Next Article in Journal
Physical Scaling of Oil Production Rates and Ultimate Recovery from All Horizontal Wells in the Bakken Shale
Next Article in Special Issue
The Application of Hierarchical Clustering to Power Quality Measurements in an Electrical Power Network with Distributed Generation
Previous Article in Journal
Regional Sustainable Development with Environmental Performance: Measuring Growth Indexes on Chinese Provinces
Previous Article in Special Issue
Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm
Open AccessArticle

Combined Cluster Analysis and Global Power Quality Indices for the Qualitative Assessment of the Time-Varying Condition of Power Quality in an Electrical Power Network with Distributed Generation

1
Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
2
KGHM Polska Miedź S.A, 59-301 Lubin, Poland
*
Author to whom correspondence should be addressed.
Energies 2020, 13(8), 2050; https://doi.org/10.3390/en13082050
Received: 16 March 2020 / Revised: 10 April 2020 / Accepted: 13 April 2020 / Published: 20 April 2020
(This article belongs to the Special Issue Signal Analysis in Power Systems)
This paper presents the idea of a combined analysis of long-term power quality data using cluster analysis (CA) and global power quality indices (GPQIs). The aim of the proposed method is to obtain a solution for the automatic identification and assessment of different power quality condition levels that may be caused by different working conditions of an observed electrical power network (EPN). CA is used for identifying the period when the power quality data represents a different level. GPQIs are proposed to calculate a simplified assessment of the power quality condition of the data collected using CA. Two proposed global power quality indices have been introduced for this purpose, one for 10-min aggregated data and the other for events—the aggregated data index (ADI) and the flagged data index (FDI), respectively. In order to investigate the advantages and disadvantages of the proposed method, several investigations were performed, using real measurements in an electrical power network with distributed generation (DG) supplying the copper mining industry. The investigations assessed the proposed method, examining whether it could identify the impact of DG and other network working conditions on power quality level conditions. The obtained results indicate that the proposed method is a suitable tool for quick comparison between data collected in the identified clusters. Additionally, the proposed method is implemented for the data collected from many measurement points belonging to the observed area of an EPN in a simultaneous and synchronous way. Thus, the proposed method can also be considered for power quality assessment and is an alternative approach to the classic multiparameter analysis of power quality data addressed to particular measurement points. View Full-Text
Keywords: data mining; cluster analysis; power quality; global power quality index; electrical power network; distributed generation; mining industry data mining; cluster analysis; power quality; global power quality index; electrical power network; distributed generation; mining industry
Show Figures

Figure 1

MDPI and ACS Style

Jasiński, M.; Sikorski, T.; Kostyła, P.; Leonowicz, Z.; Borkowski, K. Combined Cluster Analysis and Global Power Quality Indices for the Qualitative Assessment of the Time-Varying Condition of Power Quality in an Electrical Power Network with Distributed Generation. Energies 2020, 13, 2050.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop