Integration and Prediction Difficulty in Hindi Sentence Comprehension: Evidence from an Eye-Tracking Corpus
Abstract
:Introduction
Devanagari: The Hindi script
Method and Materials
Participants
Equipment
Materials
Procedure
Computing word and sentence level predictors
Results
Statistical analyses
Reading time and outgoing saccade length analysis
Discussion
General Discussion
Conclusions
Acknowledgments
Appendix A. Details of the word complexity metric
Appendix B. The sentences used in the study
References
- Bartek, B., R. L. Lewis, S. Vasishth, and M. Smith. 2011. In search of on-line locality effects in sentence comprehension. Journal of Experimental Psychology: Learning, Memory and Cognition 37, 5: 1178–1198. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, R., B. Narasimhan, M. Palmer, O. Rambow, D. Sharma, and F. Xia. 2009. A Multi-Representational and Multi-Layered Treebank for Hindi/Urdu. In Proceedings of the Third LAW. pp. 186–189. [Google Scholar]
- Boston, M. F., J. T. Hale, U. Patil, R. Kliegl, and S. Vasishth. 2008. Parsing costs as predictors of reading difficulty: An evaluation using the Potsdam Sentence Corpus. Journal of Eye Movement Research 2, 1: 1–12. [Google Scholar] [CrossRef]
- Boston, M. F., J. T. Hale, S. Vasishth, and R. Kliegl. 2011. Parallel processing and sentence comprehension difficulty. Language and Cognitive Processes 26, 3: 301–349. [Google Scholar] [CrossRef]
- Chen, E., E. Gibson, and F. Wolf. 2005. Online syntactic storage costs in sentence comprehension. Journal of Memory and Language 52, 1: 144–169. [Google Scholar] [CrossRef]
- Clifton, C., A. Staub, and K. Rayner. 2007. Edited by R. V. Gompel, M. Fisher, W. Murray and R. L. Hill. Eye Movements in Reading Words and Sentences. In Eye movements: A window on mind and brain (chap. 15). Elsevier. [Google Scholar]
- Demberg, V., and F. Keller. 2008. Data from eye-tracking corpora as evidence for theories of syntactic processing complexity. Cognition 109, 2: 193–210. [Google Scholar] [CrossRef]
- Engbert, R., A. Nuthmann, E. Richter, and R. Kliegl. 2005. SWIFT: A dynamical model of saccade generation during reading. Psychological Review 112: 777–813. [Google Scholar] [CrossRef]
- Gelman, A. 2013. P values and statistical practice. Epidemiology 44: 69–72. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E. 2000. Edited by A. Marantz, Y. Miyashita and W. O’Neil. Dependency Locality Theory: A Distance-Based Theory of Linguistic Complexity. In Image, Language, brain: Papers from the First Mind Articulation Project Symposium. Cambridge, MA: MIT Press. [Google Scholar]
- Grodner, D., and E. Gibson. 2005. Consequences of the serial nature of linguistic input. Cognitive Science 29: 261–290. [Google Scholar] [CrossRef] [PubMed]
- Hale, J. T. 2001. A probabilistic Earley parser as a psycholinguistic model. In Proceedings of the Second Meeting of the North American Chapter of the Association for Computational Linguistics. Pittsburgh, PA. [Google Scholar]
- Husain, S., S. Vasishth, and N. Srinivasan. 2014. Strong expectations cancel locality effects: Evidence from Hindi. PLoS ONE 9, 7: 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, J., and P. Dodwell. 1979. Saccadic eye movements during reading. Brain and Language 8: 303–314. [Google Scholar] [CrossRef]
- Just, M. A., and P. A. Carpenter. 1992. A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 122–149. [Google Scholar] [CrossRef] [PubMed]
- Kachru, Y. 2006. Hindi. Philadelphia: John Benjamins Publishing Company. [Google Scholar]
- Kennedy, A. 2003. The Dundee Corpus [CD-ROM] [Computer software manual], The University of Dundee, Psychology Department, Dundee, UK.
- Kliegl, R., A. Nuthmann, and R. Engbert. 2006. Tracking the mind during reading: the influence of past, present, and future words on fixation durations. Journal of experimental psychology: General 135, 1: 12. [Google Scholar]
- Konieczny, L. 2000. Locality and parsing complexity. 29, (6), 627–645. [Google Scholar]
- Levy, R. 2008. Expectation-based syntactic comprehension. Cognition 106: 1126–1177. [Google Scholar] [CrossRef] [PubMed]
- Levy, R., E. Fedorenko, and E. Gibson. 2013. The syntactic complexity of Russian relative clauses. Journal of memory and language 69, 4: 461–495. [Google Scholar] [PubMed]
- Lewis, R. L. 1996. Interference in short-term memory: The magical number two (or three) in sentence processing. Journal of Psycholinguistic Research 25, 1: 93–115. [Google Scholar]
- Lewis, R. L., and S. Vasishth. 2005. An activation-based model of sentence processing as skilled memory retrieval. Cognitive Science 29: 1–45. [Google Scholar] [CrossRef]
- Logačev, P., and S. Vasishth. 2014. The em2 package for computing eyetracking measures [Computer software manual], Potsdam, Germany.
