Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Vaccine Preparation
2.3. Experimental Design
2.4. Analysis of Bb-Specific Antibodies and Cytokine Levels
2.5. Bacterial Loads and Histopathological Examination
2.6. Transcriptomic Analysis
2.7. Proteomic Analysis
2.8. Integrated Analysis of Transcriptome and Proteome Data
2.9. Validation of DEGs/DEPs by Real Time-qPCR/PRM
2.10. Statistical Analysis
3. Results
3.1. Safety Estimation of E515 and the E515-Adjuvanted Bb Vaccine
3.2. Evaluation of the Immune Effect of the E515-Bb Vaccine
3.3. Assessment of the Role of the E515-Bb Vaccine in Protecting Rabbits from the Bb Challenge
3.4. Evaluation of the Long-Term Protection Provided by the E515-Bb Vaccine
3.5. Differential Gene Expression Analysis
3.6. Differential Protein Expression Analysis
3.7. Correlation Analysis of the Transcriptome and Proteome
3.8. Validation of DEGs/DEPs by RT–qPCR/PRM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parkhill, J.; Sebaihia, M.; Preston, A.; Murphy, L.D.; Thomson, N.; Harris, D.E.; Holden, M.T.G.; Churcher, C.M.; Bentley, S.D.; Mungall, K.L.; et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 2003, 35, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zeng, W.; Li, R.; Hoffman, L.; He, Z.; Sun, Q.; Li, H. Rabbit meat production and processing in China. Meat Sci. 2018, 145, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, S.; Chen, Y.; Chen, D.; Sang, L.; Xie, X. Characterisation of Bordetella bronchiseptica isolated from rabbits in Fujian, China. Epidemiol. Infect 2020, 148, e237. [Google Scholar] [CrossRef] [PubMed]
- Kameyama, H.; Fujimoto, Y.; Tomioka, Y.; Yamamoto, S.; Suyama, H.; Inoue, H.; Takahashi, E.; Ono, E. Pathogenicity of Bordetella bronchiseptica isolated from apparently healthy rabbits in guinea pig, rat, and mouse. J. Vet. Med. Sci. 2022, 84, 574–581. [Google Scholar] [CrossRef]
- Vötsch, D.; Willenborg, M.; Baumgärtner, W.; Rohde, M.; Valentin-Weigand, P. Bordetella bronchiseptica promotes adherence, colonization, and cytotoxicity of Streptococcus suis in a porcine precision-cut lung slice model. Virulence 2021, 12, 84–95. [Google Scholar] [CrossRef]
- Xiao, C.; Bao, G.; Liu, Y.; Wei, Q.; Ji, Q.; Liu, Y.; Pan, L. Greater efficacy of the ECMS-oil adjuvant over other formulations on immune responses against Bordetella bronchiseptica in rabbits and the underlying mechanism. Int. Immunopharmacol. 2016, 38, 194–203. [Google Scholar] [CrossRef]
- Papantoniou, S.; Tsakiris, A.; Ladopoulos, T.; Kranidiotis, G.; Tamvakos, C. A Case of Bordetella bronchiseptica Bacteremia in a Patient With COVID-19: Brief Report. Cureus 2021, 13, e15976. [Google Scholar] [CrossRef]
- Kadlec, K.; Kehrenberg, C.; Schwarz, S. Molecular basis of resistance to trimethoprim, chloramphenicol and sulphonamides in Bordetella bronchiseptica. J. Antimicrob. Chemother. 2005, 56, 485–490. [Google Scholar] [CrossRef]
- Kadlec, K.; Kehrenberg, C.; Schwarz, S. tet(A)-mediated tetracycline resistance in porcine Bordetella bronchiseptica isolates is based on plasmid-borne Tn1721 relics. J. Antimicrob. Chemother. 2006, 58, 225–227. [Google Scholar] [CrossRef][Green Version]
- Mayer, R.L.; Impens, F. Immunopeptidomics for next-generation bacterial vaccine development. Trends Microbiol. 2021, 29, 1034–1045. [Google Scholar] [CrossRef]
- Muhammad, A.; Kassmannhuber, J.; Rauscher, M.; Falcon, A.A.; Wheeler, D.W.; Zhang, A.A.; Lubitz, P.; Lubitz, W. Subcutaneous Immunization of Dogs with Bordetella bronchiseptica Bacterial Ghost Vaccine. Front. Immunol. 2019, 10, 1377. [Google Scholar] [CrossRef] [PubMed]
- Ai, W.; Peng, Z.; Wang, F.; Zhang, Y.; Xie, S.; Liang, W.; Hua, L.; Chen, H.; Wu, B. A Marker-Free Bordetella bronchiseptica aroA/bscN Double Deleted Mutant Confers Protection against Lethal Challenge. Vaccines 2019, 7, 176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, H.; Xiong, B.; Fan, G.; Cao, Z. Immunogenicity of recombinant outer membrane porin protein and protective efficacy against lethal challenge with Bordetella bronchiseptica in rabbits. J. Appl. Microbiol. 2019, 127, 1646–1655. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, S.; Li, Z.; Ma, G.; Su, Z. Construction of a stable w/o nano-emulsion as a potential adjuvant for foot and mouth disease virus vaccine. Artif. Cells Nanomed. Biotechnol. 2017, 45, 897–906. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.S.; Marrack, P. Old and new adjuvants. Curr. Opin. Immunol. 2017, 47, 44–51. [Google Scholar] [CrossRef]
- Charerntantanakul, W. Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020, 38, 6659–6681. [Google Scholar] [CrossRef]
- Portuondo, D.L.; Batista-Duharte, A.; Ferreira, L.S.; de Andrade, C.R.; Quinello, C.; Téllez-Martínez, D.; de Aguiar Loesch, M.L.; Carlos, I.Z. Comparative Efficacy and Toxicity of Two Vaccine Candidates against Sporothrix schenckii Using Either MontanideTM Pet Gel A or Aluminum Hydroxide Adjuvants in Mice. Vaccine 2017, 35, 4430–4436. [Google Scholar] [CrossRef]
- Riaz, M.; Rahman, N.U.; Zia-Ul-Haq, M.; Jaffar, H.Z.E.; Manea, R. Ginseng: A Dietary Supplement as Immune-Modulator in Various Diseases. Trends Food Sci. Technol. 2019, 83, 12–30. [Google Scholar] [CrossRef]
- Patel, S.; Faraj, Y.; Duso, D.K.; Reiley, W.W.; Karlsson, E.A.; Schultz-Cherry, S.; Vajdy, M. Comparative Safety and Efficacy Profile of a Novel Oil in Water Vaccine Adjuvant Comprising Vitamins A and E and a Catechin in Protective Anti-Influenza Immunity. Nutrients 2017, 9, 516. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Y.; Maqbool, B.; Yuan, L.; He, S.; Zhang, C.; Xu, W.; Hu, S. Early IgG Response to Foot and Mouth Disease Vaccine Formulated with a Vegetable Oil Adjuvant. Vaccines 2019, 7, 143. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Y.; Guan, R.; Lu, M.; Yuan, L.; Xu, W.; Hu, S. Enhanced Immune Responses with Serum Proteomic Analysis of Hu Sheep to Foot-and-Mouth Disease Vaccine Emulsified in a Vegetable Oil Adjuvant. Vaccines 2020, 8, 180. [Google Scholar] [CrossRef] [PubMed]
- Chenwen, X.; Quanan, J.; Yee, H.; Yan, L.; Jiaoyu, W.; Qiang, W.; Litao, Q.; Li, N.; Guolian, B. Efficacy of Rg1-Oil Adjuvant on Inducing Immune Responses against Bordetella bronchiseptica in Rabbits. J. Immunol. Res. 2021, 2021, 8835919. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Huang, Y.; Wei, Q.; Liu, Y.; Ji, Q.; Li, K.; Bao, G. Comparative Proteomic Analysis Reveals Complex Responses to Bordetella bronchiseptica Infections in the Spleen of Rabbits. Proteomics 2020, 20, 2000117. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Petrovsky, N. Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs. Drug Saf. 2015, 38, 1059–1074. [Google Scholar] [CrossRef] [PubMed]
- Powell, B.S.; Andrianov, A.K.; Fusco, P.C. Polyionic Vaccine Adjuvants: Another Look at Aluminum Salts and Polyelectrolytes. Clin. Exp. Vaccine Res. 2015, 4, 23. [Google Scholar] [CrossRef]
