Analysis of the Long Non-Coding and Messenger RNA Expression Profiles in the Skin Tissue of Super Merino and Small-Tailed Han Sheep
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Ethical Statement
2.2. Histomorphological Study
2.3. RNA Isolation, Library Preparation, and Sequencing
2.4. lncRNA Identification and Target Gene Prediction
2.5. Expression Analysis
2.6. Enrichment Analyses with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
2.7. Construction of PPI and lncRNA–mRNA Network
2.8. qRT-PCR Verification
2.9. Immunohistochemistry Study
2.10. Data Analysis
3. Results
3.1. Characterization of Sheep Wool and Follicle Traits
3.2. Sequencing Data Quality Control
3.3. Identification and Expression Analysis of lncRNA and mRNA
3.4. Comparative Analysis of lncRNA and mRNA Characteristics
3.5. PPI Network and Functional Analyses of DE mRNAs
3.6. GO and KEGG Analyses of DE lncRNA Target Genes
3.7. Regulatory Network
3.8. Validation of the RNA-Seq Data
3.9. Immunohistochemistry Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Ma, S.; Long, L.; Huang, X.; Tian, K.; Tian, Y.; Wu, C.; Zhao, Z. Transcriptome analysis reveals genes associated with wool fineness in merinos. PeerJ 2023, 11, e15327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.C.; Sun, F.L.; Jin, H.G.; Cao, Y.; Wei, T.; Piao, Q.L.; Zhang, M.X. A comparative study of wool and follicle traits of small-tailed Han sheep and Xinji fine wool sheep. Chin. J. Anim. Sci. 2017, 53, 52–56. [Google Scholar]
- Schneider, M.R.; Schmidt-Ullrich, R.; Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol. 2009, 19, R132–R142. [Google Scholar] [CrossRef]
- Zhao, R.; Li, J.; Liu, N.; Li, H.; Liu, L.; Yang, F.; Li, L.; Wang, Y.; He, J. Transcriptomic Analysis Reveals the Involvement of lncRNA–miRNA–mRNA Networks in Hair Follicle Induction in Aohan Fine Wool Sheep Skin. Front. Genet. 2020, 11, 590. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.H. The secret life of the hair follicle. Trends Genet. 1992, 8, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Shang, F.; Rong, Y.; Pan, J.; Wang, M.; Niu, S.; Qi, Y.; Li, Y.; Lv, Q.; Wang, Z.; et al. Expression profile of long non-coding RNA in inner Mongolian cashmere goat with putative roles in hair follicles development. Front. Vet. Sci. 2022, 9, 995604. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Wang, S.; Ge, W.; Luo, Z.; Guo, Y.; Jiao, B.; Qu, L.; Zhang, Z.; Wang, X. Integrated analysis of coding genes and non-coding RNAs during hair follicle cycle of cashmere goat (Capra hircus). BMC Genom. 2017, 18, 767. [Google Scholar] [CrossRef]
- Zhou, G.; Kang, D.; Ma, S.; Wang, X.; Gao, Y.; Yang, Y.; Wang, X.; Chen, Y. Integrative analysis reveals ncRNA-mediated molecular regulatory network driving secondary hair follicle regression in cashmere goats. BMC Genom. 2018, 19, 222. [Google Scholar] [CrossRef]
- Rinn, J.L.; Chang, H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [Google Scholar] [CrossRef]
- Yue, Y.; Guo, T.; Yuan, C.; Liu, J.; Guo, J.; Feng, R.; Niu, C.; Sun, X.; Yang, B. Integrated Analysis of the Roles of Long Noncoding RNA and Coding RNA Expression in Sheep (Ovis aries) Skin during Initiation of Secondary Hair Follicle. PLoS ONE 2016, 11, e0156890. [Google Scholar] [CrossRef] [PubMed]
