A D-Shaped Photonic Crystal Fiber Refractive Index Sensor Coated with Graphene and Zinc Oxide
Abstract
1. Introduction
2. Model Structure and Production Potential
3. Results Analysis and Discussion
3.1. Mode Coupling
3.2. Numerical Analysis of Silver-Graphene PCF
3.3. Numerical Analysis of Silver-ZnO PCF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Zhu, L.; Yang, X.; Lou, X.; Yu, L. A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers. Sensors 2020, 20, 741. [Google Scholar] [CrossRef]
- Al Mahfuz, M.; Hossain, A.; Haque, E.; Hai, N.H.; Namihira, Y.; Ahmed, F. Dual-Core Photonic Crystal Fiber-Based Plasmonic RI Sensor in the Visible to Near-IR Operating Band. IEEE Sens. J. 2020, 20, 7692–7700. [Google Scholar] [CrossRef]
- Patnaik, A.; Senthilnathan, K.; Jha, R. Graphene-Based Conducting Metal Oxide Coated D-Shaped Optical Fiber SPR Sensor. IEEE Photonics Technol. 2015, 27, 2437–2440. [Google Scholar] [CrossRef]
- Islam, M.S.; Cordeiro, C.M.D.B.; Sultana, J.; Aori, R.A.; Feng, S.; Ahmed, R.; Dorraki, M.; Dinovitser, A.; Ng, B.W.H.; Abbott, D. A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor. IEEE Access 2019, 7, 79085–79094. [Google Scholar] [CrossRef]
- Luan, N.N.; Wang, R.; Lv, W.H.; Yao, J.Q. Surface plasmon resonance sensor based on D-shaped microstructed optical fiber with hollow core. Opt. Express 2015, 23, 8576–8582. [Google Scholar] [CrossRef]
- Liu, Q.; Xin, L.; Wu, Z.X. Refractive index sensor of a photonic crystal fiber Sagnac interferometer based on variable polarization states. Appl. Phys. Express 2019, 12, 62009. [Google Scholar] [CrossRef]
- Han, H.X.; Hou, D.L.; Zhao, L.; Luan, N.N.; Song, L.; Liu, Z.H.; Luan, Y.D.; Liu, J.F.; Hu, Y.S. A Larege Detection-Range Plasmonic Sensor Based on an H-Shaped Photonic Crystal Fiber. Sensors 2020, 20, 1009. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Li, S.; Zhang, S.H.; Liu, Y. Broadband single-polarization filter of D-shaped photonic crystal fiber with a micro-opening based on surface plasmon resonance. Appl. Opt. 2018, 57, 8016–8022. [Google Scholar] [CrossRef]
- Ramya, K.C.; Monfared, Y.E.; Maheswar, R.; Dhasarathan, V. Dual-Core Twisted Photonic Crystal Fiber Salinity Sensor: A Numerical Investigation. IEEE Photonics Technol. Lett. 2020, 32, 616–619. [Google Scholar] [CrossRef]
- Hasan, M.I.; Akhmediev, N.; Chang, W. Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers. Opt. Lett. 2016, 41, 5122–5125. [Google Scholar] [CrossRef]
- Hasan, I.; Akhmediev, N.; Chang, W. Positive and negative curvatures nested in an antiresonant hollow-core fiber. Opt. Lett. 2017, 42, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Mahdiraji, G.A.; Chow, D.M.; Sandoghchi, S.R.; Amirkhan, F.; Dermosesian, E.; Yeo, K.S.; Kakaei, Z.; Ghomeishi, M.; Poh, S.Y.; Gang, S.Y.; et al. Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study. Fiber Integr. Opt. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Rifat, A.A.; Mahdiraji, G.A.; Chow, D.M.; Shee, Y.G.; Ahmed, R.; Adikan, F.R.M. Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core. Sensors 2015, 15, 11499–11510. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Chang, M.; Lu, X.; Zhou, J.; Zhang, X. Photonic Crystal Fiber Plasmonic Sensor Based on Dual Optofluidic Channel. Sensors 2019, 19, 5150. [Google Scholar] [CrossRef]
