; Kasiński, S.; Cruz Sanchez, J. Biotechnological Valorization of Waste Glycerol into Gaseous Biofuels—A Review. Energies 2024, 17, 338. https://doi.org/10.3390/en17020338
Kazimierowicz J, Dębowski M, Zieliński M, Kasiński S, Cruz Sanchez J. Biotechnological Valorization of Waste Glycerol into Gaseous Biofuels—A Review. Energies. 2024; 17(2):338. https://doi.org/10.3390/en17020338
Chicago/Turabian StyleKazimierowicz, Joanna, Marcin Dębowski, Marcin Zieliński, Sławomir Kasiński, and Jordi Cruz Sanchez. 2024. "Biotechnological Valorization of Waste Glycerol into Gaseous Biofuels—A Review" Energies 17, no. 2: 338. https://doi.org/10.3390/en17020338
APA StyleKazimierowicz, J., Dębowski, M., Zieliński, M., Kasiński, S., & Cruz Sanchez, J. (2024). Biotechnological Valorization of Waste Glycerol into Gaseous Biofuels—A Review. Energies, 17(2), 338. https://doi.org/10.3390/en17020338