Comparative Analyses Suggest Genome Stability and Plasticity in Stenotrophomonas maltophilia
Abstract
1. Introduction
2. Results
2.1. Overview of Stenotrophomonas maltophilia
2.2. Distribution of Mobile Genetic Elements(MGEs)
2.2.1. Integrative and Conjugative Elements (ICEs) and Integrative and Mobilizable Elements (IMEs)
2.2.2. Prophages
2.2.3. Insertion Sequences
2.3. Genomic Rearrangements
2.4. Antibiotic Resistance Genes
2.5. Virulence Factors
2.6. Defense-Anti-Defense and Toxin-Antitoxin (TA) System
2.7. Evolutionary in the Core Genomes
3. Discussion
4. Materials and Methods
4.1. Data Acquisition
4.2. Prediction of Mobile Genetic Elements (MGEs)
4.3. Functional Annotation
4.4. Genome Rearrangement
4.5. Prediction of Genome Defense System
4.6. Recombination and Linkage Disequilibrium (LD) Analyses
4.7. Statistical Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, A.P.; Duckworth, G.J. The Emergence of Stenotrophomonas Maltophilia. BMJ 2008, 336, 1322. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lai, C.-H.; Wong, W.-W.; Chin, C.; Huang, C.-K.; Lin, H.-H.; Chen, W.-F.; Yu, K.-W.; Liu, C.-Y. Central Venous Catheter-Related Stenotrophomonas Maltophilia Bacteraemia and Associated Relapsing Bacteraemia in Haematology and Oncology Patients. Clin. Microbiol. Infect. 2006, 12, 986–991. [Google Scholar] [CrossRef]
- Juhász, M.; Antal, B.; Herczeg, G.; Nemes, B.; Fülesdi, B.; Végh, T. Hemorrhagic Pneumonia in a Kidney Transplant Recipient Caused by Stenotrophomonas Maltophilia Infection: A Case Report. Transplant. Proc. 2024, 56, 1192–1195. [Google Scholar] [CrossRef]
- Victor, M.A.; Arpi, M.; Bruun, B.; Jønsson, V.; Hansen, M.M. Xanthomonas Maltophilia Bacteremia in Immunocompromised Hematological Patients. Scand. J. Infect. Dis. 1994, 26, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Sakhnini, E.; Weissmann, A.; Oren, I. Fulminant Stenotrophomonas Maltophilia Soft Tissue Infection in Immunocompromised Patients: An Outbreak Transmitted via Tap Water. Am. J. Med. Sci. 2002, 323, 269–272. [Google Scholar] [CrossRef]
- Kannangara, D.; Pandya, D. Stenotrophomonas Maltophilia: Attributable Mortality May Be Overestimated. Int. J. Infect. Dis. 2020, 101, 146–147. [Google Scholar] [CrossRef]
- Hasbek, M.; Aldemir, Ö.; Çakır Kıymaz, Y.; Baysal, C.; Yıldırım, D.; Büyüktuna, S.A. Mortality Rates and Risk Factors Associated with Mortality in Patients with Stenotrophomonas Maltophilia Primary Bacteraemia and Pneumonia. Diagn. Microbiol. Infect. Dis. 2025, 111, 116664. [Google Scholar] [CrossRef]
- Hoefel, D.; Monis, P.T.; Grooby, W.L.; Andrews, S.; Saint, C.P. Profiling Bacterial Survival through a Water Treatment Process and Subsequent Distribution System. J. Appl. Microbiol. 2005, 99, 175–186. [Google Scholar] [CrossRef]
- Jakobi, M.; Winkelmann, G.; Kaiser, D.; Kempter, C.; Jung, G.; Berg, G.; Bahl, H. Maltophilin: A New Antifungal Compound Produced by Stenotrophomonas Maltophilia R3089. J. Antibiot. 1996, 49, 1101–1104. [Google Scholar] [CrossRef]
- Kovaleva, J.; Degener, J.E.; Van Der Mei, H.C. Mimicking Disinfection and Drying of Biofilms in Contaminated Endoscopes. J. Hosp. Infect. 2010, 76, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Roskot, N.; Smalla, K. Genotypic and Phenotypic Relationships between Clinical and Environmental Isolates of Stenotrophomonas Maltophilia. J. Clin. Microbiol. 1999, 37, 3594–3600. [Google Scholar] [CrossRef]
- Youenou, B.; Favre-Bonté, S.; Bodilis, J.; Brothier, E.; Dubost, A.; Muller, D.; Nazaret, S. Comparative Genomics of Environmental and Clinical Stenotrophomonas Maltophilia Strains with Different Antibiotic Resistance Profiles. Genome Biol. Evol. 2015, 7, 2484–2505. [Google Scholar] [CrossRef]
