Effects of Mobile Electromagnetic Exposure on Brain Oscillations and Cortical Excitability: Scoping Review
Abstract
:1. Introduction
- To map existing literature and evaluate the effect of mobile EM exposure on changes in EEG band power amplitudes in eyes opened or eye closed conditions.
- To map existing TMS literature and evaluate the effects of mobile EM exposure on changes in CSE and the underlying mechanisms, such as SICI, LICI, and ICF.
- To identify literature gaps and propose suggestions for future studies.
2. Materials and Methods
2.1. Methodological Approach
2.2. Extraction of Data
3. Results
3.1. Effects of Mobile EM Exposure on Brain Oscillations
3.2. Effects of Mobile EM Exposure on Cortical Excitability
4. Discussion
5. Limitations
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Korala, H.; Georgakopoulos, D.; Yavari, A.; Jayaraman, P.P. A time-sensitive IoT data analysis framework. In Proceedings of the Hawaii International Conference on System Sciences, Kauai, HI, USA, 5 January 2021; IEEE, Institute of Electrical and Electronics Engineers: New York, NY, USA, 2021; pp. 7185–7194. [Google Scholar]
- Yavari, A. Internet of Things Data Contextualisation for Scalable Information Processing, Security, and Privacy; College of Science, Engineering and Health; RMIT: Melbourne, VIC, Australia, 2019. [Google Scholar]
- Foroughimehr, N.; Wood, A.; McKenzie, R.; Karipidis, K.; Yavari, A. Design and Implementation of a Specialised Millimetre-Wave Exposure System for Investigating the Radiation Effects of 5G and Future Technologies. Sensors 2024, 24, 1516. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Kumar, A. What can we Learn from the Electromagnetic Spectrum? Resonance 2003, 8, 8–25. [Google Scholar] [CrossRef]
- Browne, M. Schaum’s Outline of Physics for Engineering and Science; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- Omer, H. Radiobiological effects and medical applications of non-ionizing radiation. Saudi J. Biol. Sci. 2021, 28, 5585–5592. [Google Scholar] [CrossRef]
- Hitchcock, R. Radio-Frequency and Microwave Radiation; AIHA: Falls Church, VA, USA, 2004. [Google Scholar]
- García-Larrea, L.; Perchet, C.; Perrin, F.; Amenedo, E. Interference of cellular phone conversations with visuomotor tasks: An ERP study. J. Psychophysiol. 2001, 15, 14. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, X.; Mao, C.; Liu, T.; Li, X.; Zhu, W.; Wang, C.; Sun, Y. Effects of Mobile Phone Use on Gait and Balance Control in Young Adults: A Hip–Ankle Strategy. Bioengineering 2023, 10, 665. [Google Scholar] [CrossRef]
- Mortazavi, S.; Rouintan, M.; Taeb, S.; Dehghan, N.; Ghaffarpanah, A.; Sadeghi, Z.; Ghafouri, F. Human short-term exposure to electromagnetic fields emitted by mobile phones decreases computer-assisted visual reaction time. Acta Neurol. Belg. 2012, 112, 171–175. [Google Scholar] [CrossRef]
- Haque, M.M.; Washington, S. Effects of mobile phone distraction on drivers’ reaction times. J. Australas. Coll. Road Saf. 2013, 24, 20–29. [Google Scholar]
- Chia, S.E.; Chia, H.P.; Tan, J.S. Prevalence of headache among handheld cellular telephone users in Singapore: A community study. Environ. Health Perspect. 2000, 108, 1059–1062. [Google Scholar] [CrossRef]
- Sandström, M.; Wilen, J.; Hansson Mild, K.; Oftedal, G. Mobile phone use and subjective symptoms. Comparison of symptoms experienced by users of analogue and digital mobile phones. Occup. Med. 2001, 51, 25–35. [Google Scholar] [CrossRef]
- Cinel, C.; Russo, R.; Boldini, A.; Fox, E. Exposure to mobile phone electromagnetic fields and subjective symptoms: A double-blind study. Psychosom. Med. 2008, 70, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Mat, D.A.A.; Kho, F.; Joseph, A.; Kipli, K.; Sahrani, S.; Lias, K.; Marzuki, A.S.W. Electromagnetic radiation from mobile phone near ear-skull region. In Proceedings of the IEEE International Conference on Computer and Communication Engineering (ICCCE’10), Kuala Lumpur, Malaysia, 11–12 May 2010; pp. 1–5. [Google Scholar]
- Szyjkowska, A.; Gadzicka, E.; Szymczak, W.; Bortkiewicz, A. The risk of subjective symptoms in mobile phone users in Poland–an epidemiological study. Int. J. Occup. Med. Environ. Health 2014, 27, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Croft, R.; Chandler, J.; Burgess, A.; Barry, R.; Williams, J.; Clarke, A. Acute mobile phone operation affects neural function in humans. Clin. Neurophysiol. 2002, 113, 1623–1632. [Google Scholar] [CrossRef]
- Ghosn, R.; Yahia-Cherif, L.; Hugueville, L.; Ducorps, A.; Lemarechal, J.D.; Thuróczy, G.; de Seze, R.; Selmaoui, B. Radiofrequency signal affects alpha band in resting electroencephalogram. J. Neurophysiol. 2015, 113, 2753–2759. [Google Scholar] [CrossRef]
- Ferreri, F.; Curcio, G.; Pasqualetti, P.; De Gennaro, L.; Fini, R.; Rossini, P. Mobile phone emissions and human brain excitability. Ann. Neurol. 2006, 60, 188–196. [Google Scholar] [CrossRef]
- Inomata-Terada, S.; Okabe, S.; Arai, N.; Hanajima, R.; Terao, Y.; Frubayashi, T.; Ugawa, Y. Effects of high frequency electromagnetic field (EMF) emitted by mobile phones on the human motor cortex. Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc. 2007, 28, 553–561. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372. [Google Scholar]
- Croft, R.; Hamblin, D.; Spong, J.; Wood, A.; McKenzie, R.; Stough, C. The effect of mobile phone electromagnetic fields on the alpha rhythm of human electroencephalogram. Bioelectromagnetics 2008, 29, 1–10. [Google Scholar] [CrossRef]
- Vecsei, Z.; Knakker, B.; Juhász, P.; Thuróczy, G.; Trunk, A.; Hernádi, I. Short-term radiofrequency exposure from new generation mobile phones reduces EEG alpha power with no effects on cognitive performance. Sci. Rep. 2018, 8, 18010. [Google Scholar] [CrossRef] [PubMed]
- Kramarenko, A.; Tan, U. Effects of high-frequency electromagnetic fields on human EEG: A brain mapping study. Int. J. Neurosci. 2003, 113, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Loughran, S.P.; Verrender, A.; Dalecki, A.; Burdon, C.A.; Tagami, K.; Park, J.; Taylor, N.A.; Croft, R.J. Radiofrequency electromagnetic field exposure and the resting EEG: Exploring the thermal mechanism hypothesis. Int. J. Environ. Res. Public Health 2019, 16, 1505. [Google Scholar] [CrossRef] [PubMed]
- Krause, C.; Pesonen, M.; Haarala Björnberg, C.; Hämäläinen, H. Effects of pulsed and continuous wave 902 MHz mobile phone exposure on brain oscillatory activity during cognitive processing. Bioelectromagnetics 2007, 28, 296–308. [Google Scholar] [CrossRef]
- Hung, C.S.; Anderson, C.; Horne, J.; McEvoy, P. Mobile phone ‘talk-mode’signal delays EEG-determined sleep onset. Neurosci. Lett. 2007, 421, 82–86. [Google Scholar] [CrossRef]
- Javanrouh Givi, R.; Aminian Modarres, A.; Kafaee Razavi, M. Investigating The Effects of Modem Electromagnetic Waves (2.4 GHz) on Electroencephalogram. Int. J. Eng. 2019, 32, 1155–1162. [Google Scholar]
- Perentos, N.; Croft, R.J.; McKenzie, R.J.; Cvetkovic, D.; Cosic, I. The effect of GSM-like ELF radiation on the alpha band of the human resting EEG. In Proceedings of the 2008 30th IEEE Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–24 August 2008; pp. 5680–5683. [Google Scholar]
- Perentos, N.; Croft, R.J.; McKenzie, R.J.; Cosic, I. The alpha band of the resting electroencephalogram under pulsed and continuous radio frequency exposures. IEEE Trans. Biomed. Eng. 2013, 60, 1702–1710. [Google Scholar] [CrossRef]
- Croft, R.; Leung, S.; McKenzie, R.; Loughran, S.; Iskra, S.; Hamblin, D.; Cooper, N. Effects of 2G and 3G mobile phones on human alpha rhythms: Resting EEG in adolescents, young adults, and the elderly. Bioelectromagnetics 2010, 31, 434–444. [Google Scholar] [CrossRef]
- Regel, S.J.; Gottselig, J.M.; Schuderer, J.; Tinguely, G.; Rétey, J.V.; Kuster, N.; Landolt, H.P.; Achermann, P. Pulsed radio frequency radiation affects cognitive performance and the waking electroencephalogram. Neuroreport 2007, 18, 803–807. [Google Scholar] [CrossRef]
- Loughran, S.; Benz, D.; Schmid, M.; Murbach, M.; Kuster, N.; Achermann, P. No increased sensitivity in brain activity of adolescents exposed to mobile phone-like emissions. Clin. Neurophysiol. 2013, 124, 1303–1308. [Google Scholar] [CrossRef]
- Wallace, J.; Yahia-Cherif, L.; Gitton, C.; Hugueville, L.; Lemaréchal, J.D.; Selmaoui, B. Human resting-state EEG and radiofrequency GSM mobile phone exposure: The impact of the individual alpha frequency. Int. J. Radiat. Biol. 2022, 98, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Nouri, E. Analyzing the Effects of Cell Phone on the Brain Using EEG; UniversitiTeknologi PETRONAS: Bandar, Seri Iskandar, 2013. [Google Scholar]
- Wallace, J.; Shang, W.; Gitton, C.; Hugueville, L.; Yahia-Cherif, L.; Selmaoui, B. Theta band brainwaves in human resting EEG modulated by mobile phone radiofrequency. Int. J. Radiat. Biol. 2023, 99, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Jamal, L.; Yahia-Cherif, L.; Hugueville, L.; Mazet, P.; Lévêque, P.; Selmaoui, B. Assessment of electrical brain activity of healthy volunteers exposed to 3.5 GHz of 5G signals within environmental levels: A controlled–randomised study. Int. J. Environ. Res. Public Health 2023, 20, 6793. [Google Scholar] [CrossRef]
- Dalecki, A.; Verrender, A.; Loughran, S.; Croft, R. The effect of GSM electromagnetic field exposure on the waking electroencephalogram: Methodological influences. Bioelectromagnetics 2021, 42, 317–328. [Google Scholar] [CrossRef]
- Bachmann, M.; Lass, J.; Kalda, J.; Sakki, M.; Tomson, R.; Tuulik, V.; Hinrikus, H. Integration of differences in EEG analysis reveals changes in human EEG caused by microwave. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 1597–1600. [Google Scholar]
- Tuulik, V.; Lass, J.; Bachmann, M. Stress Stages and Changes on EEG by low-level Physical (EMF) and Chemical Stressors. In Proceedings of the 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics: NBC 2008, Riga, Latvia, 16–20 June 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 335–338. [Google Scholar]
- Cvetkovic, D.; Cosic, I. Automated ELF magnetic field stimulation of the human EEG activity. Integr. Comput.-Aided Eng. 2006, 13, 313–328. [Google Scholar] [CrossRef]
- Wagner, P.; Röschke, J.; Mann, K.; Fell, J.; Hiller, W.; Frank, C.; Grözinger, M. Human sleep EEG under the influence of pulsed radio frequency electromagnetic fields: Results from polysomnographies using submaximal high power flux densities. Neuropsychobiology 2000, 42, 207–212. [Google Scholar] [CrossRef]
- Eulitz, C.; Ullsperger, P.; Freude, G.; Elbert, T. Mobile phones modulate response patterns of human brain activity. Neuroreport 1998, 9, 3229–3232. [Google Scholar] [CrossRef]
- Roggeveen, S.; van Os, J.; Viechtbauer, W.; Lousberg, R. EEG changes due to experimentally induced 3G mobile phone radiation. PLoS ONE 2015, 10, e0129496. [Google Scholar] [CrossRef]
- Bhangari, D.; Bhagali, A.; Kshirsagar, R. Effect of mobile phone radiation on EEG wave. Int. J. Innov. Technolgy Explor. Eng. 2019, 8, 121–125. [Google Scholar]
- Fuad, N.; Rahim, A.; Marwan, M.; Abd Wahab, M.; Idrus, S. The Analysis of EEG Distribution for Human Brainwave due to Mobile Phone Usage. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 917, p. 012046. [Google Scholar]
- Stefanics, G.; Thuróczy, G.; Kellényi, L.; Hernádi, I. Effects of twenty-minute 3G mobile phone irradiation on event related potential components and early gamma synchronization in auditory oddball paradigm. Neuroscience 2008, 157, 453–462. [Google Scholar] [CrossRef]
- Smitha, C.; Narayanan, N. Effect of mobile phone radiation on brain using EEG analysis by Higuichi’s fractal dimension method. In Proceedings of the International Conference on Communication and Electronics System Design, Jaipur, India, 28–30 January 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8760, pp. 318–325. [Google Scholar]
- Lowden, A.; Åkerstedt, T.; Ingre, M.; Wiholm, C.; Hillert, L.; Kuster, N.; Nilsson, J.P.; Arnetz, B. Sleep after mobile phone exposure in subjects with mobile phone-related symptoms. Bioelectromagnetics 2011, 32, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, R.; Shakti Singh, S.; Rana, S.; Jakhar, D.; Kaur, K.; Poddar, A.; Tripathi, M. Effect of Mobile Phone Emissions on HD-EEG Signals and Preventive Measures. Preprint 2021. [Google Scholar] [CrossRef]
- Zentai, N.; Csathó, Á.; Trunk, A.; Fiocchi, S.; Parazzini, M.; Ravazzani, P.; Thuróczy, G.; Hernádi, I. No effects of acute exposure to Wi-Fi electromagnetic fields on spontaneous EEG activity and psychomotor vigilance in healthy human volunteers. Radiat. Res. 2015, 184, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Trunk, A.; Stefanics, G.; Zentai, N.; Kovács-Bálint, Z.; Thuróczy, G.; Hernádi, I. No effects of a single 3G UMTS mobile phone exposure on spontaneous EEG activity, ERP correlates, and automatic deviance detection. Bioelectromagnetics 2013, 34, 31–42. [Google Scholar] [CrossRef]
- Curcio, G.; Ferrara, M.; Moroni, F.; D’inzeo, G.; Bertini, M.; De Gennaro, L. Is the brain influenced by a phone call?: An EEG study of resting wakefulness. Neurosci. Res. 2005, 53, 265–270. [Google Scholar] [CrossRef]
