Next Issue
Volume 5, November-December
Previous Issue
Volume 5, April-July
 
 
ijms-logo

Journal Browser

Journal Browser

Int. J. Mol. Sci., Volume 5, Issue 8 (August-October 2004) – 2 articles , Pages 224-264

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
286 KiB  
Article
Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3) and Ammonia (NH3) Donor-Acceptor Complex
by Dulal C. Ghosh and Soma Bhattacharyya
Int. J. Mol. Sci. 2004, 5(8), 239-264; https://doi.org/10.3390/i5050239 - 30 Sep 2004
Cited by 42 | Viewed by 11349
Abstract
The formation of the F3B–NH3 supermolecule by chemical interaction of its fragment parts, BF3 and NH3, and the dynamics of internal rotation about the ‘B–N’ bond have been studied in terms of parameters provided by the molecular [...] Read more.
The formation of the F3B–NH3 supermolecule by chemical interaction of its fragment parts, BF3 and NH3, and the dynamics of internal rotation about the ‘B–N’ bond have been studied in terms of parameters provided by the molecular orbital and density functional theories. It is found that the pairs of frontier orbitals of the interacting fragments have matching symmetry and are involved in the charge transfer interaction. The donation process stems from the HOMO of the donor into the LUMO of the acceptor and simultaneously, back donation stems from the HOMO of acceptor into the LUMO of the donor. The density functional computation of chemical activation in the donor and acceptor fragments, associated with the physical process of structural reorganization just prior to the event of chemical reaction, indicates that BF3 becomes more acidic and NH3 becomes more basic, compared to their separate equilibrium states. Theoretically it is observed that the chemical reaction event of the formation of the supermolecule from its fragment parts is in accordance with the chemical potential equalization principle of the density functional theory and the electronegativity equalization principle of Sanderson. The energetics of the chemical reaction, the magnitude of the net charge transfer and the energy of the newly formed bond are quite consistent, both internally and with the principle of maximum hardness, PMH. The dynamics of the internal rotation of one part with respect to the other part of the supermolecule about the ‘B–N’ bond mimics the pattern of the conformational isomerism of the isostructural ethane molecule. It is also observed that the dynamics and evolution of molecular conformations as a function of dihedral angles is also in accordance with the principle of maximum hardness, PMH. Quite consistent with spectroscopic predictions, the height of the molecule’s barrier to internal rotation is very small. A rationale for the low height of the barrier has been put forward in terms of the energy partitioning analysis. On the question of origin of the barrier to internal rotation, we conclude that the conformational barrier to internal rotation does not originate from a particular region of the molecule, but rather it is a result of the subtle conjoint interplay of a number of opposing effects of one- and two-center bonded and nonbonded energy terms involving the entire skeleton of the molecule. Full article
Show Figures

Figure 1

227 KiB  
Article
Density Functional Studies of the Dipole Polarizabilities of Substituted Stilbene, Azoarene and Related Push-Pull Molecules
by Alan Hinchliffe, Beatrice Nikolaidi and Humberto J. Soscún Machado
Int. J. Mol. Sci. 2004, 5(8), 224-238; https://doi.org/10.3390/i5050224 - 30 Sep 2004
Cited by 34 | Viewed by 10689
Abstract
We report high quality B3LYP Ab Initio studies of the electric dipole polarizability of three related series of molecules: para-XC6H4Y, XC6H4CH=CHC6H4Y and XC6H4N=NC6H4Y, where X and Y represent H together with the six various activating through deactivating groups NH2, OH, OCH3, CHO, CN [...] Read more.
We report high quality B3LYP Ab Initio studies of the electric dipole polarizability of three related series of molecules: para-XC6H4Y, XC6H4CH=CHC6H4Y and XC6H4N=NC6H4Y, where X and Y represent H together with the six various activating through deactivating groups NH2, OH, OCH3, CHO, CN and NO2. Molecules for which X is activating and Y deactivating all show an enhancement to the mean polarizability compared to the unsubstituted molecule, in accord with the order given above. A number of representative Ab Initio calculations at different levels of theory are discussed for azoarene; all subsequent Ab Initio polarizability calculations were done at the B3LYP/6-311G(2d,1p)//B3LYP/6-311++G(2d,1p) level of theory. We also consider semi-empirical polarizability and molecular volume calculations at the AM1 level of theory together with QSAR-quality empirical polarizability calculations using Miller’s scheme. Least-squares correlations between the various sets of results show that these less costly procedures are reliable predictors of for the first series of molecules, but less reliable for the larger molecules. Full article
Show Figures

Figure 1

Back to TopTop