Effect of CYP1A2, CYP2D6, and CYP3A4 Variation on Antipsychotic Treatment Outcomes
Abstract
1. Introduction
- CYP enzyme activity will be negatively associated with the number of self-reported adverse drug reactions to antipsychotic medications (e.g., individuals with lower CYP activity will report more adverse reactions);
- Individuals with an extreme metaboliser status (poor or ultrarapid) will score lower on the quality of life scale than normal metabolisers;
- CYP enzyme activity will be positively associated with antipsychotic medication dose (e.g., those with higher CYP activity will be on higher doses).
2. Results
2.1. Sample Description
2.1.1. Pharmacogenetic Variation
2.1.2. Adverse Antipsychotic Drug Reactions
2.1.3. Quality of Life
2.1.4. Medication Use
2.2. Effect of Pharmacogenetic Variation
2.2.1. Effect of Pharmacogenetic Variation on Adverse Antipsychotic Drug Reactions
2.2.2. Effect of Pharmacogenetic Variation on Quality of Life
2.2.3. Effect of Pharmacogenetic Variation on Medication Dose
2.3. Sensitivity Analysis: Psychotic Disorder Diagnosis Only
2.3.1. Effect of Pharmacogenetic Variation on Adverse Antipsychotic Drug Reactions in Participants with a Diagnosis of Psychosis
2.3.2. Effect of Pharmacogenetic Variation on Quality of Life in Participants with a Diagnosis of Psychosis
2.3.3. Effect of Pharmacogenetic Variation on Medication Dose in Participants with a Diagnosis of Psychosis
3. Discussion
3.1. Presence of Non-Normal Function Variants
3.2. Effect on Adverse Antipsychotic Drug Reactions
3.3. Effect on Quality of Life
3.4. Effect on Medication Dose
3.5. Strengths
3.6. Limitations
3.7. Clinical Implications
3.8. Future Directions
4. Materials and Methods
4.1. Participants
4.2. Ethical Considerations
4.3. Treatment Outcomes
4.3.1. Adverse Antipsychotic Effects
4.3.2. Quality of Life
4.3.3. Medication Dose
4.4. Genotyping
4.4.1. DNA Extraction and Quality Verification
4.4.2. Sample Preparation and Pharmacogenetic Analysis
4.5. Pharmacogenetic Classification
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Adverse Effects—Liverpool University Neuroleptics Side Effects Rating Scale
- Medication Dose
Appendix B
- Extrapyramidal Effects
- Anticholinergic Effects
- Other Autonomic Effects
- Allergic Reactions
- Psychic Effects
- Hormonal Effects
- Miscellaneous Effects
Appendix C
References
- National Health Service (NHS). Overview—Psychosis. Available online: https://www.nhs.uk/mental-health/conditions/psychosis/overview/ (accessed on 2 May 2025).
- National Institute of Mental Health. Understanding Psychosis. Available online: https://www.nimh.nih.gov/health/publications/understanding-psychosis (accessed on 2 May 2025).
- National Institute for Health and Care Excellence (NICE). Psychosis and Schizophrenia. Available online: https://cks.nice.org.uk/topics/psychosis-schizophrenia/ (accessed on 2 May 2025).
- Adult Psychiatric Morbidity Survey (APMS). APMS 2014: Chapter 5—Psychotic Disorders. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/adult-psychiatric-morbidity-survey/adult-psychiatric-morbidity-survey-survey-of-mental-health-and-wellbeing-england-2014 (accessed on 2 May 2025).
- Adult Psychiatric Morbidity Survey (APMS). APMS 2014: Chapter 9—Bipolar Disorder. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/adult-psychiatric-morbidity-survey/adult-psychiatric-morbidity-survey-survey-of-mental-health-and-wellbeing-england-2014 (accessed on 2 May 2025).
- National Institute for Health and Care Excellence (NICE). Psychosis and Schizophrenia in Adults: Prevention and Management. Available online: https://www.nice.org.uk/guidance/cg178/resources/psychosis-and-schizophrenia-in-adults-prevention-and-management-pdf-35109758952133 (accessed on 2 May 2025).
- National Institute for Health and Care Excellence (NICE). Bipolar Disorder: Assessment and Management. Available online: https://www.nice.org.uk/guidance/cg185 (accessed on 2 May 2025).
