# Performance Characterization of GNSS/IMU/DVL Integration under Real Maritime Jamming Conditions

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Previous Work

## 3. Methods

**Prediction**: The a priori probability is calculated from the last a posteriori probability using the available process model.

**Correction**: The a posteriori probability is calculated from the a priori probability using the measurement model and the current measurements.

## 4. Setup and Measurement Campaign

`++`as described in [45].

## 5. Results

#### 5.1. Lab Experiment

#### 5.2. Results of the Maritime Jamming Campaign

#### 5.2.1. GPS Single Point Positioning Results

#### 5.2.2. Tightly and Loosely Coupled UKF Results

#### 5.2.3. Comparison of Different Weighting Models

## 6. Summary

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- UNCTAD Annual Report 2012. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc= s&source=web&cd=5&ved=2ahUKEwj5xpr23qLdAhWDWSwKHQv_DQgQFjAEegQIBhAC&url=http% 3A%2F%2Functad.org%2Fen%2FPublicationsLibrary%2Fdom2013d1_en.pdf&usg=AOvVaw2wOg_4lA_ cGuhOVuww8gG4 (accessed on 1 June 2018).
- Midtbø, I.G.H.; Phaneuf, B.A. Automated Ships Ltd and KONGSBERG to Build First Unmanned and Fully-Automated Vessel for Offshore Operations. Available online: http://www.automatedshipsltd.com/ (accessed on 1 June 2018).
- Jafarnia-Jahromi, A.; Broumandan, A.; Nielsen, J.; Lachapelle, G. GPS vulnerability to spoofing threats and a review of antispoofing techniques. Int. J. Navig. Obs.
**2012**, 2012. [Google Scholar] [CrossRef] - Borio, D.; Closas, P. A Fresh Look at GNSS Anti-Jamming. Available online: http://insidegnss.com/a-fresh-look-at-gnss-anti-jamming/ (accessed on 1 June 2018).
- Borio, D.; Dovis, F.; Kuusniemi, H.; Presti, L.L. Impact and Detection of GNSS Jammers on Consumer Grade Satellite Navigation Receivers. Proc. IEEE
**2016**, 104, 1233–1245. [Google Scholar] [CrossRef] - Gao, S.P.a.G.X. GNSS Jamming in the Name of Privacy: Potential Threat to GPS Aviation. Available online: https://www.semanticscholar.org/paper/GNSS-Jamming-in-the-Name-of-privacy-potential-to-Pullen-Gao/a853793ee5d4e1870a9f1b19d072a0b925ae2f0a (accessed on 1 June 2018).
- Marcos, E.P.; Caizzone, S.; Konovaltsev, A.; Cuntz, M.; Elmarissi, W.; Yinusa, K.; Meurer, M. Interference awareness and characterization for GNSS maritime applications. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 908–919. [Google Scholar]
- North Korea’s Jamming Prompts South Korea to Endorse Nationwide eLoran System. Available online: http://insidegnss.com/north-koreas-gps-jamming-prompts-south-korea-to-endorse-nationwide-eloran-system/ (accessed on 1 June 2018).
- Ziebold, R.; Dai, Z.; Lanca, L.; Noack, T.; Engler, E. Initial Realization of a Sensor Fusion Based Onboard Maritime Integrated PNT Unit. TransNav Int. J. Mar. Navig. Saf. Sea Transp.
**2013**, 7, 127–134. [Google Scholar] [CrossRef] [Green Version] - MSC.1/Circ.1575 Guidelines for Shipborne Position, Navigation and Timing (PNT) Data Processing. Available online: http://rise.odessa.ua/texts/MSC1_Circ1575e.php3 (accessed on 1 June 2018).
- Cuntz, M.; Konovaltsev, A.; Meurer, M. Concepts, Development, and Validation of Multiantenna GNSS Receivers for Resilient Navigation. Proc. IEEE