- Hasan, R.; Akter, S.; Rifat, A.A.; Rana, S.; Ali, S. A Highly Sensitive Gold-Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance. Photonics 2017, 4, 18. [Google Scholar] [CrossRef]
- Tong, K.; Wang, F.C.; Wang, M.T.; Dang, P.; Wang, Y.X.; Sun, J. D-Shaped photonic crystal fiber biosensor based on silver-graphene. Optik 2018, 168, 467–474. [Google Scholar] [CrossRef]
- Sellmeier, W. Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen. Ann. Der Phys. 1870, 219, 272–282. [Google Scholar] [CrossRef]
- Kuzmenko, A.B.; van Heumen, E.; Carbone, F.; van der Marel, D. Universal Optical Conductance of Graphite. Phys. Rev. Lett. 2008, 100, 117401. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Singh, S.; Prajapati, Y.K. Highly sensitive refractive index sensor based on D-shaped PCF with gold-graphene layers on the polished surface. Appl. Phys. A 2019, 125, 437. [Google Scholar] [CrossRef]
- Hao, F.; Nordlander, P. Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem. Phys. Lett. 2007, 446, 115–118. [Google Scholar] [CrossRef]
- Wan, Q.; Li, Q.H.; Chen, Y.J.; Wang, T.H.; He, X.L.; Li, J.P.; Lin, C.L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656. [Google Scholar] [CrossRef]
- Rout, C.S.; Krishna, S.H.; Vivekchand, S.; Govindaraj, A.; Rao, C.N.R. Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem. Phys. Lett. 2006, 418, 586–590. [Google Scholar] [CrossRef]
- Tabassum, R.; Gupta, B.D. Performance Analysis of Bimetallic Layer Witj Zinc Oxide for SPR-Based Fiber Optic Sensor. J. Lightwave Technol. 2015, 33, 4565–4571. [Google Scholar] [CrossRef]
- Omar, K.; Ooi, M.D.J.; Hassin, M.M. Investigation on Dielectric Constant of Zinc Oxide. Math. Models Methods Appl. Sci. 2009, 3, 110. [Google Scholar] [CrossRef]
- Chen, N.; Chang, M.; Zhang, X.D.; Zhou, J.; Lu, X.L.; Zhuang, S.L. Highly Sensitive Plasmonic Sensor Based on a Dual-Side Polished Photonic Crystal Fiber for Component Content Sensing Applications. Nanomaterials 2019, 9, 1587. [Google Scholar] [CrossRef]
- Liu, C.; Su, W.; Liu, Q.; Lu, X.; Wang, F.; Sun, T.; Chu, P.K. Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 2018, 26, 9039–9049. [Google Scholar] [CrossRef]
- Zhang, S.H.; Li, J.; Li, S.; Liu, Q.; Wu, J.; Guo, Y. Surface plasmon resonance sensor based on D-Shaped photonic crystal fiber with two micro-openings. J. Phys. D 2018, 51, 305104. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Chen, H.; Li, J.; Zhang, W.; Wang, M. Surface Plasmon Resonance Induced High Sensitivity Temperature and Refractive Index Sensor Based on Evanescent Field Enhanced Photonic Crystal Fiber. J. Lightwave Technol. 2020, 38, 919–928. [Google Scholar] [CrossRef]
- An, G.; Li, S.G.; Qin, W.; Zhang, W.; Fan, Z.K.; Bao, Y.J. High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film. Plasmonics 2014, 9, 1355–1360. [Google Scholar] [CrossRef]
- Sazio, P.J.A.; Correa, A.A.; Finlayson, C.E.; Hayes, J.R.; Scheidemantel, T.J.; Baril, N.F.; Jackson, B.R.; Won, D.J.; Zhang, F.; Margine, E.R.; et al. Microstructed Optical Fibers as High-Pressure Microfluidic Reactors. Science 2006, 311, 1583–1586. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Zhang, Z.R.; Yu, Y.; Zhou, L.J.; Tao, Y.Y.; Li, G.F.; Yang, J.B. A Highly Magnetic Field Sensitive Photonic Crystal Fiber Based on Surface Plasmon Resonance. Sensors 2020, 20, 5193. [Google Scholar] [CrossRef] [PubMed]