- Danker-Hopfe, H.; Dorn, H.; Bornkessel, C.; Sauter, C. Do mobile phone base stations affect sleep of residents? Results from an experimental double-blind sham-controlled field study. Am. J. Hum. Biol. 2010, 22, 613–618. [Google Scholar] [CrossRef]
- Danker-Hopfe, H.; Bueno-Lopez, A.; Dorn, H.; Schmid, G.; Hirtl, R.; Eggert, T. Spending the night next to a router–Results from the first human experimental study investigating the impact of Wi-Fi exposure on sleep. Int. J. Hyg. Environ. Health 2020, 228, 113550. [Google Scholar] [CrossRef]
- Hietanen, M.; Kovala, T.; Hämäläinen, A.M. Human brain activity during exposure to radiofrequency fields emitted by cellular phones. Scand. J. Work Environ. Health 2000, 26, 87–92. [Google Scholar] [CrossRef]
- Hinrikus, H.; Bachmann, M.; Tomson, R.; Lass, J. Non-thermal effect of microwave radiation on human brain. Environmentalist 2005, 25, 187–194. [Google Scholar] [CrossRef]
- Hinrikus, H.; Bachmann, M.; Lass, J.; Tuulik, V. Effect of modulated at different low frequencies microwave radiation on human EEG. Environmentalist 2009, 29, 215–219. [Google Scholar] [CrossRef]
- Röschke, J.; Mann, K. No short-term effects of digital mobile radio telephone on the awake human electroencephalogram. Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc. 1997, 18, 172–176. [Google Scholar] [CrossRef]
- Bachmann, M.; Lass, J.; Ioannides, A.; Hinrikus, H. Brain stimulation by modulated microwave radiation: A feasibility study. In Proceedings of the 2018 IEEE EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med), Split, Croatia, 10–13 September 2018; pp. 1–2. [Google Scholar]
- Suhhova, A.; Bachmann, M.; Karai, D.; Lass, J.; Hinrikus, H. Effect of microwave radiation on human EEG at two different levels of exposure. Bioelectromagnetics 2013, 34, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Suhhova, A.; Bachmann, M.; Lass, J.; Karai, D.; Hinrikus, H. Effect of modulated microwave radiation on human EEG asymmetry. Environmentalist 2009, 29, 210–214. [Google Scholar] [CrossRef]
- Lin, J. Cellular telephone radiation and electroencephalograms (EEG) of the human brain. IEEE Antennas Propag. Mag. 2003, 45, 150–153. [Google Scholar] [CrossRef]
- Murat, Z.H.; Kadir, R.; Isa, R.M.; Jahidin, A.H.; Taib, M.N.; Sulaiman, N. Observation of human brainwave signals due to mobile phone usage. Int. J. Simul. Syst. Sci. Technol. 2011, 12, 22–28. [Google Scholar]
- Lv, B.; Su, C.; Yang, L.; Xie, Y.; Wu, T. Whole brain EEG synchronization likelihood modulated by long term evolution electromagnetic fields exposure. In Proceedings of the 2014 IEEE 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 986–989. [Google Scholar]
- Lv, B.; Chen, Z.; Wu, T.; Shao, Q.; Yan, D.; Ma, L.; Lu, K.; Xie, Y. The alteration of spontaneous low frequency oscillations caused by acute electromagnetic fields exposure. Clin. Neurophysiol. 2014, 125, 277–286. [Google Scholar] [CrossRef]
- Bachmann, M.; Tomson, R.; Kalda, J.; Säkki, M.; Lass, J.; Tuulik, V.; Hinrikus, H. Individual changes in human EEG caused by 450 MHz microwave modulated at 40 and 70 Hz. Environmentalist 2007, 27, 511–517. [Google Scholar] [CrossRef]
- Nakatani-Enomoto, S.; Yamazaki, M.; Nishiura, K.; Enomoto, H.; Ugawa, Y. Effects of electromagnetic fields from long-term evolution on awake electroencephalogram in healthy humans. Neurosci. Res. 2020, 156, 102–107. [Google Scholar] [CrossRef]
- Bachmann, M.; Hinrikus, H.; Aadamsoo, K.; Võhma, Ü.; Lass, J.; Rubljova, J.; Suhhova, A.; Tuulik, V. Modulated microwave effects on individuals with depressive disorder. Environmentalist 2007, 27, 505–510. [Google Scholar] [CrossRef]
- Hinrikus, H.; Bachmann, M.; Karai, D.; Lass, J. Mechanism of low-level microwave radiation effect on nervous system. Electromagn. Biol. Med. 2017, 36, 202–212. [Google Scholar] [CrossRef]
- Eggert, T.; Dorn, H.; Sauter, C.; Marasanov, A.; Hansen, M.L.; Peter, A.; Schmid, G.; Bolz, T.; Danker-Hopfe, H. Terrestrial Trunked Radio (TETRA) exposure and its impact on slow cortical potentials. Environ. Res. 2015, 143, 112–122. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, H.; Trueman, G.; Tang, L.; Abdel-Rahman, U.; Abdel-Rahman, W.; Ong, K.; Cosic, I. Human brain wave activity during exposure to radiofrequency field emissions from mobile phones. Australas. Phys. Eng. Sci. Med. 2003, 26, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Mehra, R. Mobile Phone Handset Radiation Impact Study on Brainwave Signal Using EEG. Int. J. Sci. Res. Dev. 2015, 3, 295–298. [Google Scholar]
- Vecchio, F.; Babiloni, C.; Ferreri, F.; Curcio, G.; Fini, R.; Del Percio, C.; Rossini, P.M. Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms. Eur. J. Neurosci. 2007, 25, 1908–1913. [Google Scholar] [CrossRef]
- Vecchio, F.; Babiloni, C.; Ferreri, F.; Buffo, P.; Cibelli, G.; Curcio, G.; Van Dijkman, S.; Melgari, J.M.; Giambattistelli, F.; Rossini, P.M. Mobile phone emission modulates inter-hemispheric functional coupling of EEG alpha rhythms in elderly compared to young subjects. Clin. Neurophysiol. 2010, 121, 163–171. [Google Scholar] [CrossRef]
- Fritzer, G.; Göder, R.; Friege, L.; Wachter, J.; Hansen, V.; Hinze-Selch, D.; Aldenhoff, J. Effects of short-and long-term pulsed radiofrequency electromagnetic fields on night sleep and cognitive functions in healthy subjects. Bioelectromagnetics 2007, 28, 316–325. [Google Scholar] [CrossRef]
- Isa, R.; Pasya, I.; Taib, M. High frequency brainwaves comparison due to mobile phone radiofrequency emission. In Proceedings of the 2012 IEEE Third International Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, 8–10 February 2012; pp. 191–196. [Google Scholar]
- Hinrikus, H.; Bachmann, M.; Lass, J.; Karai, D.; Tuulik, V. Effect of low frequency modulated microwave exposure on human EEG: Individual sensitivity. Bioelectromagnetics 2008, 29, 527–538. [Google Scholar] [CrossRef]
- Hinrikus, H.; Bachmann, M.; Lass, J. Parametric mechanism of excitation of the electroencephalographic rhythms by modulated microwave radiation. Int. J. Radiat. Biol. 2011, 87, 1077–1085. [Google Scholar] [CrossRef]
- Lebet, J.; Barbault, A.; Rossel, C.; Tomic, Z.; Reite, M.; Higgs, L.; Dafni, U.; Amato, D.; Pasche, B. Electroencephalographic changes following low energy emission therapy. Ann. Biomed. Eng. 1996, 24, 424–429. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Q.; Lv, B.; Wu, T. Long-term evolution electromagnetic fields exposure modulates the resting state EEG on alpha and beta bands. Clin. EEG Neurosci. 2017, 48, 168–175. [Google Scholar] [CrossRef]
- Pattnaik, S.; Dhaliwal, B.S.; Pattnaik, S. Impact analysis of mobile phone electromagnetic radiations on human electroencephalogram. Sādhanā 2019, 44, 1–12. [Google Scholar] [CrossRef]