- Tettelin, H.; Masignani, V.; Cieslewicz, M.J.; Donati, C.; Medini, D.; Ward, N.L.; Angiuoli, S.V.; Crabtree, J.; Jones, A.L.; Durkin, A.S.; et al. Genome Analysis of Multiple Pathogenic Isolates of Streptococcus Agalactiae: Implications for the Microbial “Pan-Genome. ” Proc. Natl. Acad. Sci. USA 2005, 102, 13950–13955. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cheng, T.; Rao, Q.; Zhang, S.; Ma, Y.L. Comparative Genomic Analysis of Stenotrophomonas Maltophilia Unravels Their Genetic Variations and Versatility Trait. J. Appl. Genet. 2023, 64, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.P.; Kumar, S.; Midha, S.; Gautam, V.; Patil, P.B. Taxonogenomics Reveal Multiple Novel Genomospecies Associated with Clinical Isolates of Stenotrophomonas Maltophilia. Microb. Genomics 2018, 4, 207. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Makarova, K.S.; Aravind, L. Horizontal Gene Transfer in Prokaryotes: Quantification and Classification. Annu. Rev. Microbiol. 2001, 55, 709–742. [Google Scholar] [CrossRef]
- Johansson, M.H.K.; Petersen, T.N.; Nag, S.; Lagermann, T.M.R.; Birkedahl, L.E.K.; Tafaj, S.; Bradbury, S.; Collignon, P.; Daley, D.; Dougnon, V.; et al. Investigation of Mobile Genetic Elements and Their Association with Antibiotic Resistance Genes in Clinical Pathogens Worldwide. PLoS ONE 2025, 20, e0330304. [Google Scholar] [CrossRef]
- Kumavath, R.; Gupta, P.; Tatta, E.R.; Mohan, M.S.; Salim, S.A.; Busi, S. Unraveling the Role of Mobile Genetic Elements in Antibiotic Resistance Transmission and Defense Strategies in Bacteria. Front. Syst. Biol. 2025, 5, 1557413. [Google Scholar] [CrossRef]
- Wozniak, R.A.F.; Waldor, M.K. Integrative and Conjugative Elements: Mosaic Mobile Genetic Elements Enabling Dynamic Lateral Gene Flow. Nat. Rev. Microbiol. 2010, 8, 552–563. [Google Scholar] [CrossRef]
- Boncompagni, S.R.; Riccobono, E.; Cusi, M.G.; Di Pilato, V.; Rossolini, G.M. Evidence of Dissemination of a Clc -Type Integrative and Conjugative Element to Stenotrophomonas Maltophilia, Mediating Acquisition of Sul1 and Other Resistance Determinants. Antimicrob. Agents Chemother. 2025, 69, e01554-24. [Google Scholar] [CrossRef]
- Zinder, N.D.; Lederberg, J. Genetic Exchange in Salmonella. J. Bacteriol. 1952, 64, 679–699. [Google Scholar] [CrossRef]
- Brüssow, H.; Canchaya, C.; Hardt, W.-D. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef]
- Mahillon, J.; Chandler, M. Insertion Sequences. Microbiol. Mol. Biol. Rev. 1998, 62, 725–774. [Google Scholar] [CrossRef] [PubMed]
- Starlinger, P.; Saedler, H. Insertion Mutations in Microorganisms. Biochimie 1972, 54, 177–185. [Google Scholar] [CrossRef]
- Kleckner, N. TRANSPOSABLE ELEMENTS IN PROKARYOTES. Annu. Rev. Genet. 1981, 15, 341–404. [Google Scholar] [CrossRef]
- Daubin, V.; Moran, N.A.; Ochman, H. Phylogenetics and the Cohesion of Bacterial Genomes. Science 2003, 301, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M.; Smith, N.H.; O’Rourke, M.; Spratt, B.G. How Clonal Are Bacteria? Proc. Natl. Acad. Sci. USA 1993, 90, 4384–4388. [Google Scholar] [CrossRef] [PubMed]
- Louha, S.; Meinersmann, R.J.; Glenn, T.C. Whole Genome Genetic Variation and Linkage Disequilibrium in a Diverse Collection of Listeria Monocytogenes Isolates. PLoS ONE 2021, 16, e0242297. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S.; Wolf, Y.I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annu. Rev. Microbiol. 2017, 71, 233–261. [Google Scholar] [CrossRef]
- Luria, S.E.; Human, M.L. A Nonhereditary, Host-Induced Variation of Bacterial Viruses. J. Bacteriol. 1952, 64, 557–569. [Google Scholar] [CrossRef]
- Mojica, F.J.M.; Díez-Villaseñor, C.; García-Martínez, J.; Soria, E. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J. Mol. Evol. 2005, 60, 174–182. [Google Scholar] [CrossRef]
- Parma, D.H.; Snyder, M.; Sobolevski, S.; Nawroz, M.; Brody, E.; Gold, L. The Rex System of Bacteriophage Lambda: Tolerance and Altruistic Cell Death. Genes Dev. 1992, 6, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Hiraga, S. Mini-F Plasmid Genes That Couple Host Cell Division to Plasmid Proliferation. Proc. Natl. Acad. Sci. USA 1983, 80, 4784–4788. [Google Scholar] [CrossRef]
- McDaniel, M.S.; Sumpter, N.A.; Lindgren, N.R.; Billiot, C.E.; Swords, W.E. Comparative Genomics of Clinical Stenotrophomonas Maltophilia Isolates Reveals Regions of Diversity Which Correlate with Colonization and Persistence in Vivo. bioRxiv 2023. bioRxiv:2023.07.14.549068. [Google Scholar]
- Crossman, L.C.; Gould, V.C.; Dow, J.M.; Vernikos, G.S.; Okazaki, A.; Sebaihia, M.; Saunders, D.; Arrowsmith, C.; Carver, T.; Peters, N.; et al. The Complete Genome, Comparative and Functional Analysis of Stenotrophomonas Maltophilia Reveals an Organism Heavily Shielded by Drug Resistance Determinants. Genome Biol. 2008, 9, R74. [Google Scholar] [CrossRef]
- Lira, F.; Hernández, A.; Belda, E.; Sánchez, M.B.; Moya, A.; Silva, F.J.; Martínez, J.L. Whole-Genome Sequence of Stenotrophomonas Maltophilia D457, a Clinical Isolate and a Model Strain. J. Bacteriol. 2012, 194, 3563–3564. [Google Scholar] [CrossRef]
- Xie, L.; Zhou, A.; Zhao, J.; Tang, Y.; Zhao, R.; Zhou, Y.; Cao, G.; Zhong, C.; Li, J. Comparative Insights into Multiple Drug Resistance Determinants in Stenotrophomonas Maltophilia MER1. J. Glob. Antimicrob. Resist. 2021, 27, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Feng, J.; Shan, Y.; Zhao, Y.; Qiao, H.; Xie, L.; Lin, X.; Wang, C.; Chuai, X. Characteristic Antimicrobial Resistance of Clinically Isolated Stenotrophomonas Maltophilia CYZ via Complete Genome Sequence. J. Glob. Antimicrob. Resist. 2020, 23, 186–193. [Google Scholar] [CrossRef]
- Kumar, S.; Bansal, K.; Patil, P.P.; Kaur, A.; Kaur, S.; Jaswal, V.; Gautam, V.; Patil, P.B. Genomic Insights into Evolution of Extensive Drug Resistance in Stenotrophomonas Maltophilia Complex. Genomics 2020, 112, 4171–4178. [Google Scholar] [CrossRef]
- Pak, T.R.; Altman, D.R.; Attie, O.; Sebra, R.; Hamula, C.L.; Lewis, M.; Deikus, G.; Newman, L.C.; Fang, G.; Hand, J.; et al. Whole-Genome Sequencing Identifies Emergence of a Quinolone Resistance Mutation in a Case of Stenotrophomonas Maltophilia Bacteremia. Antimicrob. Agents Chemother. 2015, 59, 7117–7120. [Google Scholar] [CrossRef]
- Korotetskiy, I.; Jumagaziyeva, A.; Kerimzhanova, B.; Reva, O.; Kuznetsova, T.; Shilov, S.; Ivanova, L.; Zubenko, N.; Parenova, R.; Iskakbayeva, Z.; et al. Whole Genome Sequence Data of Stenotrophomonas Maltophilia SCAID WND1-2022 (370). Data Brief 2022, 45, 108694. [Google Scholar] [CrossRef]
- Zhao, Y.; Niu, W.; Sun, Y.; Hao, H.; Yu, D.; Xu, G.; Shang, X.; Tang, X.; Lu, S.; Yue, J.; et al. Identification and Characterization of a Serious Multidrug Resistant Stenotrophomonas Maltophilia Strain in China. BioMed Res. Int. 2015, 2015, 580240. [Google Scholar] [CrossRef] [PubMed]
- Kawauchi, R.; Tada, T.; Sherchan, J.B.; Shrestha, S.; Tohya, M.; Hishinuma, T.; Kirikae, T.; Sherchand, J.B. Stenotrophomonas Maltophilia from Nepal Producing Two Novel Antibiotic Inactivating Enzymes, a Class A β-Lactamase KBL-1 and an Aminoglycoside 6’-N-Acetyltransferase AAC(6’)-Iap. Microbiol. Spectr. 2022, 10, e0114322. [Google Scholar] [CrossRef]
- Semai, A.; Plewniak, F.; Lledo, J.; Annonay, G.; Vandecasteele, C.; Lopez-Roques, C.; Bertin, P.N. Complete Genome Sequence of Stenotrophomonas Maltophilia 1800, a New Bacterial Strain with Potential for Bioremediation of Oil-Contaminated Environments. Microbiol. Resour. Announc. 2022, 11, e0111621. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Jiang, R.; Wu, X.; Zhong, Q.; Li, Y.; Wang, H. Comparative Genomic Analysis of Stenotrophomonas Maltophilia Strain W18 Reveals Its Adaptative Genomic Features for Degrading Polycyclic Aromatic Hydrocarbons. Microbiol. Spectr. 2021, 9, e01420-21. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Yin, C.; Peng, W.; Deng, Z.; Lin, S.; Liang, R. Characterization of an 17β-Estradiol-Degrading Bacterium Stenotrophomonas Maltophilia SJTL3 Tolerant to Adverse Environmental Factors. Appl. Microbiol. Biotechnol. 2020, 104, 1291–1305. [Google Scholar] [CrossRef]