- McCutcheon, R.A.; Pillinger, T.; Mizuno, Y.; Montgomery, A.; Pandian, H.; Vano, L.; Marques, T.R.; Howes, O.D. The efficacy and heterogeneity of antipsychotic response in schizophrenia: A meta-analysis. Mol. Psychiatry 2021, 26, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Samara, M.T.; Nikolakopoulou, A.; Salanti, G.; Leucht, S. How Many Patients With Schizophrenia Do Not Respond to Antipsychotic Drugs in the Short Term? An Analysis Based on Individual Patient Data From Randomized Controlled Trials. Schizophr. Bull. 2018, 45, 639–646. [Google Scholar] [CrossRef]
- Pardiñas, A.F.; Smart, S.E.; Willcocks, I.R.; Holmans, P.A.; Dennison, C.A.; Lynham, A.J.; Legge, S.E.; Baune, B.T.; Bigdeli, T.B.; Cairns, M.J.; et al. Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry 2022, 79, 260–269. [Google Scholar] [CrossRef]
- Jennings, B.; McDermott, J. Introduction to Pharmacogenomics. Available online: https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/introduction-to-pharmacogenomics/ (accessed on 2 May 2025).
- Arranz, M.J.; Salazar, J.; Hernández, M.H. Pharmacogenetics of antipsychotics: Clinical utility and implementation. Behav. Brain Res. 2021, 401, 113058. [Google Scholar] [CrossRef]
- Butler, M.G. Pharmacogenetics and Psychiatric Care: A Review and Commentary. J. Ment. Health Clin. Psychol. 2018, 2, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Ravyn, D.; Ravyn, V.; Lowney, R.; Nasrallah, H.A. CYP450 Pharmacogenetic treatment strategies for antipsychotics: A review of the evidence. Schizophr. Res. 2013, 149, 1–14. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Table of Pharmacogenetic Associations. Available online: https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations (accessed on 2 May 2025).
- Beunk, L.; Nijenhuis, M.; Soree, B.; de Boer-Veger, N.J.; Buunk, A.M.; Guchelaar, H.J.; Houwink, E.J.F.; Risselada, A.; Rongen, G.; van Schaik, R.H.N.; et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP3A4 and CYP1A2 and antipsychotics. Eur. J. Hum. Genet. 2024, 32, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Pharmacogenomics Knowledge Base (PharmGKB). About Us. Available online: https://www.pharmgkb.org/about (accessed on 2 May 2025).
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef]
- Gaedigk, A. Complexities of CYP2D6 gene analysis and interpretation. Int. Rev. Psychiatry 2013, 25, 534–553. [Google Scholar] [CrossRef]
- Saadullah Khani, N.; Hudson, G.; Mills, G.; Ramesh, S.; Varney, L.; Cotic, M.; Abidoph, R.; Richards-Belle, A.; Carrascal-Laso, L.; Franco-Martin, M.; et al. A systematic review of pharmacogenetic testing to guide antipsychotic treatment. Nat. Ment. Health 2024, 2, 616–626. [Google Scholar] [CrossRef]
- Jürgens, G.; Andersen, S.E.; Rasmussen, H.B.; Werge, T.; Jensen, H.D.; Kaas-Hansen, B.S.; Nordentoft, M. Effect of Routine Cytochrome P450 2D6 and 2C19 Genotyping on Antipsychotic Drug Persistence in Patients With Schizophrenia: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2027909. [Google Scholar] [CrossRef] [PubMed]
- Arranz, M.J.; Gonzalez-Rodriguez, A.; Perez-Blanco, J.; Penades, R.; Gutierrez, B.; Ibanez, L.; Arias, B.; Brunet, M.; Cervilla, J.; Salazar, J.; et al. A pharmacogenetic intervention for the improvement of the safety profile of antipsychotic treatments. Transl. Psychiatry 2019, 9, 177. [Google Scholar] [CrossRef]
- Arranz, M.J.; Salazar, J.; Bote, V.; Artigas-Baleri, A.; Serra, L.A.; Triviño, E.; Roige, J.; Lombardia, C.; Cancino, M.; Hernandez, M.; et al. Pharmacogenetic Interventions Improve the Clinical Outcome of Treatment-Resistant Autistic Spectrum Disorder Sufferers. Pharmaceutics 2022, 14, 999. [Google Scholar] [CrossRef]