- Kiraly, B.; Iski, E.V.; Mannix, A.J.; Fisher, B.L.; Hersam, M.C.; Guisinger, N.P. Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat. Commun. 2013, 4, 3804. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Tiwale, N.; Senanayak, S.P.; Rubio-Lara, J.; Alaverdyan, Y.; Welland, M.E. Optimization of Transistor Characteristics and Charge Transport in Solution Processed ZnO Thin Films Grown from Zinc Neodecanoate. Electron. Mater. Lett. 2019, 15, 702–711. [Google Scholar] [CrossRef]
- Hong, R.; Qi, H.; Huang, J.; He, H.; Fan, Z.; Shao, J. Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films. Thin Solid Film. 2005, 473, 58–62. [Google Scholar] [CrossRef]
- Bao, M.; Li, G.; Jiang, D.; Cheng, W.; Ma, X. Surface plasmon optical sensor with enhanced sensitivity using top ZnO thin film. Appl. Phys. A 2012, 107, 279–283. [Google Scholar] [CrossRef]
- Haider, F.; Aoni, R.A.; Ahmed, R.; Miroshnichenko, A.E. Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor. J. Opt. Soc. Am. B Opt. Phys. 2018, 35, 2816–2821. [Google Scholar] [CrossRef]
- Dash, J.N.; Jha, R. On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance. Plasmonics 2015, 10, 1123–1131. [Google Scholar] [CrossRef]
- Yang, X.C.; Lu, Y.; Liu, B.L.; Yao, J.Q. Simultaneous measurement of refractive index and temperature based on SPR in D-shaped MOF. Appl. Opt. 2017, 56, 4369–4374. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.D.; Jing, X.L.; Li, S.G.; Zhang, S.H.; Zhang, Z.; Guo, Y.; Wang, J.; Wang, S. High sensitivity surface plasmon resonance sensor based on D-shaped photonic crystal fiber with circular layout. Opt. Fiber Technol. 2018, 46, 311–317. [Google Scholar] [CrossRef]
- Shukla, S.; Sharma, N.K.; Sajal, V. Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: A theoretical study. Sens. Actuators B Chem. 2014, 206, 463–470. [Google Scholar] [CrossRef]
- Momota, M.R.; Hasan, M.R. Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 2018, 76, 287–294. [Google Scholar] [CrossRef]
- Peng, L.; Shi, F.K.; Zhou, G.Y.; Ge, S.; Hou, Z.Y.; Xia, C.M. A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Islam, M.S.; Sultana, J.; Rifat, A.A.; Ahmed, R.; Dinovitser, A.; Ng, B.W.-H.; Ebendorff-Heidepriem, H.; Abbott, D. Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 2018, 26, 30347–30361. [Google Scholar] [CrossRef]
- Rifat, A.A.; Mahdiraji, G.A.; Sua, Y.M.; Ahmed, R.; Shee, Y.G.; Mahamd Adikan, F.R. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 2016, 24, 2485–2495. [Google Scholar] [CrossRef]
- Wu, T.S.; Shao, Y.; Wang, Y.; Cao, S.Q.; Cao, W.P.; Zhang, F.; Liao, C.R.; He, J.; Huang, Y.J.; Hou, M.X.; et al. Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 2017, 25, 20313–20322. [Google Scholar] [CrossRef]
- An, G.W.; Hao, X.P.; Li, S.G.; Yan, X.; Zhang, X.N. D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl. Opt. 2017, 56, 6988–6992. [Google Scholar] [CrossRef]
- Xie, Q.L.; Chen, Y.Z.; Li, X.J.; Yin, Z.; Wang, L.L.; Geng, Y.F.; Hong, X.M. Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths. Appl. Opt. 2017, 56, 1550–1555. [Google Scholar] [CrossRef]