- Shang, F.; Ma, R.; Rong, Y.; Pan, J.; Wang, M.; Niu, S.; Qi, Y.; Li, Y.; Wang, Z.; Lv, Q.; et al. Construction and functional analysis of ceRNA regulatory network related to the development of secondary hair follicles in Inner Mongolia cashmere goats. Front. Vet. Sci. 2022, 9, 959952. [Google Scholar] [CrossRef]
- Wu, C.; Xu, Q.; Li, J.; Qin, C.; Tulafu, H.; Liu, W.; Lu, Q.; Zheng, W.; Fu, X. Regulation of cashmere fineness traits by noncoding RNA in Jiangnan cashmere goats. BMC Genom. 2023, 24, 604. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gu, Y.; Li, S.; Guo, S.; Wang, J.; Luo, Y.; Hu, J.; Liu, X.; Li, S.; Hao, Z.; et al. RNA-Seq Reveals the Roles of Long Non-Coding RNAs (lncRNAs) in Cashmere Fiber Production Performance of Cashmere Goats in China. Genes 2023, 14, 384. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhao, B.; Tian, K.; Wu, Y.; Suo, L.; Ba, G.; Ciren, D.; De, J.; Awang, C.; Gun, S.; et al. Integrated analysis of lncRNA and mRNA reveals novel insights into cashmere fineness in Tibetan cashmere goats. PeerJ 2020, 8, e10217. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Fan, W.; Piao, J.; Zhao, F.; Piao, J. Effects of lncRNA MTC on protein expression in skin fibroblasts of Liaoning Cashmere goat based on iTRAQ technique. Anim. Biotechnol. 2022, 34, 2817–2826. [Google Scholar] [CrossRef]
- Sun, H.; Meng, K.; Wang, Y.; Wang, Y.; Yuan, X.; Li, X. LncRNAs regulate the cyclic growth and development of hair follicles in Dorper sheep. Front. Vet. Sci. 2023, 10, 1186294. [Google Scholar] [CrossRef]
- Yin, R.H.; Wang, Y.R.; Zhao, S.J.; Bai, M.; Wang, Z.Y.; Zhu, Y.B.; Cong, Y.Y.; Liu, H.Y.; Bai, W.L. LncRNA-599554 sponges miR-15a-5p to contribute inductive ability of dermal papilla cells through positive regulation of the expression of Wnt3a in cashmere goat. Electron. J. Biotechnol. 2020, 45, 19–29. [Google Scholar] [CrossRef]
- Ren, H.; Wang, G.; Chen, L.; Jiang, J.; Liu, L.; Li, N.; Zhao, J.; Sun, X.; Zhou, P. Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus). BMC Genom. 2016, 17, 67. [Google Scholar] [CrossRef]
- Lv, J.; Cui, W.; Liu, H.; He, H.; Xiu, Y.; Guo, J.; Liu, H.; Liu, Q.; Zeng, T.; Chen, Y.; et al. Identification and characterization of long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data. PLoS ONE 2013, 8, e71152. [Google Scholar] [CrossRef]
- Kelley, D.; Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 2012, 13, R107. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Jiao, Q.; Wang, Y.R.; Zhao, J.Y.; Wang, Z.Y.; Guo, D.; Bai, W.L. Identification and molecular analysis of cashmere goat lncRNAs reveal their integrated regulatory network and potential roles in secondary hair follicle. Anim. Biotechnol. 2021, 32, 719–732. [Google Scholar] [CrossRef]
- Zou, F.; Zhang, Z.; Zou, S.; Zhuang, Z.; Ji, Q.; Chang, R.; Cao, J.; Wang, B. LncRNA MIR210HG promotes the proliferation, migration, and invasion of lung cancer cells by inhibiting the transcription of SH3GL3. Kaohsiung J. Med. Sci. 2023, 39, 1166–1177. [Google Scholar] [CrossRef]