- Kang, Z.; Qin, Y.; Sun, Y.; Lu, Z.; Sun, Y.; Chen, H.; Feng, X.; Zhang, Y.; Guo, H.; Yan, H.; et al. Multigenetic Pharmacogenomics–Guided Treatment vs Treatment As Usual Among Hospitalized Men With Schizophrenia: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2335518. [Google Scholar] [CrossRef] [PubMed]
- Carrascal-Laso, L.; Franco-Martín, M.; García-Berrocal, M.B.; Marcos-Vadillo, E.; Sánchez-Iglesias, S.; Lorenzo, C.; Sánchez-Martín, A.; Ramos-Gallego, I.; García-Salgado, M.J.; Isidoro-García, M. Application of a Pharmacogenetics-Based Precision Medicine Model (5SPM) to Psychotic Patients That Presented Poor Response to Neuroleptic Therapy. J. Pers. Med. 2020, 10, 289. [Google Scholar] [CrossRef]
- Walden, L.M.; Brandl, E.J.; Tiwari, A.K.; Cheema, S.; Freeman, N.; Braganza, N.; Kennedy, J.L.; Müller, D.J. Genetic testing for CYP2D6 and CYP2C19 suggests improved outcome for antidepressant and antipsychotic medication. Psychiatry Res. 2019, 279, 111–115. [Google Scholar] [CrossRef]
- Hernandez, M.; Cullell, N.; Cendros, M.; Serra-Llovich, A.; Arranz, M.J. Clinical Utility and Implementation of Pharmacogenomics for the Personalisation of Antipsychotic Treatments. Pharmaceutics 2024, 16, 244. [Google Scholar] [CrossRef]
- van Schaik, R.H. 6. Dose Adjustments Based on Pharmacogenetics of CYP450 Enzymes. EJIFCC 2008, 19, 42–47. [Google Scholar] [PubMed]
- Varney, L.; Abidoph, R.; Bramon, E.; Cotic, M.; Khani, N.S.; Murtough, S. Pharmacogenetics: Genetics and Environment in Mental Health Study (GEMS). Available online: https://osf.io/ukzp8 (accessed on 2 May 2025).
- Pharmacogene Variation Consortium (PharmVar). CYP1A2. Available online: https://www.pharmvar.org/gene/CYP1A2 (accessed on 2 May 2025).
- Pharmacogenetics Knowledgebase (PharmGKB). CYP1A2. Available online: https://www.pharmgkb.org/gene/PA27093/overview (accessed on 2 May 2025).
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, F.; Zou, X.Z.; Abbasi, A.; Deevi, S.V.V.; Atanur, S.S.; O’Neill, A.; Harrow, J.; Fabre, M.; Wang, Q.; et al. Genetic ancestral patterns in CYP2D6 alleles: Structural variants, rare variants, and clinical associations in 479,144 UK Biobank genomes. medRxiv 2024. [Google Scholar] [CrossRef]
- Pharmacogenomics Knowledgebase (PharmGKB). CYP2D6 Clinical Annotations. Available online: https://www.pharmgkb.org/gene/PA128/clinicalAnnotation (accessed on 2 May 2025).
- Pharmacogenomics Knowledgebase (PharmGKB). CYP3A4 Clinical Annotations. Available online: https://www.pharmgkb.org/gene/PA130/clinicalAnnotation (accessed on 2 May 2025).
- Day, J.C.; Wood, G.; Dewey, M.; Bentall, R.P. A self-rating scale for measuring neuroleptic side-effects. Validation in a group of schizophrenic patients. Br. J. Psychiatry 1995, 166, 650–653. [Google Scholar] [CrossRef] [PubMed]
- EuroQol Group. EuroQol—A new facility for the measurement of health-related quality of life. Health Policy 1990, 16, 199–208. [Google Scholar] [CrossRef]
- Devlin, N.J.; Shah, K.K.; Feng, Y.; Mulhern, B.; van Hout, B. Valuing health-related quality of life: An EQ-5D-5L value set for England. Health Econ. 2018, 27, 7–22. [Google Scholar] [CrossRef]
- Devlin, N.; Parkin, D.; Janssen, B. Analysis of EQ-5D Values. In Methods for Analysing and Reporting EQ-5D Data; Springer International Publishing: Cham, Switzerland, 2020; pp. 61–86. [Google Scholar]
- National Institute for Health and Care Excellence (NICE). British National Formulary (BNF). Available online: https://bnf.nice.org.uk/ (accessed on 2 May 2025).