The Number of Layers of Graphene | Confinement Loss (dB/cm) | Average Sensitivity (nm/RIU) | ||||
---|---|---|---|---|---|---|
RI = 1.37 | RI = 1.38 | RI = 1.39 | RI = 1.40 | RI = 1.41 | ||
L = 1 | 1049.03 | 1327.71 | 1776.89 | 2531.53 | 3903.90 | 3735 |
ZnO Layer Thickness | Confinement Loss (dB/cm) | Average Sensitivity (nm/RIU) | |||||
---|---|---|---|---|---|---|---|
RI = 1.36 | RI = 1.37 | RI = 1.38 | RI = 1.39 | RI = 1.40 | RI = 1.41 | ||
tz = 10 nm | 901.09 | 1103.63 | 1421.60 | 1936.75 | 2803.56 | 4066.57 | 2785.7 |
tz = 15 nm | 933.04 | 1152.23 | 1497.43 | 2059.81 | 3004.35 | 4101.73 | 3557.1 |
tz = 20 nm | 968.25 | 1205.35 | 1581.01 | 2195.58 | 3222.86 | 4548.06 | 3785.7 |
tz = 25 nm | 1149.43 | 1265.29 | 1672.04 | 2345.52 | 3470.62 | 44,738.72 | 4485.7 |
Feature | RI Range (RIU) | Average Sensitivity (nm/RIU) | Resolution (RIU) | Ref. |
---|---|---|---|---|
H-shaped PCF coated with silver and graphene | 1.33–1.36 | 2770 | 3.61 × 10−6 | [1] |
D-shaped PCF based on silver-graphene | 1.34–1.40 | 4850 | 2 × 10−5 | [17] |
Dual-side polished PCF | 1.395–1.415 | 10,650 | 9.39 × 10−6 | [27] |
Symmetrical dual D-shape PCF | 1.36–1.41 | 14,660 | 6.82 × 10−5 | [28] |
SPR-PCF based on Au | 1.33–1.41 | 18,000 (max) | 5.6 × 10−6 | [39] |
Silver-graphene coated D-shaped PCF | 1.33–1.37 | 3700 | 2.7 × 10−5 | [40] |
D-shaped MOF biosensor | 1.33–1.36 | 2214 | 4.51 × 10−5 | [41] |
Au coated D-shaped PCF | 1.32–1.35 | 4000 | 3.31 × 10−5 | [42] |
Au/Ag/Au-ZnO D-shaped PCF | 1.30–1.37 | 3161 3054 3018 | - | [43] |
Hollow-core silver coated PCF | 1.33–1.37 | 4200 (max) | 2.38 × 10−6 | [44] |
Rectangular lattice D-shaped fiber | 1.37–1.395 | 4500 | 2.2 × 10−5 | [45] |
Dual-polarized highly sensitive plasmonic sensor | 1.33–1.43 | 62,000 (max) | 1.6 × 10−6 | [46] |
Au-TiO2 multi-core flat fiber SPR sensor | 1.46–1.485 | 9600 | 1.22 × 10−5 | [47] |
hexagonal structure PCF based on gold-coated side-polished | 1.33–1.34 | 21,700 (max) | - | [48] |
D-shaped PCF based on Au | 1.33–1.38 | 10,493 (max) | 9.53 × 10−6 | [49] |
A novel D-type SPR-PCF sensor with different side-polished lengths | 1.40–1.42 | 7381.0 (max) | - | [50] |
Our proposed Ag-graphene coated D-PCF | 1.37–1.41 | 3735 | 2.105 × 10−5 | - |
Our proposed Ag-ZnO coated D-PCF | 1.36–1.41 | 4485.7 | 1.667 × 10−5 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Shen, T.; Feng, Y.; Liu, H.; Han, W. A D-Shaped Photonic Crystal Fiber Refractive Index Sensor Coated with Graphene and Zinc Oxide. Sensors 2021, 21, 71. https://doi.org/10.3390/s21010071
Liang H, Shen T, Feng Y, Liu H, Han W. A D-Shaped Photonic Crystal Fiber Refractive Index Sensor Coated with Graphene and Zinc Oxide. Sensors. 2021; 21(1):71. https://doi.org/10.3390/s21010071
Chicago/Turabian StyleLiang, Han, Tao Shen, Yue Feng, Hongchen Liu, and Wei Han. 2021. "A D-Shaped Photonic Crystal Fiber Refractive Index Sensor Coated with Graphene and Zinc Oxide" Sensors 21, no. 1: 71. https://doi.org/10.3390/s21010071
APA StyleLiang, H., Shen, T., Feng, Y., Liu, H., & Han, W. (2021). A D-Shaped Photonic Crystal Fiber Refractive Index Sensor Coated with Graphene and Zinc Oxide. Sensors, 21(1), 71. https://doi.org/10.3390/s21010071