- Zhu, Z.; Lin, S.; Pang, L. linc01152 Regulates Cell Viability, Cell Migration and Cell Invasion of Breast Cancer via Regulating miR-320a and MTDH. Biochem. Genet. 2024; epub ahead of print. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Sheng, S.D.; Hui, T.Y.; Yue, C.; Sun, J.M.; Guo, D.; Guo, S.L.; Li, B.J.; Xue, H.L.; Wang, Z.Y.; et al. An Integrated Analysis of Cashmere Fineness lncRNAs in Cashmere Goats. Genes 2019, 10, 266. [Google Scholar] [CrossRef]
- Magin, T.M.; Vijayaraj, P.; Leube, R.E. Structural and regulatory functions of keratins. Exp. Cell Res. 2007, 313, 2021–2032. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Forrest, R.H.; Li, S.; Wang, J.; Dyer, J.M.; Luo, Y.; Hickford, J.G. Wool Keratin-Associated Protein Genes in Sheep—A Review. Genes 2016, 7, 24. [Google Scholar] [CrossRef]
- Sun, H.; He, Z.; Zhao, F.; Hu, J.; Wang, J.; Liu, X.; Zhao, Z.; Li, M.; Luo, Y.; Li, S. Spatiotemporal Expression Characterization of KRTAP6 Family Genes and Its Effect on Wool Traits. Genes 2024, 15, 95. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, Q.; Liu, Z.; Xu, X.; Lan, M.; Xie, Y.; Wang, Z.; Li, J.; Liu, Z. Identification of the key proteins associated with different hair types in sheep and goats. Front. Genet. 2022, 13, 993192. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Qin, C.; Fu, X.; Huang, X.; Tian, K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Veter-Res. 2022, 18, 167. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Zhang, S.; Wang, D.; Liu, J.; Luo, X.; Liu, Y.; Li, X.; Sun, F.; Xia, G.; Zhang, L. Regulatory Effects of FGF9 on Dermal Papilla Cell Proliferation in Small-Tailed Han Sheep. Genes 2023, 14, 1106. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.B.; Wang, Z.Y.; Yin, R.H.; Jiao, Q.; Zhao, S.J.; Cong, Y.Y.; Xue, H.L.; Guo, D.; Wang, S.Q.; Zhu, Y.X.; et al. A lncRNA-H19 transcript from secondary hair follicle of Liaoning cashmere goat: Identification, regulatory network and expression regulated potentially by its promoter methylation. Gene 2018, 641, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Kawano, M.; Komi-Kuramochi, A.; Asada, M.; Suzuki, M.; Oki, J.; Jiang, J.; Imamura, T. Comprehensive analysis of FGF and FGFR expression in skin: FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. J. Investig. Dermatol. 2005, 124, 877–885. [Google Scholar] [CrossRef]
- Kwack, M.H.; Seo, C.H.; Gangadaran, P.; Ahn, B.; Kim, M.K.; Kim, J.C.; Sung, Y.K. Exosomes derived from human dermal papilla cells promote hair growth in cultured human hair follicles and augment the hair-inductive capacity of cultured dermal papilla spheres. Exp. Dermatol. 2019, 28, 854–857. [Google Scholar] [CrossRef]
- Sohn, K.M.; Jeong, K.H.; Kim, J.E.; Park, Y.M.; Kang, H. Hair growth-promotion effects of different alternating current parameter settings are mediated by the activation of Wnt/β-catenin and MAPK pathway. Exp. Dermatol. 2015, 24, 958–963. [Google Scholar] [CrossRef]
- Lv, X.; Chen, W.; Sun, W.; Hussain, Z.; Wang, S.; Wang, J. Analysis of lncRNAs Expression Profiles in Hair Follicle of Hu Sheep Lambskin. Animals 2020, 10, 1035. [Google Scholar] [CrossRef]