- Taylor, C.; Crosby, I.; Yip, V.; Maguire, P.; Pirmohamed, M.; Turner, R.M. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes 2020, 11, 1295. [Google Scholar] [CrossRef]
- de Brabander, E.; Kleine Schaars, K.; van Amelsvoort, T.; Budde, M.; Heilbronner, U.; Young, A.H.; Juruena, M.; Vieta, E.; Fares-Otero, N.E.; Kas, M.J.; et al. Influence of CYP2C19 and CYP2D6 on side effects of aripiprazole and risperidone: A systematic review. J. Psychiatr. Res. 2024, 174, 137–152. [Google Scholar] [CrossRef]
- van Westrhenen, R.; Ingelman-Sundberg, M. Editorial: From Trial and Error to Individualised Pharmacogenomics-Based Pharmacotherapy in Psychiatry. Front. Pharmacol. 2021, 12, 725565. [Google Scholar] [CrossRef] [PubMed]
- Shnayder, N.A.; Abdyrakhmanova, A.K.; Nasyrova, R.F. Oxidation of Antipsychotics. Encyclopedia 2022, 2, 974–989. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Wang, Y.; Jin, W.; Zhang, Z.; Jin, L.; Qian, J.; Zheng, L. CYP3A4 and CYP3A5: The crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ 2024, 12, e18636. [Google Scholar] [CrossRef] [PubMed]
- Mas, S.; Gassó, P.; Torra, M.; Bioque, M.; Lobo, A.; González-Pinto, A.; Olmeda, M.S.; Corripio, I.; Vieta, E.; Castro-Fornieles, J.; et al. Intuitive pharmacogenetic dosing of risperidone according to CYP2D6 phenotype extrapolated from genotype in a cohort of first episode psychosis patients. Eur. Neuropsychopharmacol. 2017, 27, 647–656. [Google Scholar] [CrossRef]
- Jukic, M.M.; Smith, R.L.; Haslemo, T.; Molden, E.; Ingelman-Sundberg, M. Effect of CYP2D6 genotype on exposure and efficacy of risperidone and aripiprazole: A retrospective, cohort study. Lancet Psychiatry 2019, 6, 418–426. [Google Scholar] [CrossRef]
- Mas, S.; Gassò, P.; Álvarez, S.; Parellada, E.; Bernardo, M.; Lafuente, A. Intuitive pharmacogenetics: Spontaneous risperidone dosage is related to CYP2D6, CYP3A5 and ABCB1 genotypes. Pharmacogenomics J. 2012, 12, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Powell, N.R.; Liang, T.; Ipe, J.; Cao, S.; Skaar, T.C.; Desta, Z.; Qian, H.-R.; Ebert, P.J.; Chen, Y.; Thomas, M.K.; et al. Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease. Nat. Commun. 2023, 14, 1474. [Google Scholar] [CrossRef]
- Klomp, S.D.; Manson, M.L.; Guchelaar, H.J.; Swen, J.J. Phenoconversion of Cytochrome P450 Metabolism: A Systematic Review. J. Clin. Med. 2020, 9, 2890. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, A.; Braha, A.; Jeleriu, R.; Andreescu, N.I.; Puiu, M.; Ageu, L.; Folescu, R.; Zamfir, C.L.; Nussbaum, L.A. The Implications of Cytochrome P450 2D6/CYP2D6 Polymorphism in the Therapeutic Response of Atypical Antipsychotics in Adolescents with Psychosis—A Prospective Study. Biomedicines 2024, 12, 494. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62. [Google Scholar] [CrossRef]
- Schoretsanitis, G.; Kane, J.M.; Correll, C.U.; Marder, S.R.; Citrome, L.; Newcomer, J.W.; Robinson, D.G.; Goff, D.C.; Kelly, D.L.; Freudenreich, O.; et al. Blood Levels to Optimize Antipsychotic Treatment in Clinical Practice: A Joint Consensus Statement of the American Society of Clinical Psychopharmacology and the Therapeutic Drug Monitoring Task Force of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie. J. Clin. Psychiatry 2020, 81, 19cs13169. [Google Scholar] [CrossRef]
- Lu, J.; Yang, Y.; Lu, J.; Wang, Z.; He, Y.; Yan, Y.; Fu, K.; Jiang, W.; Xu, Y.; Wu, R.; et al. Effect of CYP2D6 polymorphisms on plasma concentration and therapeutic effect of risperidone. BMC Psychiatry 2021, 21, 70. [Google Scholar] [CrossRef]
- Bertol, E.; Vaiano, F.; Argo, A.; Zerbo, S.; Trignano, C.; Protani, S.; Favretto, D. Overdose of Quetiapine—A Case Report with QT Prolongation. Toxics 2021, 9, 339. [Google Scholar] [CrossRef]
- Office for National Statistics. Population of England and Wales. Available online: https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-ethnicity/national-and-regional-populations/population-of-england-and-wales/latest/ (accessed on 30 May 2025).