- Huber, R.; Treyer, V.; Borbely, A.; Schuderer, J.; Gottselig, J.; Landolt, H.; Werth, E.; Berthold, T.; Kuster, N.; Buck, A. Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG. J. Sleep Res. 2002, 11, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Graf, T.; Cote, K.; Wittmann, L.; Gallmann, E.; Matter, D.; Schuderer, J.; Kuster, N.; Borbély, A.; Achermann, P. Exposure to pulsed high-frequency electromagnetic field during waking affects human sleep EEG. Neuroreport 2000, 11, 3321–3325. [Google Scholar] [CrossRef] [PubMed]
- Reiser, H.; Dimpfel, W.; Schober, F. The influence of electromagnetic fields on human brain activity. Eur. J. Med. Res. 1995, 1, 27–32. [Google Scholar]
- Lustenberger, C.; Murbach, M.; Dürr, R.; Schmid, M.R.; Kuster, N.; Achermann, P.; Huber, R. Stimulation of the brain with radiofrequency electromagnetic field pulses affects sleep-dependent performance improvement. Brain Stimul. 2013, 6, 805–811. [Google Scholar] [CrossRef]
- Loughran, S.; McKenzie, R.; Jackson, M.; Howard, M.; Croft, R. Individual differences in the effects of mobile phone exposure on human sleep: Rethinking the problem. Bioelectromagnetics 2012, 33, 86–93. [Google Scholar] [CrossRef]
- Schmid, M.R.; Murbach, M.; Lustenberger, C.; Maire, M.; Kuster, N.; Achermann, P.; Loughran, S.P. Sleep EEG alterations: Effects of pulsed magnetic fields versus pulse-modulated radio frequency electromagnetic fields. J. Sleep Res. 2012, 21, 620–629. [Google Scholar] [CrossRef]
- He, Y.; Leung, S.; Diao, Y.; Sun, W.; Siu, Y.; Sinha, P.; Chan, K. Impacts of radio frequency interference on human brain waves and neuro-psychological changes. In Proceedings of the 2015 IEEE International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 28–30 November 2015; pp. 257–261. [Google Scholar]
- Bueno-Lopez, A.; Eggert, T.; Dorn, H.; Schmid, G.; Hirtl, R.; Danker-Hopfe, H. Effects of 2.45 GHz Wi-Fi exposure on sleep-dependent memory consolidation. J. Sleep Res. 2021, 30, e13224. [Google Scholar] [CrossRef]
- Kleinlogel, H.; Dierks, T.; König, T.; Lehmann, H.; Minder, A.; Berz, R. Effects of weak mobile Phone—Electromagnetic fields (GSM, UMTS) on well-being and resting EEG. Bioelectromagnetics 2008, 29, 479–487. [Google Scholar] [CrossRef]
- Wood, A.; Loughran, S.; Croft, R.; Stough, C.; Thompson, B. DO mobile phones affect sleep? In Investigating Effects of Mobile Phone Exposure on Human Sleep EEG. Biosignals 2008, Proceedings of the First International Conference on Bio-Inspired Systems and Signal Processing, Funchal, Portugal, 28–31 January 2008; SciTePress: Setúbal, Portugal, 2008; Volume 2, pp. 565–569. [Google Scholar]
- Thut, G.; Pascual-Leone, A. A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr. 2010, 22, 219–232. [Google Scholar] [CrossRef]
- Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Niedermeyer, E.; da Silva, F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.; Hudspeth, A.J.; Mack, S. Principles of Neural Science; McGraw-Hill: New York, NY, USA, 2000; Volume 4. [Google Scholar]
- Kujirai, T.; Caramia, M.; Rothwell, J.; Day, B.; Thompson, P.; Ferbert, A.; Wroe, S.; Asselman, P.; Marsden, C. Corticocortical inhibition in human motor cortex. J. Physiol. 1993, 471, 501–519. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, E.M.; Samii, A.; Mercuri, B.; Ikoma, K.; Oddo, D.; Grill, S.E.; Hallett, M. Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscles. Exp. Brain Res. 1996, 109, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Tergau, F.; Wassermann, E.M.; Wischer, S.; Hildebrandt, J.; Paulus, W. Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J. Physiol. 1998, 511, 181–190. [Google Scholar] [CrossRef]
- Prill, R.; Karlsson, J.; Ayeni, O.R.; Becker, R. Author guidelines for conducting systematic reviews and meta-analyses. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 2739–2744. [Google Scholar] [CrossRef]
- Llinás, R. Intrinsic electrical properties of mammalian neurons and CNS function: A historical perspective. Front. Cell. Neurosci. 2014, 8, 320. [Google Scholar] [CrossRef]
- Belpomme, D.; Hardell, L.; Belyaev, I.; Burgio, E.; Carpenter, D. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environ. Pollut. 2018, 242, 643–658. [Google Scholar] [CrossRef]
- Kodera, S.; Gomez-Tames, J.; Hirata, A. Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy. Biomed. Eng. Online 2018, 17, 1–17. [Google Scholar] [CrossRef]
- Leszczynski, D.; Joenväärä, S.; Reivinen, J.; Kuokka, R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer-and blood-brain barrier-related effects. Differentiation 2002, 70, 120–129. [Google Scholar] [CrossRef]
- Nittby, H.; Grafström, G.; Eberhardt, J.L.; Malmgren, L.; Brun, A.; Persson, B.R.; Salford, L.G. Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier. Electromagn. Biol. Med. 2008, 27, 103–126. [Google Scholar] [CrossRef]
- Nittby, H.; Brun, A.; Eberhardt, J.; Malmgren, L.; Persson, B.R.; Salford, L.G. Increased blood–brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology 2009, 16, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Sırav, B.; Seyhan, N. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood–brain barrier in male & female rats. J. Chem. Neuroanat. 2016, 75, 123–127. [Google Scholar] [PubMed]
- Hossmann, K.A.; Hermann, D. Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc. 2003, 24, 49–62. [Google Scholar] [CrossRef]
- Canovi, A.; Orlacchio, R.; Poulletier de Gannes, F.; Lagroye, I.; Garenne, A. In vitro exposure of neuronal networks to the 5G-3.5 GHz signal. Front. Public Health 2023, 11, 1231360. [Google Scholar] [CrossRef]
- Valentini, E.; Curcio, G.; Moroni, F.; Ferrara, M.; De Gennaro, L.; Bertini, M. Neurophysiological effects of mobile phone electromagnetic fields on humans: A comprehensive review. Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc. 2007, 28, 415–432. [Google Scholar] [CrossRef]
- Tombini, M.; Pellegrino, G.; Pasqualetti, P.; Assenza, G.; Benvenga, A.; Fabrizio, E.; Rossini, P.M. Mobile phone emissions modulate brain excitability in patients with focal epilepsy. Brain Stimul. 2013, 6, 448–454. [Google Scholar] [CrossRef]
- Zhang, J.; Sumich, A.; Wang, G.Y. Acute effects of radiofrequency electromagnetic field emitted by mobile phone on brain function. Bioelectromagnetics 2017, 38, 329–338. [Google Scholar] [CrossRef]
- Ertilav, K.; Uslusoy, F.; Ataizi, S.; Nazıroğlu, M. Long term exposure to cell phone frequencies (900 and 1800 MHz) induces apoptosis, mitochondrial oxidative stress and TRPV1 channel activation in the hippocampus and dorsal root ganglion of rats. Metab. Brain Dis. 2018, 33, 753–763. [Google Scholar] [CrossRef]