- Gomez-Laguna, J.; Salguero, F.J.; Pallarés, F.J.; Rodríguez-Gómez, I.M.; Barranco, I.; Carrasco, L. Acute Phase Proteins as Biomarkers in Animal Health and Welfare. In Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases; InTechOpen: Rijeka, Croatia, 2011; p. 13. [Google Scholar]
- Khalil, R.H.; Al-Humadi, N. Types of Acute Phase Reactants and Their Importance in Vaccination (Review). Biomed. Rep. 2020, 12, 143–152. [Google Scholar] [CrossRef]
- Hernández-Caravaca, I.; Gourgues, S.F.; Rodríguez, V.; Estrada, E.D.; Cerón, J.J.; Escribano, D. Serum Acute Phase Response Induced by Different Vaccination Protocols against Circovirus Type 2 and Mycoplasma hyopneumoniae in Piglets. Res. Vet. Sci. 2017, 114, 69–73. [Google Scholar] [CrossRef]
- Pomorska-Mól, M.; Markowska-Daniel, I.; Kwit, K.; Stępniewska, K.; Pejsak, Z. C-Reactive Protein, Haptoglobin, Serum Amyloid A and Pig Major Acute Phase Protein Response in Pigs Simultaneously Infected with H1N1 Swine Influenza Virus and Pasteurella multocida. BMC Vet. Res. 2013, 9, 14. [Google Scholar] [CrossRef]
- Green, M.D. Acute Phase Responses to Novel, Investigational Vaccines in Toxicology Studies. Int. J. Toxicol. 2015, 34, 379–383. [Google Scholar] [CrossRef]
- Destexhe, E.; Prinsen, M.K.; van Schöll, I.; Kuper, C.F.; Garçon, N.; Veenstra, S.; Segal, L. Evaluation of C-Reactive Protein as an Inflammatory Biomarker in Rabbits for Vaccine Nonclinical Safety Studies. J. Pharmacol. Toxicol. Methods 2013, 68, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Garçon, N.; Vaughn, D.W.; Didierlaurent, A.M. Development and Evaluation of AS03, an Adjuvant System Containing α-Tocopherol and Squalene in an Oil-in-Water Emulsion. Expert Rev. Vaccines 2012, 11, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wang, Y.; Li, Z.; Ma, X.; Cui, X.; Chi, X.; Xu, W.; Hu, S. Sunflower Seed Oil Containing Ginseng Stem–Leaf Saponins (E515-D) Is a Safe Adjuvant for Newcastle Disease Vaccine. Poult. Sci. 2020, 99, 4795–4803. [Google Scholar] [CrossRef] [PubMed]
- Yount, K.S.; Jennings-Gee, J.; Caution, K.; Fullen, A.R.; Corps, K.N.; Quataert, S.; Deora, R.; Dubey, P. Bordetella Colonization Factor A (BcfA) Elicits Protective Immunity against Bordetella bronchiseptica in the Absence of an Additional Adjuvant. Infect. Immun. 2019, 87, e00506-19. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.R.; Hino, A.; Yoshimoto, T.; Nagase, H.; Kato, T.; Hirokawa, K.; Matsuzawa, A.; Nariuchi, H. Impaired Delayed-Type Hypersensitivity Response in Mutant Mice Secreting Soluble CD4 without Expression of Membrane-Bound CD4. Immunology 2000, 100, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Huang, X.; Han, K.; Liu, Y.; Yang, J.; Liu, Q.; An, F.; Li, Y. Protective Immune Response against Newly Emerging Goose Tembusu Virus Infection Induced by Immunization with a Recombinant Envelope Protein. Lett. Appl. Microbiol. 2015, 61, 318–324. [Google Scholar] [CrossRef]
- Lu, Y.-J.; Barreira-Silva, P.; Boyce, S.; Powers, J.; Cavallo, K.; Behar, S.M. CD4 T Cell Help Prevents CD8 T Cell Exhaustion and Promotes Control of Mycobacterium Tuberculosis Infection. Cell Rep. 2021, 36, 109696. [Google Scholar] [CrossRef]
- Bunte, K.; Beikler, T. Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 2019, 20, 3394. [Google Scholar] [CrossRef]