- Lv, X.; Chen, W.; Wang, S.; Cao, X.; Yuan, Z.; Getachew, T.; Mwacharo, J.M.; Haile, A.; Sun, W. Integrated Hair Follicle Profiles of microRNAs and mRNAs to Reveal the Pattern Formation of Hu Sheep Lambskin. Genes 2022, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Shi, R.; Li, S.; Li, S.; Liu, P.; Liu, P.; Zhang, S.; Zhang, S.; Wu, Z.; Wu, Z.; et al. Identification of key genes and signaling pathways related to Hetian sheep wool density by RNA-seq technology. PLoS ONE 2022, 17, e0265989. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Wang, J.; Chen, Q.; Miao, Y.; Hu, Z. The mechanism of activated platelet-rich plasma supernatant promotion of hair growth by cultured dermal papilla cells. J. Cosmet. Dermatol. 2019, 18, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fan, Z.; Wang, X.; Mo, M.; Bin Zeng, S.; Xu, R.-H.; Wang, X.; Wu, Y. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res. Ther. 2020, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Yamane, M.; Seo, J.; Zhou, Y.; Asaba, T.; Tu, S.; Nanmo, A.; Kageyama, T.; Fukuda, J. Effects of the PI3K/Akt signaling pathway on the hair inductivity of human dermal papilla cells in hair beads. J. Biosci. Bioeng. 2022, 134, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Rishikaysh, P.; Dev, K.; Diaz, D.; Qureshi, W.M.S.; Filip, S.; Mokry, J. Signaling involved in hair follicle morphogenesis and development. Int. J. Mol. Sci. 2014, 15, 1647–1670. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jarrell, A.; Guo, C.; Lang, R.; Atit, R. Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development 2012, 139, 1522–1533. [Google Scholar] [CrossRef]
- Zhu, N.; Yan, J.; Gu, W.; Yang, Q.; Lin, E.; Lu, S.; Cai, B.; Xia, B.; Liu, X.; Lin, C. Dermal papilla cell-secreted biglycan regulates hair follicle phase transit and regeneration by activating Wnt/β-catenin. Exp. Dermatol. 2024, 33, e14969. [Google Scholar] [CrossRef]
Gene | Primer Sequence 5′→3′ | Product Length (bp) |
---|---|---|
MSTRG.93521.1 (down) | CAGGCTCGGCTGAGGTTTGG AGTCTGTGGTTGTGTCCAGTGATG | 114 |
MSTRG.20995.1 (down) | GTGGGGAGCCAAAGAGGAAT AGGTCAACGGCGTGGTTAAA | 165 |
MSTRG.154129.25 (up) | TGGTTAGCTCAAGGTTCGAGA GCAGCAGGAGGAAACAACCTA | 141 |
MSTRG.96951.1 (down) | ACTCGCCTTGTTCCAACCTC AGTGTGTCCGAATCTGCCTC | 131 |
MSTRG.31806.12 (up) | AGCAAGAGCCAGTGGTACAATA ATAGCCTCCAGCAGACGAGG | 92 |
COL7A1 (up) | ATGATCCCTGTTCGCTTCCAC TCCGCAGCCACCATAGACGA | 122 |
CNN1 (down) | AGAACACCAACCACACGCAAG GCCCGATAATGTTCCGCCCTT | 159 |
KLK6 (up) | AGAGACTGCTCAGCCAACCAC TGCTTCTCATCCCCGGCACAC | 179 |
IGFBP5 (down) | CGCCACTCATTTCATCTCATGT TGCGACCTTGCCAGAGATTC | 94 |
CRABP1 (down) | ACGGGGACCAGTTCTACATCA TCCCAAGTGGGTAAGCTCCTG | 127 |
KRT10 (down) | AGCAGAAACTAGCTGGGATACT AGGACTCTACCATCAGGTGC | 81 |
GAPDH | GTGGACCTGACCTGCCGTCTAG GAGTGGGTGTCGCTGTTGAAGTC | 149 |
Traits | Super Merino (n = 6) | Small-Tailed Han Sheep (n = 6) |
---|---|---|
Skin thickness (µm) | 1355.37 ± 50.48 | 1616.57 ± 44.53 ** |
Hair follicle density (mm2) | 19.74 ± 2.04 ** | 11.59 ± 1.13 |
Diameter of primary dermal papilla (µm) | 122.35 ± 2.99 | 143.68 ± 5.46 ** |