- Bertagna, F.; Lewis, R.; Silva, S.; McFadden, J.; Jeevaratnam, K. Effects of electromagnetic fields on neuronal ion channels: A systematic review. Ann. N. Y. Acad. Sci. 2021, 1499, 82–103. [Google Scholar] [CrossRef]
- Torkan, A. Examining Changes in Sensitivity and Functionality of Mechanosensitive Ion Channel Protein Piezo 1 Exposed to Low-Level Radiofrequency Radiation. Ph.D. Thesis, RMIT University, Melbourne, VIC, Australia, 2021. [Google Scholar]
- Liu, C.; Gao, P.; Xu, S.C.; Wang, Y.; Chen, C.H.; He, M.D.; Yu, Z.P.; Zhang, L.; Zhou, Z. Mobile phone radiation induces mode-dependent DNA damage in a mouse spermatocyte-derived cell line: A protective role of melatonin. Int. J. Radiat. Biol. 2013, 89, 993–1001. [Google Scholar] [CrossRef]
- Frenis, K.; Kalinovic, S.; Ernst, B.; Kvandova, M.; Al Zuabi, A.; Kuntic, M.; Oelze, M.; Stamm, P.; Bayo Jimenez, M.; Kij, A. Long-term effects of aircraft noise exposure on vascular oxidative stress, endothelial function and blood pressure: No evidence for adaptation or tolerance development. Front. Mol. Biosci. 2022, 8, 814921. [Google Scholar] [CrossRef] [PubMed]
- Tseng, B.P.; Giedzinski, E.; Izadi, A.; Suarez, T.; Lan, M.L.; Tran, K.K.; Acharya, M.M.; Nelson, G.A.; Raber, J.; Parihar, V.K.; et al. Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxidants Redox Signal. 2014, 20, 1410–1422. [Google Scholar] [CrossRef] [PubMed]
- Naziroglu, M.; Akman, H.; Laher, I. Effects of cellular phone-and Wi-Fi-induced electromagnetic radiation on oxidative stress and molecular pathways in brain. In Systems Biology of Free Radicals and Antioxidants; Springer: Berlin/Heidelberg, Germany, 2014; Volume 106, pp. 2431–2449. [Google Scholar]
- Kerman, M.; Senol, N. Oxidative stress in hippocampus induced by 900 MHz electromagnetic field emitting mobile phone: Protection by melatonin. Biomed. Res. 2012, 23, 147–151. [Google Scholar]
- Dasdag, S.; Akdag, M.Z. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J. Chem. Neuroanat. 2016, 75, 85–93. [Google Scholar] [CrossRef]
- Wessapan, T.; Srisawatdhisukul, S.; Rattanadecho, P. Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies. Int. J. Heat Mass Transf. 2012, 55, 347–359. [Google Scholar] [CrossRef]
- Chandan, R.K.; Suman, P.N.; Sinha, K. The Environmental Impact of 5G Technology on Humans and Animals. In Handbook of Research on Knowledge and Organization Systems in Library and Information Science; IGI Global: Hershey, PA, USA, 2021; pp. 48–68. [Google Scholar]
- Gultekin, D.H.; Moeller, L. NMR imaging of cell phone radiation absorption in brain tissue. Proc. Natl. Acad. Sci. USA 2013, 110, 58–63. [Google Scholar] [CrossRef]
- Wessapan, T.; Rattanadecho, P. Flow and heat transfer in biological tissue due to electromagnetic near-field exposure effects. Int. J. Heat Mass Transf. 2016, 97, 174–184. [Google Scholar] [CrossRef]
- Wessapan, T.; Rattanadecho, P. Temperature induced in human organs due to near-field and far-field electromagnetic exposure effects. Int. J. Heat Mass Transf. 2018, 119, 65–76. [Google Scholar] [CrossRef]
- Wessapan, T.; Rattanadecho, P. Thermal effects of metal implants embedded in different layers of human tissues exposed to electromagnetic fields. Case Stud. Therm. Eng. 2024, 53, 103771. [Google Scholar] [CrossRef]
- Khadrawy, Y.; Ahmed, N.A.; Ezz, H.S.A.; Radwan, N. Effect of electromagnetic radiation from mobile phone on the levels of cortical amino acid neurotransmitters in adult and young rats. Rom. J. Biophys. 2009, 19, 295–305. [Google Scholar]
- Ezz, H.A.; Khadrawy, Y.; Ahmed, N.; Radwan, N.; BAKRY, M.E. The effect of pulsed electromagnetic radiation from mobile phone on the levels of monoamine neurotransmitters in four different areas of rat brain. Eur. Rev. Med Pharmacol. Sci. 2013, 17, 1782–1788. [Google Scholar] [PubMed]
- Hong, J.H.; Chiang, C.S.; Campbell, I.; Sun, J.R.; Withers, H.; McBride, W. Induction of acute phase gene expression by brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1995, 33, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Baan, R.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Islami, F.; Galichet, L.; Straif, K. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 2011, 12, 624–626. [Google Scholar] [CrossRef]
- Zou, C.C.; Zhao, Z.Y. Clinical and molecular analysis of NF-κB essential modulator in Chinese incontinentia pigmenti patients. Int. J. Dermatol. 2007, 46, 1017–1022. [Google Scholar] [CrossRef]
- Yan, J.G.; Agresti, M.; Zhang, L.L.; Yan, Y.; Matloub, H.S. Qualitative effect on mRNAs of injury-associated proteins by cell phone like radiation in rat facial nerves. Electromagn. Biol. Med. 2009, 28, 383–390. [Google Scholar] [CrossRef]
- Motawi, T.K.; Darwish, H.A.; Moustafa, Y.M.; Labib, M.M. Biochemical modifications and neuronal damage in brain of young and adult rats after long-term exposure to mobile phone radiations. Cell Biochem. Biophys. 2014, 70, 845–855. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Zou, S.P.; Knapp, P.E. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 2007, 412, 34–38. [Google Scholar] [CrossRef]
- Nittby, H.; Widegren, B.; Krogh, M.; Grafström, G.; Berlin, H.; Rehn, G.; Eberhardt, J.L.; Malmgren, L.; Persson, B.R.; Salford, L.G. Exposure to radiation from global system for mobile communications at 1,800 MHz significantly changes gene expression in rat hippocampus and cortex. Environmentalist 2008, 28, 458–465. [Google Scholar] [CrossRef]
- Yan, J.G.; Agresti, M.; Zhang, L.L.; Yan, Y.; Matloub, H.S. Upregulation of specific mRNA levels in rat brain after cell phone exposure. Electromagn. Biol. Med. 2008, 27, 147–154. [Google Scholar] [CrossRef]
- Usikalu, M.; Rotimi, S.; Oguegbu, A. Effect of exposure of 900 MHz radiofrequency radiation on rat brain. Eur. J. Exp. Biol. 2012, 2, 2499–2504. [Google Scholar]
- Kivrak, E.G.; Altunkaynak, B.Z.; Alkan, I.; Yurt, K.K.; Kocaman, A.; Onger, M.E. Effects of 900-MHz radiation on the hippocampus and cerebellum of adult rats and attenuation of such effects by folic acid and Boswellia sacra. J. Microsc. Ultrastruct. 2017, 5, 216–224. [Google Scholar] [PubMed]
- Hussein, S.; El-Saba, A.A.; Galal, M.K. Biochemical and histological studies on adverse effects of mobile phone radiation on rat’s brain. J. Chem. Neuroanat. 2016, 78, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Buchner, K.; Rivasi, M. The International Commission on Non-Ionizing Radiation Protection: Conflicts of Interest, Corporate Capture and the Push for 5G. ICNIRP-Report-FINAL-19-JUNE-2020. 2020. Available online: https://kompetenzinitiative.com/wp-content/uploads/2020/07/ICNIRP-report-FINAL-19-JUNE-2020.pdf (accessed on 5 March 2025).
