Update on Nicotinamide and Its Application in the Management of Glaucoma
Abstract
1. Introduction
2. Biological Role of NAD+ and NAM in RGC Metabolism
2.1. NAD+ as a Metabolic Hub in RGC Function
2.2. NAD+ Salvage Pathway Enzymes in the Retina
2.3. NAD+ Metabolic Biomarkers as Translational Tools in Glaucoma
3. Mechanistic Evidence: Animal Models and Cellular Studies
3.1. Early NAD+ Depletion and Mitochondrial Vulnerability in RGCs
3.2. NAM Supplementation Prevents RGC Dysfunction and Structural Loss
3.3. Dendritic Preservation as an Early Neuroprotective Target
3.4. Broad Neuroprotection Across Injury Models
4. Clinical Evidence: Research on NAM Therapy in Human Glaucoma Management
4.1. Early Clinical Interventions Demonstrate Functional Improvements
4.2. Novel Biomarkers Beyond IOP in Glaucoma
4.3. Population-Level Evidence from the U.S. and Korea
4.4. Clinical Safety and Tolerability Across Human Trials
5. Challenges, Limitations and Future Directions
5.1. Pharmacokinetics and Dose Optimization
5.2. Combination Therapies and Synergistic Approaches
5.3. Current Large-Scale Clinical Trials Investigating Nicotinamide in Glaucoma
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Harder, J.M.; Foxworth, N.E.; Cochran, K.E.; Philip, V.M.; Porciatti, V.; Smithies, O.; John, S.W. Vitamin B(3) modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 2017, 355, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 2015, 350, 1208–1213. [Google Scholar] [CrossRef]
- Hui, F.; Tang, J.; Williams, P.A.; McGuinness, M.B.; Hadoux, X.; Casson, R.J.; Coote, M.; Trounce, I.A.; Martin, K.R.; van Wijngaarden, P.; et al. Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: A crossover randomized clinical trial. Clin. Exp. Ophthalmol. 2020, 48, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Bhartiya, S. Niacinamide and Neuroprotection: The Glaucoma Holy Grail. J. Curr. Glaucoma Pract. 2022, 16, 141–143. [Google Scholar] [CrossRef]
- Babighian, S.; Gattazzo, I.; Zanella, M.S.; Galan, A.; D’Esposito, F.; Musa, M.; Gagliano, C.; Lapenna, L.; Zeppieri, M. Nicotinamide: Bright Potential in Glaucoma Management. Biomedicines 2024, 12, 1655. [Google Scholar] [CrossRef]
- Casson, R.J.; Chidlow, G.; Crowston, J.G.; Williams, P.A.; Wood, J.P.M. Retinal energy metabolism in health and glaucoma. Prog. Retin. Eye Res. 2021, 81, 100881. [Google Scholar] [CrossRef]
- Wang, L.; Dong, J.; Cull, G.; Fortune, B.; Cioffi, G.A. Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2–9. [Google Scholar] [CrossRef]
- Du, L.; Zhang, X.; Han, Y.Y.; Burke, N.A.; Kochanek, P.M.; Watkins, S.C.; Graham, S.H.; Carcillo, J.A.; Szabo, C.; Clark, R.S. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J. Biol. Chem. 2003, 278, 18426–18433. [Google Scholar] [CrossRef]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD(+) metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2020, 5, 227. [Google Scholar] [CrossRef] [PubMed]
- Petriti, B.; Williams, P.A.; Lascaratos, G.; Chau, K.Y.; Garway-Heath, D.F. Neuroprotection in Glaucoma: NAD(+)/NADH Redox State as a Potential Biomarker and Therapeutic Target. Cells 2021, 10, 1402. [Google Scholar] [CrossRef]
- Garway-Heath, D.; Petriti, B.; Rabiolo, A.; Chau, K.; Williams, P.; Giovanni, M.; Lascaratos, G. Mitochondrial respiratory function is strongly associated with progressive glaucomatous vision loss. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Tribble, J.R.; Hagstrom, A.; Jusseaume, K.; Lardner, E.; Wong, R.C.; Stalhammar, G.; Williams, P.A. NAD salvage pathway machinery expression in normal and glaucomatous retina and optic nerve. Acta Neuropathol. Commun. 2023, 11, 18. [Google Scholar] [CrossRef]