- Xu, Y.-Y.; Wei, F.-D.; Xu, R.; Cheng, T.; Ma, Y.-L. Characterization and Genomic Analysis of a Nitrate Reducing Bacterium from Shale Oil in the Ordos Basin and the Associated Biosurfactant Production. J. Environ. Chem. Eng. 2022, 10, 108776. [Google Scholar] [CrossRef]
- Cheng, Z.; Shou, D.; Zhao, P.; Chen, J.; Zhao, J.; Yu, J.; Zhang, S.; Guan, Y. Aerobic Biodegradation of Trichloromethane by Stenotrophomonas Sp. GYH and Its Biodegradation Mechanism Analysis. Int. Biodeterior. Biodegrad. 2023, 180, 105585. [Google Scholar] [CrossRef]
- Romanenko, L.A.; Uchino, M.; Tanaka, N.; Frolova, G.M.; Slinkina, N.N.; Mikhailov, V.V. Occurrence and Antagonistic Potential of Stenotrophomonas Strains Isolated from Deep-Sea Invertebrates. Arch. Microbiol. 2008, 189, 337–344. [Google Scholar] [CrossRef]
- Peng, H.; Liang, M.; Zhang, J.; Liu, W.; Yang, Y.; Sun, Y.; Ke, F.; Wen, Y.; Liu, S.; Xu, B.; et al. Identification and Characterization of a Versatile Keratinase, KerZJ, from Stenotrophomonas Sp. LMY. World J. Microbiol. Biotechnol. 2024, 40, 30. [Google Scholar] [CrossRef]
- Gao, X.; Mao, X.; Lu, P.; Secundo, F.; Xue, C.; Sun, J. Cloning, Expression, and Characterization of a Novel Thermostable and Alkaline-Stable Esterase from Stenotrophomonas Maltophilia OUC_Est10 Catalytically Active in Organic Solvents. Catalysts 2019, 9, 401. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Li, J.; Hu, J.; Chen, K.; Wei, Y.; Bazhanov, D.P.; Bazhanova, A.A.; Yang, H. Draft Genome Sequence of Stenotrophomonas Maltophilia Strain B418, a Promising Agent for Biocontrol of Plant Pathogens and Root-Knot Nematode. Genome Announc. 2015, 3, e00015-15. [Google Scholar] [CrossRef]
- Lee, D.-H.; Cha, J.-H.; Kim, D.-W.; Lee, K.; Kim, Y.-S.; Oh, H.-Y.; Cho, Y.-H.; Cha, C.-J. Colistin-Degrading Proteases Confer Collective Resistance to Microbial Communities during Polymicrobial Infections. Microbiome 2022, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A Database Tandem for Fast and Reliable Genome-Based Classification and Nomenclature of Prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Gröschel, M.I.; Meehan, C.J.; Barilar, I.; Diricks, M.; Gonzaga, A.; Steglich, M.; Conchillo-Solé, O.; Scherer, I.-C.; Mamat, U.; Luz, C.F.; et al. The Phylogenetic Landscape and Nosocomial Spread of the Multidrug-Resistant Opportunist Stenotrophomonas Maltophilia. Nat. Commun. 2020, 11, 2044. [Google Scholar] [CrossRef]
- Ortiz Álvarez, J.; Barrientos Flores, C.; Colín Castro, C.A.; Hernández Durán, M.; Martínez Zavaleta, M.G.; Méndez Sotelo, B.J.; Hernández Pérez, C.F.; Sohlenkamp, C.; Franco Cendejas, R.; López Jácome, L.E. Unveiling the Resistance: Comparative Genomic Analysis of Two Novel Cefiderocol-Resistant Stenotrophomonas Species from a Referral Hospital in Mexico City. J. Appl. Microbiol. 2025, 136, lxaf048. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.; Chen, L.; Shen, X.; Wang, H.; Guo, R.; Li, X.; Yu, Z.; Zhang, X.; Zhou, Y.; et al. Comparative Genomics Analysis of Stenotrophomonas Maltophilia Strains from a Community. Front. Cell. Infect. Microbiol. 2023, 13, 1266295. [Google Scholar] [CrossRef]
- Pongchaikul, P.; Jenjaroenpun, P.; Mongkolsuk, P.; Vivithanaporn, P.; Wongsurawat, T.; Nitayanon, P.; Thaipisuttikul, I.; Khamphakul, J.; Warintaksa, P.; Laolerd, W.; et al. Genomic Analysis of Contaminant Stenotrophomonas Maltophilia, from Placental Swab Culture, Carrying Antibiotic Resistance: A Potential Hospital Laboratory Contaminant. Sci. Rep. 2025, 15, 22323. [Google Scholar] [CrossRef]
- Wu, C.-M.; Huang, H.-H.; Li, L.-H.; Lin, Y.-T.; Yang, T.-C. Molecular Characterization of Three Tandemly Located Flagellin Genes of Stenotrophomonas Maltophilia. Int. J. Mol. Sci. 2022, 23, 3863. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Pan, H.; Zhou, T. The Complete Genome Sequence of a Bile-Isolated Stenotrophomonas Maltophilia ZT1. Gut Pathog. 2021, 13, 64. [Google Scholar] [CrossRef]