- Abusleme, L.; Moutsopoulos, N. IL-17: Overview and Role in Oral Immunity and Microbiome. Oral Dis. 2017, 23, 854–865. [Google Scholar] [CrossRef]
- Su, F.; Wu, Y.; Li, J.; Huang, Y.; Yu, B.; Xu, L.; Xue, Y.; Xiao, C.; Yuan, X. Escherichia Coli Heat-Labile Enterotoxin B Subunit Combined with Ginsenoside Rg1 as an Intranasal Adjuvant Triggers Type I Interferon Signaling Pathway and Enhances Adaptive Immune Responses to an Inactivated PRRSV Vaccine in ICR Mice. Vaccines 2021, 9, 266. [Google Scholar] [CrossRef]
- Wang, J.; Xie, X.; Jiang, S.; Lu, L. Immunoengineered Adjuvants for Universal Vaccines against Respiratory Viruses. Fundam. Res. 2021, 1, 189–192. [Google Scholar] [CrossRef]
- Kalita, P.; Dasgupta, A.; Sritharan, V.; Gupta, S. Nanoparticle–Drug Bioconjugate as Dual Functional Affinity Ligand for Rapid Point-of-Care Detection of Endotoxin in Water and Serum. Anal. Chem. 2015, 87, 11007–11012. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, C.; Liu, Z.; Sun, P.; Hua, X.; Feng, E.; Yu, Y.; Wu, J.; Zhu, L.; Wang, H. Safety and Immunogenicity of a New Glycoengineered Vaccine against Acinetobacter Baumannii in Mice. Microb. Biotechnol. 2022, 15, 703–716. [Google Scholar] [CrossRef]
- Cibulski, S.; Rivera-Patron, M.; Suárez, N.; Pirez, M.; Rossi, S.; Yendo, A.C.; de Costa, F.; Gosmann, G.; Fett-Neto, A.; Roehe, P.M.; et al. Leaf Saponins of Quillaja Brasiliensis Enhance Long-Term Specific Immune Responses and Promote Dose-Sparing Effect in BVDV Experimental Vaccines. Vaccine 2018, 36, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Savoji, M.A.; Sereshgi, M.M.A.; Ghahari, S.M.M.; Asgarhalvaei, F.; Mahdavi, M. Formulation of HBsAg in Montanide ISA 51VG Adjuvant: Immunogenicity Study and Monitoring Long-Lived Humoral Immune Responses. Int. Immunopharmacol. 2021, 96, 107599. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, L.; Gu, P.; Bo, R.; Wusiman, A.; Liu, J.; Hu, Y.; Wang, D. Preparation of Lentinan-Calcium Carbonate Microspheres and Their Application as Vaccine Adjuvants. Carbohydr. Polym. 2020, 245, 116520. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.E.-S.; Gamal, W.M.; Hassan, A.I.; Mahdy, S.E.-D.; Hegazy, A.Z.; Abdel-Atty, M.M. Comparative Study on the Immunopotentiator Effect of ISA 201, ISA 61, ISA 50, ISA 206 Used in Trivalent Foot and Mouth Disease Vaccine. Vet. World 2015, 8, 1189–1198. [Google Scholar] [CrossRef]
- Lin, L.; Ibrahim, A.S.; Xu, X.; Farber, J.M.; Avanesian, V.; Baquir, B.; Fu, Y.; French, S.W.; Edwards, J.E., Jr.; Spellberg, B. Th1-Th17 Cells Mediate Protective Adaptive Immunity against Staphylococcus Aureus and Candida Albicans Infection in Mice. PLoS Pathog. 2009, 5, e1000703. [Google Scholar] [CrossRef]
- Shi, W.; Kou, Y.; Xiao, J.; Zhang, L.; Gao, F.; Kong, W.; Su, W.; Jiang, C.; Zhang, Y. Comparison of Immunogenicity, Efficacy and Transcriptome Changes of Inactivated Rabies Virus Vaccine with Different Adjuvants. Vaccine 2018, 36, 5020–5029. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, L.; Cui, X.; Xu, W.; Fang, S.; Li, Z.; Lu, M.; Wu, Y.; Ma, X.; Chi, X.; et al. Ginseng Stem-Leaf Saponins in Combination with Selenium Promote the Immune Response in Neonatal Mice with Maternal Antibody. Vaccines 2020, 8, 755. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, Y.; Ma, X.; Cui, X.; Lu, M.; Guan, R.; Chi, X.; Xu, W.; Hu, S. Sunflower Seed Oil Combined with Ginseng Stem-Leaf Saponins as an Adjuvant to Enhance the Immune Response Elicited by Newcastle Disease Vaccine in Chickens. Vaccine 2020, 38, 5343–5354. [Google Scholar] [CrossRef] [PubMed]