- Warsaw, R.E.; Jones, A.; Rose, A.K.; Newton-Fenner, A.; Alshukri, S.; Gage, S.H. Mobile technology use and its association with executive functioning in healthy young adults: A systematic review. Front. Psychol. 2021, 12, 643542. [Google Scholar] [CrossRef] [PubMed]
- International Commission for Non-Ionizing Radiation Protection; Standing Committee on Epidemiology; Ahlbom, A.; Green, A.; Kheifets, L.; Savitz, D.; Swerdlow, A. Epidemiology of health effects of radiofrequency exposure. Environ. Health Perspect. 2004, 112, 1741–1754. [Google Scholar]
- Hietanen, M. Establishing the health risks of exposure to radiofrequency fields requires multidisciplinary research. Scand. J. Work Environ. Health 2006, 32, 169–170. [Google Scholar] [CrossRef]
- Foster, K.R.; Chou, C.K. Response to “Children Absorb Higher Doses of Radio Frequency Electromagnetic Radiation from Mobile Phones than Adults” and “Yes the Children Are More Exposed to Radiofrequency Energy from Mobile Telephones than Adults”. IEEE Access 2016, 4, 5322–5326. [Google Scholar] [CrossRef]
- Foroughimehr, N. Millimetre Wave Absorption by the Cornea; Swinburne University of Technology: Hawthorn, VIC, Australia, 2024. [Google Scholar]
Keywords Inclusion | Keywords Exclusion | |
---|---|---|
Population | Healthy individuals, Adults, Humans, Healthy people, Able-bodied adults | Pathological disorders, Animal studies |
Concept | EM radiation, EMR, Mobile phone radiation, mobile EM, 3G/4G/5G networks, Cell phone radiation Mobile phone frequency, MPF, Radiofrequency radiation, RFR, Low-level radiation, Wireless emissions, Wireless radiation, Mobile device radiation, Cellular radiation, Radio wave exposure, Mobile phone generations | Cognitive function |
Context | Brain function, Brain activity, Brain oscillation, Neural oscillations, Electroencephalography, EEG, Transcranial magnetic stimulation, TMS, Brain wave, Brainwave activity, Cortical excitability, Corticospinal excitability, CSE | Ionizing radiation, Non-invasive brain stimulation techniques such as Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), Transcranial random noise stimulation (tRNS), Transcranial pulsed current stimulation (tPCS) |
Study | Participants (Gender)/ Age Range (Mean) | Mobile Phone Specification (Frequency/Power/SAR) | Exposure Time (min) | Study Design (Crossover)/Blinding | Number of Channels and/or Electrodes | Effects on Band Amplitude | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Single-Blind | Double-Blind | Delta | Theta | Alpha | Beta | Gamma | |||||
[19] | 24 (16 M, 8 F)/19–48 Y, 27.5 Y | 900–1800 MHz/250 mW | 20 | √ | - | 19 | ↓ | ↑ | ↑ | ↑ | - |
[25] | 120 (46 M, 74 F)/18–69 Y | 895 MHz/2 W, 0.674 W/kg | 30 | - | √ | 58 | - | - | ↑ | - | - |
[26] | 34 F/20 ± 3 Y | 1920 to 2170 MHz/- | 20 | - | √ | 32 | - | - | ↓ | - | - |
[27] | 10 M (adults), 10 children/12 Y | 900 MHz/- | 10 | - | √ | 16 | ↑ | - | - | - | - |
[28] | 36 (18 M, 18 F)/18–52 Y | 920 MHz/2 W/kg | 30 | - | √ | 19 | - | - | ↑ | - | - |
[29] | 36 M/23.6 Y | 902 MHz/0.25 W | 40 | - | √ | 5 | - | - | ↑ | - | - |
[30] | 10 M/- | 900 MHz, 2 W/kg | 30 | √ | - | 12 | ↑ | - | ↑ | - | - |
[31] | 15 F/21–30 Y | 2.476 GHz/80 μW/kg | 5 & 15 | - | - | 8/21 | - | ↑ | ↑ | ↑ | - |
[32] | 72 (37 M, 35 F)/24.5 Y | Nokia 3110/- | 20 | - | √ | 19 | - | - | ↓ | - | - |
[33] | 72 (37 M, 35 F)/24.5 Y | 900 MHz/1.95 W/kg | 20 | - | √ | 19 | - | - | ↑ | - | - |
[34] | 42 (21 M, 21 F)/19–40 Y | 894.6 MHz (2G) 250 mW/Vs 1900 MHz (3G)/1.7 W/kg | 50 | - | √ | 61 | - | - | ↑ | - | - |
[35] | 24 M/19–25 Y | 900 MHz/1 W/kg | 30 | - | √ | - | - | - | - | - | - |
[20] | 26 (13 M, 13 F)/23.5 Y | 900 MHz/- | 26 | - | √ | 29 | - | - | - | - | - |
[36] | 22 (12 M, 10 F)/11–13 Y | 900 MHz/- | 30 | - | √ | - | - | - | - | - | - |
[37] | 21 (11 M, 10 F)/25.1 Y | 900 MHz/0.49 W/kg | 25.5 | - | √ | 74 | - | - | - | - | - |
[38] | 20 (M, F)/18–28 Y | 450–2500 MHz/2 W | 5 | - | √ | 16 | ↓ | ↓ | ↓ | ↑ | - |
[39] | 21 (11 M, 10 F)/25.1 ± 3.6 Y | 900 MHz/0.49 W/kg | 25 | - | √ | 74 | ↓ | ↓ | - | ↓ | - |
[40] | 34 (17 M, 17 F)/26.6 ± 4.7 Y | 3.5 GHz/5G Hz/ 0.037 ± 0.11 mW/kg | 25.5 | - | - | 64 | - | - | - | - | - |
[41] | 36 (18 M, 18 F)/18–52 Y | 920 MHz/2 W/kg | 30 | - | √ | 19 | - | - | ↑ | - | - |
[42] | 23 (12 M, 11 F)/21–24 Y | 450 MHz/0.16 mW/cm2, 0.35 W/kg | 10 (1 min ON/OFF) | - | √ | 9 | - | - | ↑ | ↑ | - |