- Berger, F.; Lau, C.; Dahlmann, M.; Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 2005, 280, 36334–36341. [Google Scholar] [CrossRef] [PubMed]
- Felici, R.; Lapucci, A.; Ramazzotti, M.; Chiarugi, A. Insight into molecular and functional properties of NMNAT3 reveals new hints of NAD homeostasis within human mitochondria. PLoS ONE 2013, 8, e76938, Erratum in PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Zhang, X.; Kurnasov, O.V.; Karthikeyan, S.; Grishin, N.V.; Osterman, A.L.; Zhang, H. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J. Biol. Chem. 2003, 278, 13503–13511. [Google Scholar] [CrossRef]
- Gilley, J.; Coleman, M.P. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 2010, 8, e1000300. [Google Scholar] [CrossRef] [PubMed]
- Kouassi Nzoughet, J.; Chao de la Barca, J.M.; Guehlouz, K.; Leruez, S.; Coulbault, L.; Allouche, S.; Bocca, C.; Muller, J.; Amati-Bonneau, P.; Gohier, P.; et al. Nicotinamide Deficiency in Primary Open-Angle Glaucoma. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2509–2514. [Google Scholar] [CrossRef]
- Yang, X.; Cai, J.; Powell, D.W.; Paladugu, H.; Kuehn, M.H.; Tezel, G. Up-regulation of sirtuins in the glaucomatous human retina. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2398. [Google Scholar]
- Fatokun, A.A.; Dawson, V.L.; Dawson, T.M. Parthanatos: Mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol. 2014, 171, 2000–2016. [Google Scholar] [CrossRef]
- Zanon-Moreno, V.; Garcia-Medina, J.J.; Moreno-Nadal, M.A.; Vinuesa-Silva, I.; Pinazo-Duran, M.D. Cell Death Markers in Primary Open-Angle Glaucoma. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3630. [Google Scholar]
- Williams, P.A.; Harder, J.M.; Cardozo, B.H.; Foxworth, N.E.; John, S.W.M. Nicotinamide treatment robustly protects from inherited mouse glaucoma. Commun. Integr. Biol. 2018, 11, e1356956. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, N.; Chrenek, M.A.; Girardot, P.E.; Wang, J.; Sellers, J.T.; Geisert, E.E.; Brenner, C.; Nickerson, J.M.; Boatright, J.H.; et al. Systemic Treatment with Nicotinamide Riboside Is Protective in Two Mouse Models of Retinal Ganglion Cell Damage. Pharmaceutics 2021, 13, 893. [Google Scholar] [CrossRef]
- Libby, R.T.; Anderson, M.G.; Pang, I.-H.; Robinson, Z.H.; Savinova, O.V.; Cosma, I.M.; Snow, A.M.Y.; Wilson, L.A.; Smith, R.S.; Clark, A.F.; et al. Inherited glaucoma in DBA/2J mice: Pertinent disease features for studying the neurodegeneration. Vis. Neurosci. 2005, 22, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Harder, J.M.; Foxworth, N.E.; Cardozo, B.H.; Cochran, K.E.; John, S.W.M. Nicotinamide and WLD(S) Act Together to Prevent Neurodegeneration in Glaucoma. Front. Neurosci. 2017, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Tribble, J.R.; Joe, M.; Varricchio, C.; Otmani, A.; Canovai, A.; Habchi, B.; Daskalakis, E.; Chaleckis, R.; Loreto, A.; Gilley, J.; et al. NMNAT2 is a druggable target to drive neuronal NAD production. Nat. Commun. 2024, 15, 6256, Correction in Nat. Commun. 2024, 15, 8143. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, J.Y.; Rhim, W.K.; Cimaglia, G.; Want, A.; Morgan, J.E.; Williams, P.A.; Park, C.G.; Han, D.K.; Rho, S. Extracellular vesicle encapsulated nicotinamide delivered via a trans-scleral route provides retinal ganglion cell neuroprotection. Acta Neuropathol. Commun. 2024, 12, 65. [Google Scholar] [CrossRef]