- Clinical Pharmacogenetics Implementation Consortium (CPIC). Prioritization of CPIC Guidelines. Available online: https://cpicpgx.org/prioritization-of-cpic-guidelines/ (accessed on 2 May 2025).
- Correll, C.U.; Solmi, M.; Cortese, S.; Fava, M.; Højlund, M.; Kraemer, H.C.; McIntyre, R.S.; Pine, D.S.; Schneider, L.S.; Kane, J.M. The future of psychopharmacology: A critical appraisal of ongoing phase 2/3 trials, and of some current trends aiming to de-risk trial programmes of novel agents. World Psychiatry 2023, 22, 48–74. [Google Scholar] [CrossRef]
- Yatham, L.N. All levels of the translational spectrum must be targeted to advance psychopharmacology and improve patient outcomes. World Psychiatry 2023, 22, 75–76. [Google Scholar] [CrossRef]
- Howes, O.D.; Baxter, L. The drug treatment deadlock in psychiatry and the route forward. World Psychiatry 2023, 22, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.C.; Stanton, J.D.; Bharthi, K.; Maruf, A.A.; Müller, D.J.; Bousman, C.A. Pharmacogenomic Testing and Depressive Symptom Remission: A Systematic Review and Meta-Analysis of Prospective, Controlled Clinical Trials. Clin. Pharmacol. Ther. 2022, 112, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
- Devlin, N.; Parkin, D.; Janssen, B. An Introduction to EQ-5D Instruments and Their Applications. In Methods for Analysing and Reporting EQ-5D Data; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–22. [Google Scholar]
- Shah, R.R.; Smith, R.L. Addressing phenoconversion: The Achilles’ heel of personalized medicine. Br. J. Clin. Pharmacol. 2015, 79, 222–240. [Google Scholar] [CrossRef] [PubMed]
- Scherf-Clavel, M.; Frantz, A.; Eckert, A.; Weber, H.; Unterecker, S.; Deckert, J.; Reif, A.; Hahn, M. Effect of CYP2D6 pharmacogenetic phenotype and phenoconversion on serum concentrations of antidepressants and antipsychotics: A retrospective cohort study. Int. J. Clin. Pharm. 2023, 45, 1107–1117. [Google Scholar] [CrossRef]
- Gaedigk, A.; Simon, S.D.; Pearce, R.E.; Bradford, L.D.; Kennedy, M.J.; Leeder, J.S. The CYP2D6 activity score: Translating genotype information into a qualitative measure of phenotype. Clin. Pharmacol. Ther. 2008, 83, 234–242. [Google Scholar] [CrossRef]
- Pharmacogenomics Knowledgebase (PharmGKB). Annotation of CPIC Guideline for Codeine and CYP2D6. Available online: https://www.pharmgkb.org/guidelineAnnotation/PA166104996 (accessed on 2 May 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 2 May 2025).