[43] | 77/- | 450 MHz | - | - | √ | - | - | - | - | ↓ | ↓ |
[44] | 8 (6 M, 2 F)/28 Y | COMSOL 2004 | 6 | √ | - | 4/19 | - | - | ↑ | ↑ | - |
[45] | 20 M/19–36 Y | 900-MHz/10 W/m2 | 480 | - | - | 2 | - | - | - | - | - |
[46] | 13 M/21–27 Y | 916.2 MHz/2.8 W | - | √ | - | 30 | - | - | - | ↑ | - |
[47] | 31 F/26.7 Y | 5 Hz–3 GHz or 1.9291 to 1.9397 GHz/0.69 W/kg | 15 | √ | - | 12 | - | - | ↑ | ↑ | ↑ |
[48] | 5/- | 900 MHz, 1800 MHz/- | 1 | - | √ | 32 | ↑ | ↓ | ↓ | ↑ | - |
[49] | 20 (9 M, 11 F)/- | GCM: Nokia 105 vs. SP: Huawei P8lite | 5 | - | √ | 5 | - | ↑ | ↑ | - | - |
[50] | 36 (16 M, 20 F)/19–28 Y | 3G/1.75 W/kg | 20 | - | √ | 2/3 | - | - | - | - | ↑ |
[51] | 35 (18 M, 17 F)/39.8 Y | - | 5 | - | √ | 21 | - | - | - | - | - |
[52] | 48 (21 M, 27 F)/18–44 Y | 884 MHz | 3 | - | √ | 8 | ↑ | ↑ | ↑ | - | - |
[53] | 29 (19 M, 10 F)/18–40 Y | Android 2500 mAh battery | 5 | - | - | 128 | - | ↑ | ↑ | - | ↑ |
[54] | 25 (10 M, 15 F)/23.3 Y | 2.4 GHz/99.22 mW/kg | 60 | - | √ | 13/5 | - | - | - | - | - |
[55] | 17 (8 M, 9 F)/21.76 Y | 1947 MHz/1.75 W/kg | 30 | - | √ | 3 | - | - | - | - | - |
Study | Participants (Gender)/ Age Range (Mean) | Mobile Phone Specification (Frequency/Power/SAR) | Exposure Time (min/s) | Study Design (Crossover)/Blinding | Number of Channels and/or Electrodes | Effects on Band Amplitude | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Single-Blind | Double-Blind | Delta | Theta | Alpha | Beta | Gamma | |||||
[56] | 20 (10 M, 10 F)/22–31 Y | 902.40 MHz/0.25 W | 45 | - | √ | 5 | - | - | ↑ | - | - |
[57] | 397 (50.9% F)/>18 Y | 900 MHz–1800 MHz/ | For 5 nights | - | √ | - | - | - | - | - | - |
[58] | 34 M/20–30 Y | 2.45 GHz/6.4 mW/kg | Every six minutes for 5 nights | - | √ | 19 | ↓ | - | ↓ | ↓ | - |
[59] | 19 (10 M, 9 F)/M: 28–48 Y, F: 32–57 Y | 900, 1800 MHz/1–2 W | 20 | √ | - | 21 | ↑ | - | - | - | - |
[60] | 13 (4 M, 9 F)/21–30 Y | 450 MHz/0.16 mW/cm2 | 1 | - | √ | 9 | - | - | ↑ | ↑ | - |
[61] | 34 (16 M, 18 F) | 450 MHz/0.16 mW/cm2 | 10 (1 min ON/OFF) | - | √ | 9 | - | - | ↑ | ↑ | - |
[62] | 34 M/21–35 Y | 900 MHz/0.05 mW/cm2 | 3.5 | - | - | - | - | - | - | - | - |
[63] | 14 (7 M, 7 F)/21–24 Y | 450 Hz/0.16 mW/cm2 | 10 (1 min ON/OFF) | √ | √ | 8/9 | - | - | ↑ | ↑ | - |
[64] | 15 (8 M, 7 F)/23–32 Y | 450-MHz/0.303 W/kg | 10 (1 min ON/OFF) | - | - | 9/19 | - | - | ↑ | ↑ | - |
[65] | 28/21–30 Y | 450 Hz/0.303 W/kg | 10 (1 min ON/OFF) | - | √ | 9 | - | - | - | ↑ | - |
[66] | 16 M | 900 MHz/1 W/kg | 30 | √ | - | - | - | - | ↑ | - | - |
[67] | 30/- | 450 to 2500 MHz | 5 | - | √ | 2 | ↑ | - | ↓ | ↑ | - |
[68] | 10 M/25.2 Y | 2.573 GHz/- | 30 | - | √ | 32 | - | - | - | - | - |
[69] | 18 (12 M, 6 F)/19–35 Y | 800–3500 MHz/2.18–2.36 W/kg | 30 | - | √ | 8 | ↓ | ↑ | ↑ | - | - |
[70] | 15 (8 M, 7 F)/21–24 Y | 450 MHz/0.16 mW/cm2 | 10 | - | √ | 19 | - | - | ↑ | - | - |
[71] | 38/20–36 Y | 5000 kHz–3 GHz 2.0 W/kg | 30 | - | √ | 128 | - | - | - | - | - |
[72] | 18F/39 Y | 450 MHz/0.9 mW/cm2 | 30 | √ | - | 19 | - | ↑ | - | ↑ | - |
[73] | 15 (8 M, 7 F)/21–24 Y | 450 MHz/0.16 mW/cm2 | 5 (1 min ON/OFF) | - | √ | 9 | - | - | ↑ | ↑ | - |
[74] | 30 M/20–30 Y | 100 kHz–3 GHz/1.5 W/kg | 12,960 | - | √ | 19 | - | - | - | - | - |
[75] | 10 (5 M, 5 F) 18–30 Y | 900 MHz/250 mW | 5 | √ | - | 6 | - | - | ↓ | ↓ | - |
[76] | 5/- 18–27 Y | 900–1800 MHz/- | >10 min | - | √ | 19 | ↓ | ↓ | ↑ | ↓ | - |
[77] | 10 M/25–36 Y | 902.40 MHz/0.25 W | 45 | - | √ | 19 | - | - | ↑ | - | - |
[78] | 16 (7 M, 9 F)/47–84 Y | 902.40 MHz/0.5 W/kg | 45 | - | √ | 19 | - | - | ↑ | - | - |
[79] | 20 M/22–37 Y | 900 MHz/ | - | √ | - | 6 | - | - | - | - | - |
[80] | 45/- | -/0.69 W/kg | 5 | - | - | 2/4 | - | - | ↓ | ↓ | - |
[81] | 66 (30 M, 36 F)/19–24 Y | 450 MHz/0.303 W/kg 0.16 mW/cm2 | 20 and 40 | - | √ | 9/9 | - | - | ↑ | ↑ | - |
[82] | 28 (13 M, 15 F)/20–27 Y | 450 MHz/0.16 mW/cm2/0.303 W/kg | 10 cycle every odd min | - | √ | 8/9 | - | - | ↑ | - | - |
[83] | 52 (25 M, 27 F)/19–76 Y | 27.12 MHz/4 mW/kg | 15 | - | √ | 8 | ↑ | - | - | - | - |
[84] | 25 M/30.2 ± 2.7 Y | 2.61 GHz | 30 | - | √ | 19 | - | - | ↑ | ↑ | - |
[85] | 75 (57 M, 18 F)/22.2 Y | Nokia, Samsung, Panasonic, and Motorola, 2G,3G/0.67 and 1.14 W/kg | 5 | - | - | 16/21 | - | ↑ | ↑ | ↑ | ↑ |
[86] | 16 M/20–25 Y | 900 MHz/- | 30 pulls | √ | - | - | - | - | ↑ | - | - |
[34] | 42 (21 M, 21 F)/19–40 Y | 894.6 MHz (2G) 250 mW/Vs 1900 MHz (3G)/1.7 W/kg | 50 | - | √ | 61 | - | - | - | - | - |