- Bai, P.; Cantó, C.; Oudart, H.; Brunyánszki, A.; Cen, Y.; Thomas, C.; Yamamoto, H.; Huber, A.; Kiss, B.; Houtkooper, R.H.; et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011, 13, 461–468. [Google Scholar] [CrossRef]
- Ijichi, H.; Ichiyama, A.; Hayaishi, O. Studies on the biosynthesis of nicotinamide adenine dinucleotide. 3. Comparative in vivo studies on nicotinic acid, nicotinamide, and quinolinic acid as precursors of nicotinamide adenine dinucleotide. J. Biol. Chem. 1966, 241, 3701–3707. [Google Scholar] [CrossRef]
- Cimaglia, G.; Tribble, J.R.; Votruba, M.; Williams, P.A.; Morgan, J.E. Oral nicotinamide provides robust, dose-dependent structural and metabolic neuroprotection of retinal ganglion cells in experimental glaucoma. Acta Neuropathol. Commun. 2024, 12, 137. [Google Scholar] [CrossRef]
- Williams, P.A.; Howell, G.R.; Barbay, J.M.; Braine, C.E.; Sousa, G.L.; John, S.W.; Morgan, J.E. Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma. PLoS ONE 2013, 8, e72282. [Google Scholar] [CrossRef]
- Morquette, J.B.; Di Polo, A. Dendritic and Synaptic Protection: Is It Enough to Save the Retinal Ganglion Cell Body and Axon? J. Neuro-Ophthalmol. 2008, 28, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Boodram, V.; Lim, H. Differential protection by nicotinamide in a mouse model of glaucoma DBA/2J revealed by second-harmonic generation microscopy. PLoS ONE 2024, 19, e0309400. [Google Scholar] [CrossRef]
- Zuo, L.; Khan, R.S.; Lee, V.; Dine, K.; Wu, W.; Shindler, K.S. SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5097–5102. [Google Scholar] [CrossRef]
- Beirowski, B.; Babetto, E.; Coleman, M.P.; Martin, K.R. The WldS gene delays axonal but not somatic degeneration in a rat glaucoma model. Eur. J. Neurosci. 2008, 28, 1166–1179. [Google Scholar] [CrossRef]
- De Moraes, C.G.; John, S.W.M.; Williams, P.A.; Blumberg, D.M.; Cioffi, G.A.; Liebmann, J.M. Nicotinamide and Pyruvate for Neuroenhancement in Open-Angle Glaucoma: A Phase 2 Randomized Clinical Trial. JAMA Ophthalmol. 2022, 140, 11–18. [Google Scholar] [CrossRef]
- Chauhan, B.C.; Mikelberg, F.S.; Balaszi, A.G.; LeBlanc, R.P.; Lesk, M.R.; Trope, G.E. Canadian Glaucoma Study: 2. risk factors for the progression of open-angle glaucoma. Arch. Ophthalmol. 2008, 126, 1030–1036. [Google Scholar] [CrossRef]
- Gustavsson, S.T.; Enz, T.J.; Tribble, J.R.; Nilsson, M.; Lindqvist, A.; Linden, C.; Hagstrom, A.; Rutigliani, C.; Lardner, E.; Stalhammar, G.; et al. Nicotinamide Prevents Retinal Vascular Dropout in a Rat Model of Ocular Hypertension and Supports Ocular Blood Supply in Glaucoma Patients. Investig. Ophthalmol. Vis. Sci. 2023, 64, 34. [Google Scholar] [CrossRef] [PubMed]
- Petriti, B.; Rabiolo, A.; Chau, K.Y.; Williams, P.A.; Montesano, G.; Lascaratos, G.; Garway-Heath, D.F. Peripheral blood mononuclear cell respiratory function is associated with progressive glaucomatous vision loss. Nat. Med. 2024, 30, 2362–2370. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.I.; Kim, Y.C.; Park, C.K. Dietary Niacin and Open-Angle Glaucoma: The Korean National Health and Nutrition Examination Survey. Nutrients 2018, 10, 387. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.M.; Lee, K.Y.; Kim, B.; Lee, M.Y.; Park, K.H. Relationships between Obesity, Nutrient Supply and Primary Open Angle Glaucoma in Koreans. Nutrients 2020, 12, 878. [Google Scholar] [CrossRef]