- McDonald, S. A., and R. C. Shillcock. 2003. Low-level predictive inference in reading: The influence of transitional probabilities on eye movements. Vision Research 43: 1735–1751. [Google Scholar]
- Nicenboim, B., S. Vasishth, C. Gattei, M. Sigman, and R. Kliegl. 2015. Working memory differences in long-distance dependency resolution. Frontiers in Psychology 1. [Google Scholar]
- Rayner, K. 1979. Eye guidance in reading: Fixation locations within words. Perception 8, 1: 21–30. [Google Scholar] [CrossRef]
- Rayner, K. 1998. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin 124, 3: 372–422. [Google Scholar] [PubMed]
- Rayner, K., J. Ashby, A. Pollatsek, and E. D. Reichle. 2004. The effects of word frequency and predictability on eye movements in reading: Implications for the E-Z Reader model. Journal of Experimental Psychology: Human Perception and Performance 30: 720–732. [Google Scholar] [PubMed]
- Rayner, K., and A. Pollatsek. 1989. The Psychology of Reading. Englewood Cliffs. [Google Scholar]
- Reichle, E., K. Rayner, and A. Pollatsek. 2004. The E-Z Reader model of eye-movement control in reading: Comparisons to other models. Behavioral and Brain Sciences 26, 04: 445–476. [Google Scholar]
- Schilling, H., K. Rayner, and J. Chumbley. 1998. Comparing naming, lexical decision, and eye fixation times: Word frequency effects and individual differences. Memory and Cognition 26, 6: 1270–1281. [Google Scholar]
- Sorensen, T., and S. Vasishth. 2014. A tutorial on fitting Bayesian linear mixed models using Stan. (Unpublished manuscript).
- Stan Development Team. 2014. Stan modeling language users guide and reference manual, version 2.2 [Computer software manual]. Retrieved from http://mc-stan.org/.
- Vaid, J., and A. Gupta. 2002. Exploring Word Recognition in a Semi-Alphabetic Script: The Case of Devanagari. Brain and Language 81: 679–690. [Google Scholar]
- Vasishth, S., and R. L. Lewis. 2006. Argument-head distance and processing complexity: Explaining both locality and antilocality effects. Language 82, 4: 767–794. [Google Scholar]
- Vasishth, S., T. von der Malsburg, and F. Engelmann. 2012. What eye movements can tell us about sentence comprehension. Wiley Interdisciplinary Reviews: Cognitive Science, 125–134. [Google Scholar]
- Wei, W., X. Li, and A. Pollatsek. 2013. Word properties of a fixated region affect outgoing saccade length in chinese reading. Vision research 80: 1–6. [Google Scholar] [CrossRef]
- White, S. J., and S. P. Liversedge. 2006. Foveal processing difficulty does not modulate non-foveal orthographic influences on fixation positions. Vision Research 46: 426–437. [Google Scholar] [CrossRef]
- Wikipedia. 2014. Devanagari. September. Retrieved from http://en.wikipedia.org/wiki/Devanagari.
- Yan, M., R. Kliegl, E. M. Richter, A. Nuthmann, and H. Shu. 2010. Flexible saccade-target selection in Chinese reading. The Quarterly Journal of Experimental Psychology 63, 4: 705–725. [Google Scholar]
- Yan, M., W. Zhou, H. Shu, R. Yusupu, D. Miao, A. Krügel, and R. Kliegl. 2014. Eye movements guided by morphological structure: Evidence from the Uighur language. Cognition 132, 2: 181–215. [Google Scholar] [CrossRef] [PubMed]
Copyright © 2014. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Husain, S.; Vasishth, S.; Srinivasan, N. Integration and Prediction Difficulty in Hindi Sentence Comprehension: Evidence from an Eye-Tracking Corpus. J. Eye Mov. Res. 2015, 8, 1-12. https://doi.org/10.16910/jemr.8.2.3
Husain S, Vasishth S, Srinivasan N. Integration and Prediction Difficulty in Hindi Sentence Comprehension: Evidence from an Eye-Tracking Corpus. Journal of Eye Movement Research. 2015; 8(2):1-12. https://doi.org/10.16910/jemr.8.2.3
Chicago/Turabian StyleHusain, Samar, Shravan Vasishth, and Narayanan Srinivasan. 2015. "Integration and Prediction Difficulty in Hindi Sentence Comprehension: Evidence from an Eye-Tracking Corpus" Journal of Eye Movement Research 8, no. 2: 1-12. https://doi.org/10.16910/jemr.8.2.3
APA StyleHusain, S., Vasishth, S., & Srinivasan, N. (2015). Integration and Prediction Difficulty in Hindi Sentence Comprehension: Evidence from an Eye-Tracking Corpus. Journal of Eye Movement Research, 8(2), 1-12. https://doi.org/10.16910/jemr.8.2.3