All Participants (N = 453) | ||
Age, mean years (SD) | 43.5 (14.5) | |
Age range, years | 18–82 | |
Sex, n (%) | ||
Male | 245 (54.1%) | |
Female | 208 (45.9%) | |
Ethnicity, n (%) | ||
Asian or Asian British | 67 (14.8%) | |
Black, Black British, Caribbean, or African | 44 (9.7%) | |
White | 302 (66.7%) | |
Mixed or multiple ethnic groups | 21 (4.6%) | |
Other ethnic group | 19 (4.2%) | |
Primary diagnosis, n (%) | ||
Schizophrenia | 164 (36.2%) | |
Bipolar disorder | 110 (24.3%) | |
Other psychotic disorder | 126 (27.8%) | |
Other psychiatric disorder | 53 (11.7%) | |
Duration of illness 1, mean years (SD) | 11.6 (11.1) | |
Duration of illness range, years | 0–50 | |
Location recruited, n (%) | ||
Community | 277 (61.1%) | |
Inpatient | 145 (32.0%) | |
Missing | 31 (6.8%) | |
Antipsychotic(s) taken 2, n (%) | ||
Aripiprazole | 128 (28.3%) | |
Olanzapine | 89 (19.6%) | |
Quetiapine | 82 (18.1%) | |
Clozapine | 73 (16.1%) | |
Risperidone | 37 (8.2%) | |
Zuclopenthixol | 31 (6.8%) | |
Amisulpride | 23 (5.2%) | |
Paliperidone | 20 (4.4%) | |
Lurasidone | 19 (4.2%) | |
Flupentixol | 17 (3.8%) | |
Haloperidol | 12 (2.6%) | |
Cariprazine | 2 (0.4%) | |
Taking antidepressant(s) 3, n (%) | 190 (42.0%) | |
Taking mood stabiliser(s) 3, n (%) | 132 (29.1%) |
Enzyme/Gene | Metaboliser Status/Diplotype | n (%) |
---|---|---|
CYP2D6 | Poor Metaboliser | 26 (5.7%) |
Intermediate Metaboliser | 198 (43.7%) | |
Normal Metaboliser | 218 (48.1%) | |
Ultrarapid Metaboliser | 11 (2.4%) | |
CYP1A2 | *1/*1 | 47 (10.4%) |
*1/*30 | 183 (40.4%) | |
*30/*30 | 223 (49.2%) | |
CYP3A4 | Poor Metaboliser | 1 (0.2%) |
Intermediate Metaboliser | 38 (8.4%) | |
Normal Metaboliser | 414 (91.4%) |
Gene | n (%) |
---|---|
CYP2D6 only | 246 (54.3%) |
CYP3A4 only | 19 (4.2%) |
Both CYP2D6 and CYP3A4 | 20 (4.4%) |
Neither | 168 (37.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varney, L.; Murtough, S.; Cotic, M.; Abidoph, R.; Chan, L.; Saadullah Khani, N.; Richards-Belle, A.; Richards-Brown, M.; Mills, D.; Panconesi, D.; et al. Effect of CYP1A2, CYP2D6, and CYP3A4 Variation on Antipsychotic Treatment Outcomes. Pharmaceuticals 2025, 18, 892. https://doi.org/10.3390/ph18060892
Varney L, Murtough S, Cotic M, Abidoph R, Chan L, Saadullah Khani N, Richards-Belle A, Richards-Brown M, Mills D, Panconesi D, et al. Effect of CYP1A2, CYP2D6, and CYP3A4 Variation on Antipsychotic Treatment Outcomes. Pharmaceuticals. 2025; 18(6):892. https://doi.org/10.3390/ph18060892
Chicago/Turabian StyleVarney, Lauren, Stephen Murtough, Marius Cotic, Rosemary Abidoph, Lian Chan, Noushin Saadullah Khani, Alvin Richards-Belle, Maria Richards-Brown, Daisy Mills, Daniele Panconesi, and et al. 2025. "Effect of CYP1A2, CYP2D6, and CYP3A4 Variation on Antipsychotic Treatment Outcomes" Pharmaceuticals 18, no. 6: 892. https://doi.org/10.3390/ph18060892
APA StyleVarney, L., Murtough, S., Cotic, M., Abidoph, R., Chan, L., Saadullah Khani, N., Richards-Belle, A., Richards-Brown, M., Mills, D., Panconesi, D., Dawda, Y., Sharma, P., Shah, C., Secchi, A., Nilforooshan, R., Mudholkar, S., Murdoch, R., Molai, J., Griffiths, R., ... Bramon, E. (2025). Effect of CYP1A2, CYP2D6, and CYP3A4 Variation on Antipsychotic Treatment Outcomes. Pharmaceuticals, 18(6), 892. https://doi.org/10.3390/ph18060892