- Lee, S.Y.; Tseng, V.L.; Kitayama, K.; Avallone, T.J.; Yu, F.; Pan, D.; Caprioli, J.; Coleman, A.L. Associations Between Niacin Intake and Glaucoma in the National Health and Nutrition Examination Survey. J. Glaucoma 2023, 32, 443–450. [Google Scholar] [CrossRef]
- Taechameekietichai, T.; Chansangpetch, S.; Peerawaranun, P.; Lin, S.C. Association between Daily Niacin Intake and Glaucoma: National Health and Nutrition Examination Survey. Nutrients 2021, 13, 4263. [Google Scholar] [CrossRef]
- Hou, J.; Wen, Y.; Gao, S.; Jiang, Z.; Tao, L. Association of dietary intake of B vitamins with glaucoma. Sci. Rep. 2024, 14, 8539. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Yang, Y.J. Comparison of food and nutrient intake according to the presence of glaucoma among Korean older adults. Nutr. Res. Pract. 2024, 18, 701–710. [Google Scholar] [CrossRef]
- Knip, M.; Douek, I.F.; Moore, W.P.T.; Gillmor, H.A.; McLean, A.E.M.; Bingley, P.J.; Gale, E.A.M.; ENDIT Group. Safety of high-dose nicotinamide: A review. Diabetologia 2000, 43, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.; Costa, T.R.; Vivas, M.; Monteiro, C.; Vaz, F.T.; Ferreira, Q.; Prieto, I.; Pinto, L.A.; Ferreira, J.T. Vitamin B(3) Supplementation for Optic Neuropathies: A Comprehensive Review. J. Ocul. Pharmacol. Ther. 2024, 40, 111–116. [Google Scholar] [CrossRef]
- Cimaglia, G.; Votruba, M.; Morgan, J.E.; Andre, H.; Williams, P.A. Potential Therapeutic Benefit of NAD(+) Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients 2020, 12, 2871. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.S.; Song, S.B. Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules 2020, 10, 687. [Google Scholar] [CrossRef] [PubMed]
- Jadeja, R.N.; Thounaojam, M.C.; Bartoli, M.; Martin, P.M. Implications of NAD(+) Metabolism in the Aging Retina and Retinal Degeneration. Oxid. Med. Cell. Longev. 2020, 2020, 2692794. [Google Scholar] [CrossRef]
- Ketron, G.L.; Grun, F.; Grill, J.D.; Feldman, H.H.; Rissman, R.A.; Brewer, G.J. Pharmacokinetic and pharmacodynamic assessment of oral nicotinamide in the NEAT clinical trial for early Alzheimer’s disease. Alzheimers Res. Ther. 2025, 17, 59. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.K.S.; Ren, S.T.; Chan, P.P.M.; Wan, K.H.N.; Kam, A.K.W.; Lai, G.W.K.; Chiu, V.S.M.; Ko, M.W.L.; Yiu, C.K.F.; Yu, M.C.Y. Nicotinamide riboside as a neuroprotective therapy for glaucoma: Study protocol for a randomized, double-blind, placebo-control trial. Trials 2022, 23, 45, Correction in Trials 2022, 23, 134. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G. Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021, 10, 1372. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. The Glaucoma Nicotinamide Trial. 2022. Available online: https://clinicaltrials.gov/study/NCT05275738 (accessed on 5 September 2025).
- ClinicalTrials.gov. Nicotinamide in Glaucoma (NAMinG): A Randomised, Placebo-Controlled, Multi-Centre, Phase III Trial (NAMinG). 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT05405868 (accessed on 30 September 2025).
- ClinicalTrials.gov. Nicotinamide and Pyruvate for Open Angle Glaucoma: A Randomized Clinical Study. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT05695027 (accessed on 30 September 2025).
- ClinicalTrials.gov. Efficacy of Nicotinamide on Retinal Ganglion Cell Functions in Glaucoma Patients. 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT06078605 (accessed on 30 September 2025).