- Seitz, P.; Blokesch, M. Cues and Regulatory Pathways Involved in Natural Competence and Transformation in Pathogenic and Environmental Gram-Negative Bacteria. FEMS Microbiol. Rev. 2013, 37, 336–363. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, M.S.; Schoeb, T.; Swords, W.E. Cooperativity between Stenotrophomonas Maltophilia and Pseudomonas Aeruginosa during Polymicrobial Airway Infections. Infect. Immun. 2020, 88, e00855-19. [Google Scholar] [CrossRef]
- Pompilio, A.; Crocetta, V.; De Nicola, S.; Verginelli, F.; Fiscarelli, E.; Di Bonaventura, G. Cooperative Pathogenicity in Cystic Fibrosis: Stenotrophomonas Maltophilia Modulates Pseudomonas Aeruginosa Virulence in Mixed Biofilm. Front. Microbiol. 2015, 6, 951. [Google Scholar] [CrossRef]
- Alio, I.; Moll, R.; Hoffmann, T.; Mamat, U.; Schaible, U.E.; Pappenfort, K.; Alawi, M.; Schie, M.; Thünauer, R.; Stamm, J.; et al. Stenotrophomonas Maltophilia Affects the Gene Expression Profiles of the Major Pathogens Pseudomonas Aeruginosa and Staphylococcus Aureus in an in Vitro Multispecies Biofilm Model. Microbiol. Spectr. 2023, 11, e00859-23. [Google Scholar] [CrossRef] [PubMed]
- Tansirichaiya, S.; Rahman, M.A.; Roberts, A.P. The Transposon Registry. Mob. DNA 2019, 10, 40. [Google Scholar] [CrossRef]
- Guglielmini, J.; De La Cruz, F.; Rocha, E.P.C. Evolution of Conjugation and Type IV Secretion Systems. Mol. Biol. Evol. 2013, 30, 315–331. [Google Scholar] [CrossRef]
- Peters, D.L.; McCutcheon, J.G.; Stothard, P.; Dennis, J.J. Novel Stenotrophomonas Maltophilia Temperate Phage DLP4 Is Capable of Lysogenic Conversion. BMC Genomics 2019, 20, 300. [Google Scholar] [CrossRef]
- McCutcheon, J.G.; Lin, A.; Dennis, J.J. Characterization of Stenotrophomonas Maltophilia Phage AXL1 as a Member of the Genus Pamexvirus Encoding Resistance to Trimethoprim–Sulfamethoxazole. Sci. Rep. 2022, 12, 10299. [Google Scholar] [CrossRef]
- Dmitrijeva, M.; Tackmann, J.; Matias Rodrigues, J.F.; Huerta-Cepas, J.; Coelho, L.P.; Von Mering, C. A Global Survey of Prokaryotic Genomes Reveals the Eco-Evolutionary Pressures Driving Horizontal Gene Transfer. Nat. Ecol. Evol. 2024, 8, 986–998. [Google Scholar] [CrossRef]
- Bhaumik, R.; Aungkur, N.Z.; Anderson, G.G. A Guide to Stenotrophomonas Maltophilia Virulence Capabilities, as We Currently Understand Them. Front. Cell. Infect. Microbiol. 2024, 13, 1322853. [Google Scholar] [CrossRef]
- Glansdorff, N.; Charlier, D.; Zafarullah, M. Activation of Gene Expression by IS2 and IS3. Cold Spring Harb. Symp. Quant. Biol. 1981, 45, 153–156. [Google Scholar] [CrossRef]
- Mikihiko, K. How Bacterial Genomes Change: Attempts to Reconstruct Genome Rearrangements through Genome Comparison. Ph.D. Thesis, The University of Tokyo, Tokyo, Japan, 2015. [Google Scholar]
- Heffron, F.; McCarthy, B.J.; Ohtsubo, H.; Ohtsubo, E. DNA Sequence Analysis of the Transposon Tn3: Three Genes and Three Sites Involved in Transposition of Tn3. Cell 1979, 18, 1153–1163. [Google Scholar] [CrossRef]
- Midonet, C.; Barre, F.-X. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol. Spectr. 2014, 2, 10.1128. [Google Scholar] [CrossRef]
- Darling, A.E.; Miklós, I.; Ragan, M.A. Dynamics of Genome Rearrangement in Bacterial Populations. PLoS Genet. 2008, 4, e1000128. [Google Scholar] [CrossRef]
- Rosconi, F.; Rudmann, E.; Li, J.; Surujon, D.; Anthony, J.; Frank, M.; Jones, D.S.; Rock, C.; Rosch, J.W.; Johnston, C.D.; et al. A Bacterial Pan-Genome Makes Gene Essentiality Strain-Dependent and Evolvable. Nat. Microbiol. 2022, 7, 1580–1592. [Google Scholar] [CrossRef]
- Brilli, M.; Liò, P.; Lacroix, V.; Sagot, M.-F. Short and Long-Term Genome Stability Analysis of Prokaryotic Genomes. BMC Genomics 2013, 14, 309. [Google Scholar] [CrossRef][Green Version]