- Lesur, A.; Schmit, P.-O.; Bernardin, F.; Letellier, E.; Brehmer, S.; Decker, J.; Dittmar, G. Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF. Anal. Chem. 2021, 93, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Loginov, D.S.; Fiala, J.; Chmelik, J.; Brechlin, P.; Kruppa, G.; Novak, P. Benefits of Ion Mobility Separation and Parallel Accumulation–Serial Fragmentation Technology on TimsTOF Pro for the Needs of Fast Photochemical Oxidation of Protein Analysis. ACS Omega 2021, 6, 10352–10361. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pan, H.; Yang, H.; Wang, C.; Liu, H.; Zhou, H.; Li, P.; Li, C.; Lu, X.; Tian, Y. Rhamnolipid Enhances the Nitrogen Fixation Activity of Azotobacter Chroococcum by Influencing Lysine Succinylation. Front. Microbiol. 2021, 12, 697963. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, H.; Fan, Y.; Chen, Z.; Li, M.; Mao, Y.; Karrow, N.A.; Loor, J.J.; Moore, S.; Yang, Z. Transcriptomics and ITRAQ-Proteomics Analyses of Bovine Mammary Tissue with Streptococcus agalactiae-Induced Mastitis. J. Agric. Food Chem. 2018, 66, 11188–11196. [Google Scholar] [CrossRef]
- Li, L.; Dong, L.; Xiao, Z.; He, W.; Zhao, J.; Pan, H.; Chu, B.; Cheng, J.; Wang, H. Integrated Analysis of the Proteome and Transcriptome in a MCAO Mouse Model Revealed the Molecular Landscape during Stroke Progression. J. Adv. Res. 2020, 24, 13–27. [Google Scholar] [CrossRef]
- Guo, C.; Xu, Y.; Han, X.; Liu, X.; Xie, R.; Cheng, Z.; Fu, X. Transcriptomic and Proteomic Study on the High-Fat Diet Combined With AOM/DSS-Induced Adenomatous Polyps in Mice. Front. Oncol. 2021, 11, 736225. [Google Scholar] [CrossRef]
- Takemon, Y.; Chick, J.M.; Gyuricza, I.G.; Skelly, D.A.; Devuyst, O.; Gygi, S.P.; Churchill, G.A.; Korstanje, R. Proteomic and Transcriptomic Profiling Reveal Different Aspects of Aging in the Kidney. eLife 2021, 10, 1–21. [Google Scholar] [CrossRef]
- Yang, M.; Cao, X.; Wu, R.; Liu, B.; Ye, W.; Yue, X.; Wu, J. Comparative Proteomic Exploration of Whey Proteins in Human and Bovine Colostrum and Mature Milk Using ITRAQ-Coupled LC-MS/MS. Int. J. Food Sci. Nutr. 2017, 68, 671–681. [Google Scholar] [CrossRef]
- Yanase, Y.; Takahagi, S.; Ozawa, K.; Hide, M. The Role of Coagulation and Complement Factors for Mast Cell Activation in the Pathogenesis of Chronic Spontaneous Urticaria. Cells 2021, 10, 1759. [Google Scholar] [CrossRef]
- Harris, S.L.; Levine, A.J. The P53 Pathway: Positive and Negative Feedback Loops. Oncogene 2005, 24, 2899–2908. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Xu, X.; Huang, P.; Bao, G.; Liu, Y. Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits. Pharmaceutics 2022, 14, 1434. https://doi.org/10.3390/pharmaceutics14071434
Cui X, Xu X, Huang P, Bao G, Liu Y. Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits. Pharmaceutics. 2022; 14(7):1434. https://doi.org/10.3390/pharmaceutics14071434
Chicago/Turabian StyleCui, Xuemei, Xiangfei Xu, Pan Huang, Guolian Bao, and Yan Liu. 2022. "Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits" Pharmaceutics 14, no. 7: 1434. https://doi.org/10.3390/pharmaceutics14071434
APA StyleCui, X., Xu, X., Huang, P., Bao, G., & Liu, Y. (2022). Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits. Pharmaceutics, 14(7), 1434. https://doi.org/10.3390/pharmaceutics14071434