- ClinicalTrials.gov. Comparisons of NAD Precursors for Neuroenhancement in Glaucoma Patients. 2024. Available online: https://clinicaltrials.gov/ct2/show/NCT06991712 (accessed on 30 September 2025).

| Study | Intervention | Theoretical Basis | Primary Outcome Measure | Study Design | Trial Phase | Participants | Dosage Regimen | Functional Improvement | Structural Change (RNFL 1) |
|---|---|---|---|---|---|---|---|---|---|
| Hui et al. (2020) [4] | NAM 2 monotherapy | Based on NAD+ 3 supplementation improving mitochondrial function and neuroprotection | PhNR 4 amplitude (Vmax 5 and Vmax ratio) via ERG 6 | Double-masked, randomized crossover design with two 6-week periods; no washout | Not stated | 57 | NAM: 1.5 g/day → 3.0 g/day | Significant PhNR improvements (14.8%, p = 0.02); 27% showed MD 7 improvement ≥1 dB 8 | No significant change |
| De Moraes et al. (2022) [36] | Combination of NAM and pyruvate | NAM and pyruvate combination enhances metabolic support and antioxidant defense | Number of SAP 9 test points improving beyond normal variability | Double-masked, randomized, wait-and-see design over ~2.2 months | Phase 2 | 42 | NAM: 1–3 g/day + Pyruvate: 1.5–3 g/day | Median of 15 improving SAP points (vs. 7 in placebo, p = 0.005); mostly in mild-to-moderate regions | No statistically significant change; trend toward improvement |
| Trial | Phase | Enrollment (Estimated) | Study Design | Intervention | Primary Outcome | Location |
|---|---|---|---|---|---|---|
| NCT05275738 (TGNT) [54] | NA 1 | 660 | Randomized, Parallel, Quadruple Masking | NAM 2 vs. Placebo | Visual field progression (2 years) | Sweden |
| NCT05405868 (NAMinG) [55] | Phase 3 | 496 | Randomized, Parallel, Triple Masking | NAM vs. Placebo | Change in visual field MD 3 (27 months) | United Kingdom |
| NCT05695027 [56] | Phase 2/3 | ~250 | Randomized, Parallel, Single Masking | NAM + Pyruvate vs. Placebo | Visual field and OCT 4 structural changes (87 weeks) | United States |
| NCT06078605 [57] | NA | 80 | Randomized, Crossover, Double Masking | NAM (Mitovita) vs. Placebo | ERG 5 PhNR 6_min change (12 weeks) | South Korea |
| NCT06991712 [58] | Phase 2 | 138 | Randomized, Parallel, Quadruple Masking | NR 7, NAM, NMN 8, NA 9 vs. Placebo | Visual field sensitivity (2 weeks), plasma NAD+ 10 metabolites | Hong Kong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, T.-H.; Hung, S.-H.; Lan, C.-H.; Yen, W.-T.; Lu, D.-W. Update on Nicotinamide and Its Application in the Management of Glaucoma. Int. J. Mol. Sci. 2025, 26, 10789. https://doi.org/10.3390/ijms262110789
Chiu T-H, Hung S-H, Lan C-H, Yen W-T, Lu D-W. Update on Nicotinamide and Its Application in the Management of Glaucoma. International Journal of Molecular Sciences. 2025; 26(21):10789. https://doi.org/10.3390/ijms262110789
Chicago/Turabian StyleChiu, Ta-Hung, Shih-Heng Hung, Chiao-Hsin Lan, Wei-Ting Yen, and Da-Wen Lu. 2025. "Update on Nicotinamide and Its Application in the Management of Glaucoma" International Journal of Molecular Sciences 26, no. 21: 10789. https://doi.org/10.3390/ijms262110789
APA StyleChiu, T.-H., Hung, S.-H., Lan, C.-H., Yen, W.-T., & Lu, D.-W. (2025). Update on Nicotinamide and Its Application in the Management of Glaucoma. International Journal of Molecular Sciences, 26(21), 10789. https://doi.org/10.3390/ijms262110789