[35] | 24 M/19–25 Y | 900 MHz/1 W/kg | 30 | - | √ | - | - | - | ↑ | - | - |
[20] | 26 (13 M, 13 F)/23.5 Y | 900 MHz/- | 26 | - | √ | 29 | - | - | ↓ | - | - |
[36] | 22 (12 M, 10 F)/11–13 Y | 900 MHz/- | 30 | - | √ | - | - | - | - | - | - |
[87] | 60 M/- 20 ± 25 Y | 900 MHz/o 2.2W | 30 | - | √ | 9 | - | - | ↑ | ↑ | - |
[38] | 20 (M, F)/18–28 Y | 450–2500 MHz/2 W | 5 | - | √ | 16 | ↓ | ↓ | ↑ | ↑ | - |
[37] | 21 (11 M, 10 F)/25.1 Y | 900 MHz/0.49 W/kg | 25/5 | - | √ | 74 | - | - | - | - | - |
[40] | 34 (17 M, 17 F)/26.6 ± 4.7 Y | 3.5 GHz/5G Hz/0.037 ± 0.11 mW/kg | 25/5 | - | - | 64 | ↑ | ↑ | ↓ | - | - |
[39] | 21 (11 M, 10 F)/25.1 ± 3.6 Y | 900 MHz/0.49 W/kg | 25 | - | √ | 74 | - | ↑ | - | - | - |
[41] | 36 (18 M, 18 F)/18–52 Y | 920 MHz/2W/kg | 30 | - | √ | 19 | - | - | - | - | - |
[88] | 36 (18 M, 18 F) | 902.4 MHz/- | 15 | √ | - | 16 | - | - | ↑ | ↑ | - |
[89] | 16 M/18–21 Y | 900 MHz/10 W/kg | 10 (1 min ON/OFF) | - | √ | 10/12 | ↑ | ↑ | - | - | - |
[90] | 20 (7 M, 13 F)/20–51 Y | 894.6 MHz/2 W | 30 | - | √ | 2/4 | - | - | ↑ | - | - |
[91] | 25 M/20–26 Y | 900 MHz/2 W/kg | 30 | - | √ | 2 | ↑ | ↑ | ↑ | - | - |
[92] | 12/24.6 | 1.8 GHz/- | 5 | √ | - | 9 | - | ↑ | ↑ | - | - |
[93] | 30 M/24.1 ± 2.9 Y | 2.45 GHz/6.4 mW/kg | 480 | - | √ | 19 | - | - | - | - | - |
[94] | 15 M/20–35 Y | 900,1950 MHz/- | 2 and 6 | - | √ | 19 | - | - | - | - | - |
[95] | 50 (27 M, 23 F)/18–60 Y | 914 MHz 0.19 ± 0.03 W/kg | 30 | - | √ | 2 | - | - | ↑ | - | - |
Study | Participants Gender Age Range (Mean) | Mobile Phone Specification (Frequency/Power/SAR) | Exposure Time/min | Study Design (Crossover)/Blinding | TMS Characteristics | Observed Effects | ||||
---|---|---|---|---|---|---|---|---|---|---|
Single-Blind | Double-Blind | CSE | ICF | SICI | LICI | |||||
[22] | 10 (5 M, 5 F)/22–51 Y | 800 MHz/270 mW | 30 | - | √ | 200 (The Magstim Co., Ltd., Whitland, UK) | - | ↑ | N/S | N/S |
[21] | 15 F/20–36 Y | 902.40 MHz/2 W | 45 | - | √ | 200 (The Magstim Co., Dyfed, UK) | - | ↑ | ↓ | N/S |
Technology | Frequency Band | Main Applications | Existing Research | Research Gaps |
---|---|---|---|---|
1G/2G | ~800–900 MHz | voice communications | Extensive studies on SAR (Specific Absorption Rate), health risk assessments | Limited newer studies reassessing low-level long-term exposure |
3G | ~1.8–2.1 GHz | providing access to the Internet on laptops and mobile devices | Significant research on RF biological effects and epidemiological studies | Need for updated risk assessments based on modern usage patterns |
4G | ~2–2.6 GHz (sometimes up to 3.5 GHz) | video conferencing to gaming services, HD mobile television | Good coverage of thermal and some non-thermal effects, SAR compliance | Gaps in chronic exposure studies, particularly for high-data applications |
5G (Sub-6 GHz) | ~3.3–6 GHz | Enhanced mobile broadband, IoT, smart cities | Early studies, focusing mainly on compliance testing and exposure modeling | Need more biological studies on non-thermal effects, long-term exposure |
5G (mmWave) | 24–28 GHz, 37–40 GHz, 60 GHz | Ultra-fast broadband, high-capacity urban networks, AR/VR | Very limited; few experimental biological studies, mainly simulations | Major gaps in biological effects, tissue interaction, long-term health risks, thermal load at skin/tissue interface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torkan, A.; Zoghi, M.; Foroughimehr, N.; Yavari, A.; Jaberzadeh, S. Effects of Mobile Electromagnetic Exposure on Brain Oscillations and Cortical Excitability: Scoping Review. Sensors 2025, 25, 2749. https://doi.org/10.3390/s25092749
Torkan A, Zoghi M, Foroughimehr N, Yavari A, Jaberzadeh S. Effects of Mobile Electromagnetic Exposure on Brain Oscillations and Cortical Excitability: Scoping Review. Sensors. 2025; 25(9):2749. https://doi.org/10.3390/s25092749
Chicago/Turabian StyleTorkan, Azadeh, Maryam Zoghi, Negin Foroughimehr, Ali Yavari, and Shapour Jaberzadeh. 2025. "Effects of Mobile Electromagnetic Exposure on Brain Oscillations and Cortical Excitability: Scoping Review" Sensors 25, no. 9: 2749. https://doi.org/10.3390/s25092749
APA StyleTorkan, A., Zoghi, M., Foroughimehr, N., Yavari, A., & Jaberzadeh, S. (2025). Effects of Mobile Electromagnetic Exposure on Brain Oscillations and Cortical Excitability: Scoping Review. Sensors, 25(9), 2749. https://doi.org/10.3390/s25092749