**2016**, 104, 1288–1301. [Google Scholar] [CrossRef] - Abdizadeh, M.; Curran, J.T.; Lachapelle, G. New decision variables for GNSS acquisition in the presence of CW interference. IEEE Trans. Aerosp. Electron. Syst.
**2014**, 50, 2794–2806. [Google Scholar] [CrossRef] - Musumeci, L.; Samson, J.; Dovis, F. Performance assessment of pulse blanking mitigation in presence of multiple distance measuring equipment/tactical air navigation interference on global navigation satellite systems signals. IET Radar Sonar Navig.
**2014**, 8, 647–657. [Google Scholar] [CrossRef] - Gregory Johnson, P.S. Feasibility Study of R-Mode Combining MF DGNSS, AIS, and eLoran Transmissions. Available online: www.iala-aism.org/content/uploads/2016/08/accseas_r_mode_feasibility_study_combined_dgnss_ais_and_eloran.pdf (accessed on 1 June 2018).
- R-Mode Baltic. Available online: http://www.R-Mode-Baltic.eu (accessed on 1 June 2018).
- Moore, T.; Hill, C.; Norris, A.; Hide, C.; Park, D.; Ward, N. The potential impact of GNSS/INS integration on maritime navigation. J. Navig.
**2008**, 61, 221–237. [Google Scholar] [CrossRef] - Mitch, R.H.; Dougherty, R.C.; Psiaki, M.L.; Powell, S.P.; O’Hanlon, B.W.; Bhatti, J.A.; Humphreys, T.E. Signal characteristics of civil GPS jammers. In Proceedings of the ION GNSS. Citeseer, Portland, OR, USA, 20–23 September 2011; Volume 2011, pp. 20–23. [Google Scholar]
- Dovis, F. GNSS Interference Threats and Countermeasures; Artech House: Norwood, MA, USA, 2015. [Google Scholar]
- Curran, J.T.; Bavaro, M.; Closas, P.; Navarro, M. On the Threat of Systematic Jamming of GNSS. In Proceedings of the ION GNSS, Portland, OR, USA, 12–16 September 2016. [Google Scholar]
- Kuusniemi, H.; Airos, E.; Bhuiyan, M.Z.H.; Kröger, T. GNSS jammers: How vulnerable are consumer grade satellite navigation receivers? Eur. J. Navig.
**2012**, 10, 14–21. [Google Scholar] - Grant, A.; Williams, P.; Ward, N.; Basker, S. GPS Jamming and the Impact on Maritime Navigation. J. Navig.
**2009**, 62, 173–187. [Google Scholar] [CrossRef] - Glomsvoll, O.; Bonenberg, L.K. GNSS Jamming Resilience for Close to Shore Navigation in the Northern Sea. J. Navig.
**2017**, 70, 33–48. [Google Scholar] [CrossRef] - Groves, P.D. Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems (GNSS Technology and Applications); Artech House Publishers: Norwood, MA, USA, 2007. [Google Scholar]
- Ziebold, R.; Romanovas, M.; Lanca, L. Activities in Navigation. In Marine Navigation and Safety of Sea Transportation; Chapter Evaluation of Low Cost Tactical Grade MEMS IMU for Maritime Navigation; CRC Press: Boca Raton, FL, USA, 2015; pp. 237–246. [Google Scholar]
- Gordon, R. Principles of Operation A Practical Primer. Available online: tabs1.gerg.tamu.edu/~norman/659/Manuals/rdi_primer.pdf (accessed on 1 June 2018).
- Rudolph, D.; Wilson, T.A. Doppler Velocity Log theory and preliminary considerations for design and construction. In Proceedings of the 2012 Proceedings of IEEE Southeastcon, Orlando, FL, USA, 15–18 March 2012; pp. 1–7. [Google Scholar]
- Miller, P.A.; Farrell, J.A.; Zhao, Y.; Djapic, V. Autonomous Underwater Vehicle Navigation. IEEE J. Ocean. Eng.
**2010**, 35, 663–678. [Google Scholar] [CrossRef] [Green Version] - Guerrero-Font, E.; Massot-Campos, M.; Negre, P.L.; Bonin-Font, F.; Codina, G.O. An USBL-aided multisensor navigation system for field AUVs. In Proceedings of the 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany, 19–21 September 2016; pp. 430–435. [Google Scholar]
- Dukan, F.; Sørensen, A.J. Integration filter for APS, DVL, IMU and pressure gauge for underwater vehicles. IFAC Proc. Vol.
**2013**, 46, 280–285. [Google Scholar] [CrossRef] - Zhang, Y. An approach of DVL-aided SDINS alignment for in-motion vessel. Opt.-Int. J. Light Electron Opt.
**2013**, 124, 6270–6275. [Google Scholar] [CrossRef] - Romanovas, M.; Ziebold, R.; Lança, L. A method for IMU/GNSS/Doppler Velocity Log integration in marine applications. In Proceedings of the 2015 International Association of Institutes of IEEE Navigation World Congress (IAIN), Prague, Czech Republic, 20–23 October 2015; pp. 1–8. [Google Scholar]
- Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents); The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Julier, S.; Uhlmann, J. A New Extension of the Kalman Filter to Nonlinear Systems. Int. Symp. Aerosp./Def. Sens. Simul. Controls