- Felsenstein, J. The Evolutionary Advantage of Recombination. Genetics 1974, 78, 737–756. [Google Scholar] [CrossRef] [PubMed]
- Manav, N.; Jit, B.P.; Kataria, B.; Sharma, A. Cellular and Epigenetic Perspective of Protein Stability and Its Implications in the Biological System. Epigenomics 2024, 16, 879–900. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Hammarén, H.M.; Savitski, M.M.; Baek, S.H. Control of Protein Stability by Post-Translational Modifications. Nat. Commun. 2023, 14, 201. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.L.; Kammann, S.; Steinbach, G.; Hoffmann, T.; Yunker, P.J.; Hammer, B.K. Evolution of a Cis -Acting SNP That Controls Type VI Secretion in Vibrio Cholerae. mBio 2022, 13, e00422-22. [Google Scholar] [CrossRef]
- Faure, G.; Koonin, E.V. Universal Distribution of Mutational Effects on Protein Stability, Uncoupling of Protein Robustness from Sequence Evolution and Distinct Evolutionary Modes of Prokaryotic and Eukaryotic Proteins. Phys. Biol. 2015, 12, 035001. [Google Scholar] [CrossRef]
- Mendez, R.; Fritsche, M.; Porto, M.; Bastolla, U. Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations. PLoS Comput. Biol. 2010, 6, e1000767. [Google Scholar] [CrossRef]
- Jdeed, G.; Morozova, V.V.; Tikunova, N.V. Genome Analysis of Anti-Phage Defense Systems and Defense Islands in Stenotrophomonas Maltophilia: Preservation and Variability. Viruses 2024, 16, 1903. [Google Scholar] [CrossRef] [PubMed]
- Klimkaitė, L.; Armalytė, J.; Skerniškytė, J.; Sužiedėlienė, E. The Toxin-Antitoxin Systems of the Opportunistic Pathogen Stenotrophomonas Maltophilia of Environmental and Clinical Origin. Toxins 2020, 12, 635. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ramírez, K.C.; Chávez-Jacobo, V.M.; Valle-Maldonado, M.I.; Patiño-Medina, J.A.; Díaz-Pérez, S.P.; Jácome-Galarza, I.E.; Ortiz-Alvarado, R.; Meza-Carmen, V.; Ramírez-Díaz, M.I. Plasmid pUM505 Encodes a Toxin–Antitoxin System Conferring Plasmid Stability and Increased Pseudomonas Aeruginosa Virulence. Microb. Pathog. 2017, 112, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, N.; Pleška, M.; Bergmiller, T.; Guet, C.C. A Bacterial Toxin–Antitoxin System as a Native Defence Element against RNA Phages. Biol. Lett. 2025, 21, 20250080. [Google Scholar] [CrossRef]
- Mets, T.; Kurata, T.; Ernits, K.; Johansson, M.J.O.; Craig, S.Z.; Evora, G.M.; Buttress, J.A.; Odai, R.; Coppieters‘t Wallant, K.; Nakamoto, J.A.; et al. Mechanism of Phage Sensing and Abortion by Toxin-Antitoxin-Chaperone Systems. Cell Host Microbe 2024, 32, 1059–1073.e8. [Google Scholar]
- Liu, M.; Zhang, Y.; Inouye, M.; Woychik, N.A. Bacterial Addiction Module Toxin Doc Inhibits Translation Elongation through Its Association with the 30S Ribosomal Subunit. Proc. Natl. Acad. Sci. USA 2008, 105, 5885–5890. [Google Scholar] [CrossRef]
- Hayes, F.; Van Melderen, L. Toxins-Antitoxins: Diversity, Evolution and Function. Crit. Rev. Biochem. Mol. Biol. 2011, 46, 386–408. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Xie, Y.; Bi, D.; Sun, J.; Li, J.; Tai, C.; Deng, Z.; Ou, H.-Y. ICEberg 2.0: An Updated Database of Bacterial Integrative and Conjugative Elements. Nucleic Acids Res. 2019, 47, D660–D665. [Google Scholar] [CrossRef]
- Wishart, D.S.; Han, S.; Saha, S.; Oler, E.; Peters, H.; Grant, J.R.; Stothard, P.; Gautam, V. PHASTEST: Faster than PHASTER, Better than PHAST. Nucleic Acids Res. 2023, 51, W443–W450. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A Better, Faster Version of the PHAST Phage Search Tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tang, H. ISEScan: Automated Identification of Insertion Sequence Elements in Prokaryotic Genomes. Bioinformatics 2017, 33, 3340–3347. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded Curation, Support for Machine Learning, and Resistome Prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, B.; Zheng, D.; Chen, L.; Yang, J. VFDB 2025: An Integrated Resource for Exploring Anti-Virulence Compounds. Nucleic Acids Res. 2025, 53, D871–D877. [Google Scholar] [CrossRef]