Diameter of secondary dermal papilla (µm) | 49.26 ± 1.99 | 63.81 ± 3.24 ** |
S/P | 19.65 ± 2.90 ** | 5.46 ± 2.43 |
BMK-ID | Total Reads | Mapped Reads | Uniquely Mapped Reads | Multiple Mapped Reads | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|
SM1 | 119,612,582 | 113,676,411 (95.04%) | 111,058,913 (92.85%) | 2,617,498 (2.19%) | 97.67 | 93.62 |
SM2 | 115,429,242 | 109,531,249 (94.89%) | 107,228,260 (92.90%) | 2,302,989 (2.00%) | 97.76 | 93.79 |
SM3 | 124,719,310 | 117,304,477 (94.05%) | 115,270,935 (92.42%) | 2,033,542 (1.63%) | 97.86 | 93.87 |
SM4 | 118,615,420 | 113,129,111 (95.37%) | 109,835,326 (92.60%) | 3,293,785 (2.78%) | 97.67 | 93.62 |
SM5 | 132,926,276 | 127,869,012 (96.20%) | 125,542,321 (94.45%) | 2,326,691 (1.75%) | 97.85 | 93.87 |
SM6 | 122,335,752 | 117,949,087 (96.41%) | 115,542,600 (94.45%) | 2,406,487 (1.97%) | 98.16 | 94.68 |
STH1 | 127,399,620 | 123,042,683 (96.58%) | 120,295,753 (94.42%) | 2,746,930 (2.16%) | 98.08 | 94.52 |
STH2 | 127,087,066 | 122,677,440 (96.53%) | 119,419,027 (93.97%) | 3,258,413 (2.56%) | 98.18 | 94.80 |
STH3 | 128,176,154 | 123,199,306 (96.12%) | 119,827,700 (93.49%) | 3,371,606 (2.63%) | 98.07 | 94.45 |
STH4 | 132,012,936 | 126,513,200 (95.83%) | 123,006,721 (93.18%) | 3,506,479 (2.66%) | 97.84 | 93.88 |
STH5 | 117,224,636 | 112,912,295 (96.32%) | 110,197,340 (94.01%) | 2,714,955 (2.32%) | 97.89 | 93.96 |
STH6 | 114,176,126 | 109,862,331 (96.22%) | 107,334,555 (94.01%) | 2,527,776 (2.21%) | 98.02 | 94.38 |
ID | RNA-seq (Regulated) | qRT-PCR (Regulated) |
---|---|---|
MSTRG.96951.1 | down | down |
MSTRG.31806.12 | up | up |
MSTRG.20995.1 | down | down |
MSTRG.93521.1 | down | down |
MSTRG.154129.25 | up | up |
CRABP1 | down | down |
KRT10 | down | down |
CNN1 | down | down |
COL7A1 | up | up |
KLK6 | up | up |
IGFBP5 | down | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Zhang, X.; Wang, D.; Liu, W.; Zhang, C.; Wang, W.; Fan, W.; Zhang, L.; Sun, F. Analysis of the Long Non-Coding and Messenger RNA Expression Profiles in the Skin Tissue of Super Merino and Small-Tailed Han Sheep. Curr. Issues Mol. Biol. 2024, 46, 9588-9606. https://doi.org/10.3390/cimb46090570
Fu J, Zhang X, Wang D, Liu W, Zhang C, Wang W, Fan W, Zhang L, Sun F. Analysis of the Long Non-Coding and Messenger RNA Expression Profiles in the Skin Tissue of Super Merino and Small-Tailed Han Sheep. Current Issues in Molecular Biology. 2024; 46(9):9588-9606. https://doi.org/10.3390/cimb46090570
Chicago/Turabian StyleFu, Jiaqi, Xinyu Zhang, Dan Wang, Wenqing Liu, Caihong Zhang, Wei Wang, Wei Fan, Lichun Zhang, and Fuliang Sun. 2024. "Analysis of the Long Non-Coding and Messenger RNA Expression Profiles in the Skin Tissue of Super Merino and Small-Tailed Han Sheep" Current Issues in Molecular Biology 46, no. 9: 9588-9606. https://doi.org/10.3390/cimb46090570
APA StyleFu, J., Zhang, X., Wang, D., Liu, W., Zhang, C., Wang, W., Fan, W., Zhang, L., & Sun, F. (2024). Analysis of the Long Non-Coding and Messenger RNA Expression Profiles in the Skin Tissue of Super Merino and Small-Tailed Han Sheep. Current Issues in Molecular Biology, 46(9), 9588-9606. https://doi.org/10.3390/cimb46090570