**1997**. [Google Scholar] [CrossRef] - Wan, E.; Van Der Merwe, R. The Unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar]
- Julier, S.; Uhlmann, J.; Durrant-Whyte, H. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control
**2000**, 45, 477–482. [Google Scholar] [CrossRef] - Yang, Y.; Zhou, J.; Loffeld, O. Quaternion-based Kalman filtering on INS/GPS. In Proceedings of the 2012 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 511–518. [Google Scholar]
- Van der Merwe, R.; Wan, E. Sigma-Point Kalman Filters for Integrated Navigation. In Proceedings of the 60th Annual Meeting of The Institute of Navigation (ION), Daton, OH, USA, 7–9 June 2004. [Google Scholar]
- Borre, K.; Strang, G. Algorithms for Global Positioning; Chapter Essential Ideas And Applications of GNSS; Wellesley-Cambridge Press: Wellesley, MA, USA, 2010. [Google Scholar]
- Sola, J. Quaternion kinematics for the error-state KF. Available online: https://www.researchgate.net/profile/Joan_Sola2/publication/278619675_Quaternion_kinematics_for_the_error-state_KF/links/5641fa4e08aeacfd8937e691/Quaternion-kinematics-for-the-error-state-KF.pdf (accessed on 1 June 2018).
- Teunissen, P. A general multivariate formulation of the multi-antenna GNSS attitude determination problem. Artif. Satell.
**2007**, 42, 97–111. [Google Scholar] [CrossRef] - Medina, D.; Heßelbarth, A.; Büscher, R.; Ziebold, R.; García, J. On the Kalman filtering formulation for RTK joint positioning and attitude quaternion determination. In Proceedings of the 2018 IEEE/ION IEEE Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 597–604. [Google Scholar]
- Takasu, T. RTKLIB: An Open Source Program Package for GNSS Positioning. Available online: http://www.rtklib.com (accessed on 1 June 2018).
- iMAR Navigation GmbH. iMAR FCAI IMU Specification. Available online: https://bit.ly/2NfqBtO (accessed on 1 September 2018).
- Foruno. Doppler Sonar Foruno DS60 Data Sheet. Available online: https://www.furuno.com/files/Brochure/161/upload/ds-60.pdf (accessed on 1 September 2018).
- Gewies, S.; Becker, C.; Noack, T. Deterministic Framework for parallel real-time Processing in GNSS Applications. In Proceedings of the 2012 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) & European Workshop on GNSS Signals and Signal Processing, Noordwijk, The Netherlands, 5–7 December 2012. [Google Scholar]
- Jiang, Z.; Groves, P.D. GNSS NLOS and Multipath Error Mitigation Using Advanced Multi-Constellation Consistency Checking with Height Aiding. Available online: https://www.semanticscholar.org/paper/GNSS-NLOS-and-Multipath-Error-Mitigation-using-with-Jiang-Groves/d8aab502bc2ad5886999c1d2e189af31184570b7 (accessed on 1 June 2018).
- Medina, D.A.; Romanovas, M.; Herrera-Pinzón, I.; Ziebold, R. Robust position and velocity estimation methods in integrated navigation systems for inland water applications. In Proceedings of the 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, GA, USA, 11–14 April 2016; pp. 491–501. [Google Scholar]
- Kuusniemi, H. User-Level Reliability and Quality Monitoring in Satellite-Based Personal Navigation. Ph.D. Thesis, Tampere University of Technology, Tampere, Finland, 2005. [Google Scholar]
- Ziebold, R.; Lanca, L.; Romanovas, M. On fault detection and exclusion in snapshot and recursive positioning algorithms for maritime applications. Eur. Transp. Res. Rev.
**2016**, 9, 1. [Google Scholar] [CrossRef]