- Krumsiek, J.; Arnold, R.; Rattei, T. Gepard: A Rapid and Sensitive Tool for Creating Dotplots on Genome Scale. Bioinformatics 2007, 23, 1026–1028. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence with Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Guan, J.; Chen, Y.; Goh, Y.-X.; Wang, M.; Tai, C.; Deng, Z.; Song, J.; Ou, H.-Y. TADB 3.0: An Updated Database of Bacterial Toxin–Antitoxin Loci and Associated Mobile Genetic Elements. Nucleic Acids Res. 2024, 52, D784–D790. [Google Scholar] [CrossRef]
- Tesson, F.; Hervé, A.; Mordret, E.; Touchon, M.; d’Humières, C.; Cury, J.; Bernheim, A. Systematic and Quantitative View of the Antiviral Arsenal of Prokaryotes. Nat. Commun. 2022, 13, 2561. [Google Scholar] [CrossRef]
- Angiuoli, S.V.; Salzberg, S.L. Mugsy: Fast Multiple Alignment of Closely Related Whole Genomes. Bioinformatics 2011, 27, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid Phylogenetic Analysis of Large Samples of Recombinant Bacterial Whole Genome Sequences Using Gubbins. Nucleic Acids Res. 2015, 43, e15. [Google Scholar] [CrossRef] [PubMed]
- Kille, B.; Nute, M.G.; Huang, V.; Kim, E.; Phillippy, A.M.; Treangen, T.J. Parsnp 2.0: Scalable Core-Genome Alignment for Massive Microbial Datasets. Bioinformatics 2024, 40, btae311. [Google Scholar] [CrossRef] [PubMed]
- Pipe-Friendly Framework for Basic Statistical Tests—Rstatix. Available online: https://rpkgs.datanovia.com/rstatix/ (accessed on 7 October 2025).




| Status | Strain (Accession) | Genome Size | CDS | Source | References |
|---|---|---|---|---|---|
| Clinical | K279a (AM743169.1) | 4,851,126 | 4412 | Human blood, cancer patient | [35] |
| Clinical | D457 (HE798556.1) | 4,769,156 | 4313 | Clinical isolate | [36] |
| Clinical | MER1 (CP049368.1) | 4,547,296 | 4047 | Hospital wastewater | [37] |
| Clinical | CYZ (CP101622.1) | 4,517,685 | 4077 | Sputum, immunocompromised patient | [38] |
| Clinical | SM 866 (NZ_CP031058.1) | 5,086,181 | 4692 | Tertiary care unit of India | [39] |
| Clinical | ISMMS2R (CP011306.1) | 4,509,724 | 4016 | Bacteremic patient | [40] |
| Clinical | SCAID WND1-2022 (370) (NZ_CP102942.1) | 4,880,425 | 4387 | Intensive care unit | [41] |
| Clinical | WJ66 (AZRF01000001.1) | 4,642,894 | 4196 | Human blood, chemotherapy patient | [42] |
| Clinical | JUNP497 (DAOKEV010000001.1) | 4,853,141 | 4444 | Patients at two university hospitals in Nepal | [43] |
| Clinical | JUNP350 (DAOKEW010000001.1) | 4,202,951 | 3707 | Patients at two university hospitals in Nepal | [43] |
| Non-clinical | 1800 (NZ_OU943334.1) | 4,837,108 | 4433 | Effluent of an industrial oil refinery in Algeria | [44] |
| Non-clinical | W18 (CP028358.1) | 4,738,432 | 4286 | Crude oil-contaminated soil | [45] |
| Non-clinical | SJTL3 (CP029773.1) | 4,891,004 | 4367 | Wastewater | [46] |
| Non-clinical | WGB211 (NZ_CP090418.1) | 4,913,676 | 4467 | Shale oil in the Ordos Basin | [47] |
| Non-clinical | GYH (NZ_CP090423.1) | 4,791,742 | 4324 | Environmental isolate | [48] |
| Non-clinical | KMM 349 (NZ_AP021867.1) | 4,578,300 | 4043 | Deep-sea invertebrates | [49] |
| Non-clinical | 503 (CP136922.1) | 4,857,915 | 4359 | Campus soil | [50] |
| Non-clinical | OUC_Est10 (NZ_CP015612.1) | 4,668,743 | 4182 | Environmental isolate | [51] |
| Non-clinical | B418 (JSXG01000001.1) | 4,688,249 | 4093 | Barley rhizosphere | [52] |
| Non-clinical | Col1 (CP077679.1) | 4,458,565 | 3982 | Soil | [53] |
| MGE | Host Strain(s) | Status | Putative Virulence Factor(s) | Putative Function Category |
|---|---|---|---|---|
| ICE | D457 | Clinical | phoR/mprA, bfmR/bfmS, allS | Regulation |
| adeG, adeH, acrA | Biofilm/Efflux | |||
| SM 866 | Clinical | adeH, acrB | Biofilm/Efflux | |
| fbpC | Metabolism (Iron Transport) | |||
| 1800, WGB211 | Non-Clinical | adeF, adeG, mtrE | Biofilm/Efflux | |
| ctpV | Metabolism (Copper Export) | |||
| 1800 | Non-Clinical | allS | Metabolism (Allantoin Use) | |
| K279a | Clinical | siderophore transporter | Metabolism (Iron Transport) | |
| 503 | Non-Clinical | fslD | Metabolism (Iron Transport) | |
| IME | K279a, SJTL3 | Clinical and Non-Clinical | upaG/ehaG, tagX | Adherence, T6SS |
| 503 | Non-Clinical | upaG/ehaG, tagX | Adherence, T6SS | |
| SJTL3 | Non-Clinical | csuD | Biofilm (Pilus Assembly) | |
| Phage | WJ66, JUNP497, SCAID WND1-2022 | Clinical | clpP | Stress Survival |
| B418 | Non-Clinical | clpP | Stress Survival | |
| W18 | Non-Clinical | recN | Stress Survival (DNA Repair) | |
| 1800, W18, WGB211 | Non-Clinical | mshM | Adherence (MSHA Pili) | |
| 1800 | Non-Clinical | sigA/rpoV | Regulation | |
| SM 866, W18 | Clinical and Non-Clinical | ptxR | Regulation (Pyoverdine) | |
| K279a | Clinical | adhD | Immune Modulation | |
| MER1 | Clinical | pta | Effector Delivery | |
| D457 | Clinical | pkn5 | Effector Delivery | |
| JUNP497 | Clinical | guaB | Metabolism |
| Cluster | PPI Enrichment p-Value: | BP | MF | CC | Reactome |
|---|---|---|---|---|---|
| 1 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
| 3 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
| 5 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
| 642 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
| 912 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
| 1014 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
| 1665 | 4.03 × 10−10 | Cell septum assembly | Purine ribonucleoside triphosphate binding | Intracellular anatomical structure | - |
| 1907 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
| 2584 | 5.69 × 10−05 | Ribonucleotide metabolic process | - | Catalytic complex | - |
| 320 | 7.75 × 10−08 | Gene expression | Quinone binding | Intracellular anatomical structure | - |
| 2342 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
| 2663 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
| 512 | 1.09 × 10−10 | Gene expression | - | Intracellular anatomical structure | - |
| 1640 | 1.0 × 10−16 | Translation | Ion binding | Intracellular anatomical structure | - |
| 2157 | 2.56 × 10−06 | Gene expression | Heterocyclic compound binding | Intracellular anatomical structure | - |
| 827 | 7.75 × 10−08 | Cellular respiration | Quinone binding | Intracellular anatomical structure | - |
| 967 | 2.56 × 10−06 | Gene expression | Heterocyclic compound binding | Intracellular anatomical structure | - |
| 616 | 4.98 × 10−05 | Translation | Ion binding | Intracellular anatomical structure | - |
| 172 | 0.000198 | Carboxylic acid metabolic process | Carbon-nitrogen lyase activity | Oxoglutarate dehydrogenase complex | Latent infection—Other responses of Mtb to phagocytosis |
| 2318 | 1.48 × 10−11 | Regulation of translation | NADH dehydrogenase activity | Oxidoreductase complex | Infection with Mtb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sum, D.K.C.; Chong, Y.Y.; Tan, J.L. Comparative Analyses Suggest Genome Stability and Plasticity in Stenotrophomonas maltophilia. Int. J. Mol. Sci. 2025, 26, 10477. https://doi.org/10.3390/ijms262110477
Sum DKC, Chong YY, Tan JL. Comparative Analyses Suggest Genome Stability and Plasticity in Stenotrophomonas maltophilia. International Journal of Molecular Sciences. 2025; 26(21):10477. https://doi.org/10.3390/ijms262110477
Chicago/Turabian StyleSum, Danny Khar Chen, Yee Yee Chong, and Joon Liang Tan. 2025. "Comparative Analyses Suggest Genome Stability and Plasticity in Stenotrophomonas maltophilia" International Journal of Molecular Sciences 26, no. 21: 10477. https://doi.org/10.3390/ijms262110477
APA StyleSum, D. K. C., Chong, Y. Y., & Tan, J. L. (2025). Comparative Analyses Suggest Genome Stability and Plasticity in Stenotrophomonas maltophilia. International Journal of Molecular Sciences, 26(21), 10477. https://doi.org/10.3390/ijms262110477