**Figure 1.**An overview of the civilian maritime jamming test area 10 km north of Peninsula Darß (54,5474 N, 12,8154 E).

**Figure 6.**2D histogram plot of carrier-to-noise density ratio (CN0) versus elevation angle without jamming (

**left**); for Scenario A (

**middle**) and Scenario B (

**right**).

**Figure 7.**Measured dependency of the pseudorange error statistics (standard deviation) on the elevation angle in the lab experiment.

**Figure 8.**Recorded dependency of the pseudorange error statistics on the receiver reported CN0 value for lab experiment.

**Figure 9.**An overview of GPS positioning results of the three antennas/receivers onboard the vessel BALTIC TAUCHER II during the measurement campaign in the Baltic Sea, 2 October 2015 at UTC 6:28–8:18: (

**a**) distance of the BALTIC TAUCHER II to the jammer on board the vessel AARON; (

**b**) maximum receiver reported CN0 of the tracked satellites; (

**c**) total number of tracked satellites; (

**d**) geometric dilution of precision (GDOP); (

**e**) horizontal positioning error of GPS SPP (when GPS solution available, i.e., $N>4$) (HPE); (

**f**) reference trajectory of BALTIC TAUCHER II (black line) and GPS SPP results of the three antennas + receivers in the local navigation frame of vessel AARON.

**Figure 10.**Mean HPE versus GDOP for all three antennas together. Error bars mark the 1$\sigma $ values.

**Figure 11.**An example of the performance of the hybrid IMU/GNNS/DVL system during the time when fewer than four satellites are available: segment overview (

**left**); number of available satellites (

**top right**); and the HPE (

**bottom right**).

**Figure 12.**The performance of the hybrid IMU/GNSS/DVL system during the complete measurement scenario using the midship GPS antenna: overview (

**left**); number of available satellites (

**top right**); and the HPE (

**bottom right**).

Noise Model | 95% HPE [m] | 99% HPE [m] | Max. HPE [m] |
---|---|---|---|

Elev. model | 10.1 | 17.7 | 23.3 |

CN0 model | 10.6 | 21.2 | 27.0 |

Const. noise | 10.6 | 21.2 | 26.9 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ziebold, R.; Medina, D.; Romanovas, M.; Lass, C.; Gewies, S.
Performance Characterization of GNSS/IMU/DVL Integration under Real Maritime Jamming Conditions. *Sensors* **2018**, *18*, 2954.
https://doi.org/10.3390/s18092954

**AMA Style**

Ziebold R, Medina D, Romanovas M, Lass C, Gewies S.
Performance Characterization of GNSS/IMU/DVL Integration under Real Maritime Jamming Conditions. *Sensors*. 2018; 18(9):2954.
https://doi.org/10.3390/s18092954

**Chicago/Turabian Style**

Ziebold, Ralf, Daniel Medina, Michailas Romanovas, Christoph Lass, and Stefan Gewies.
2018. "Performance Characterization of GNSS/IMU/DVL Integration under Real Maritime Jamming Conditions" *Sensors* 18, no. 9: 2954.
https://doi.org/10.3390/s18092954