Polymeric Interlayer in CdS-Free Electron-Selective Contact for Sb2Se3 Thin-Film Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. PEI Characterization
2.1.1. Optical Characterization
2.1.2. Electrical Characterization
2.2. Sb2Se3 Diode Devices
2.3. Sb2Se3 Photovoltaic Devices
3. Materials and Methods
3.1. Preparation of Sb2Se3 Thin Films
3.2. Fabrication and Characterization of b-PEI Layers
3.3. Fabrication and Characterization of Sb2Se3 Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dimitrov, R.S. The Paris Agreement on Climate Change: Behind Closed Doors. Glob. Environ. Polit. 2016, 16, 1–11. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. PV Status Report 2019; Publications Office of the European Union: Luxembourg, 2019; pp. 7–94.
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Kavlak, G.; McNerney, J.; Trancik, J.E. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 2018, 123, 700–710. Available online: https://www.sciencedirect.com/science/article/pii/S0301421518305196 (accessed on 1 February 2023). [CrossRef]
- Bloomberg Actualización del Costo Nivelado de Energía (LCOE) Para 1er Semestre de 2021. 2021. Available online: https://www.bloomberg.com/latam/blog/actualizacion-del-costo-nivelado-de-energia-lcoe-para-1er-semestre-de-2021/ (accessed on 3 August 2022).
- Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: Toward the efficiency limits. Adv. Phys. X 2019, 4, 1548305. [Google Scholar] [CrossRef]
- Czochralski, J. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z. Für Phys. Chem. 1918, 92, 219–221. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory Best Research-Cell Efficiency. 2022. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 February 2023).
- Zakutayev, A. Brief review of emerging photovoltaic absorbers. Curr. Opin. Green Sustain. Chem. 2017, 4, 8–15. [Google Scholar] [CrossRef]
- Li, Z.; Liang, X.; Li, G.; Liu, H.; Zhang, H.; Guo, J.; Chen, J.; Shen, K.; San, X.; Yu, W.; et al. 9.2%-Efficient Core-Shell Structured Antimony Selenide Nanorod Array Solar Cells. Nat. Commun. 2019, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Liang, X.; Feng, Y.; Ma, H.; Liang, B.; Wang, Y.; Luo, S.; Wang, S.; Schropp, R.E.I.; Mai, Y.; et al. Sb2Se3 Thin-Film Solar Cells Exceeding 10\% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology. Adv. Mater. 2022, 34, 2202969. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Zeng, K.; Xue, D.J.; Tang, J. Antimony selenide thin-film solar cells. Semicond. Sci. Technol. 2016, 31, 063001. [Google Scholar] [CrossRef]
- Wang, X.; Tang, R.; Wu, C.; Zhu, C.; Chen, T. Development of antimony sulfide–selenide Sb2(S, Se)3-based solar cells. J. Energy Chem. 2018, 27, 713–721. [Google Scholar] [CrossRef]
- Webber, D.H.; Buckley, J.J.; Antunez, P.D.; Brutchey, R.L. Facile dissolution of selenium and tellurium in a thiol–amine solvent mixture under ambient conditions. Chem. Sci. 2014, 5, 2498–2502. [Google Scholar] [CrossRef]
- Zhou, Y.; Leng, M.; Xia, Z.; Zhong, J.; Song, H.; Liu, X.; Yang, B.; Zhang, J.; Chen, J.; Zhou, K.; et al. Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 2014, 4, 1301846. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Luo, M.; Leng, M.; Xia, Z.; Zhou, Y.; Qin, S.; Xue, D.; Lv, L.; Huang, H.; et al. Thermal Evaporation and Characterization of Sb2Se3 Thin Film for Substrate Sb2Se3/CdS Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 10687–10695. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Chen, S.; Qin, S.; Liu, X.; Chen, J.; Xue, D.J.; Luo, M.; Cao, Y.; Cheng, Y.; et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 2015, 9, 409–415. [Google Scholar] [CrossRef]
- Chen, C.; Bobela, D.C.; Yang, Y.; Lu, S.; Zeng, K.; Ge, C.; Yang, B.; Gao, L.; Zhao, Y.; Beard, M.C.; et al. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 2017, 10, 18–30. [Google Scholar] [CrossRef]
- Song, H.; Li, T.; Zhang, J.; Zhou, Y.; Luo, J.; Chen, C.; Yang, B.; Ge, C.; Wu, Y.; Tang, J. Highly Anisotropic Sb2Se3 Nanosheets: Gentle Exfoliation from the Bulk Precursors Possessing 1D Crystal Structure. Adv. Mater. 2017, 29, 1700441. [Google Scholar] [CrossRef]
- Li, G.; Li, Z.; Liang, X.; Guo, C.; Shen, K.; Mai, Y. Improvement in Sb2Se3 Solar Cell Efficiency through Band Alignment Engineering at the Buffer/Absorber Interface. ACS Appl. Mater. Interfaces 2019, 11, 828–834. [Google Scholar] [CrossRef]
- Lin, L.Y.; Jiang, L.Q.; Qiu, Y.; Fan, B.D. Analysis of Sb2Se3/CdS based photovoltaic cell: A numerical simulation approach. J. Phys. Chem. Solids 2018, 122, 19–24. [Google Scholar] [CrossRef]
- Kamal, T.; Parvez, S.; Matin, R.; Bashar, M.S.; Hossain, T.; Sarwar, H.; Rashid, M.J. Chemical Bath Deposition and Characterization of CdS layer for CZTS Thin Film Solar Cell. In Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES); Kyushu University: Fukuoka, Japan, 2016; pp. 33–34. [Google Scholar]
- Wang, L.; Li, D.B.; Li, K.; Chen, C.; Deng, H.X.; Gao, L.; Zhao, Y.; Jiang, F.; Li, L.; Huang, F.; et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2017, 2, 17046. [Google Scholar] [CrossRef]
- Deng, H.; Yuan, S.; Yang, X.; Cai, F.; Hu, C.; Qiao, K.; Zhang, J.; Tang, J.; Song, H.; He, Z. Efficient and stable TiO2/Sb2S3 planar solar cells from absorber crystallization and Se-atmosphere annealing. Mater. Today Energy 2017, 3, 15–23. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, H.; Ma, C.; Wang, X.; Jia, X.; Yuan, N.; Ding, J. Efficiency improvement of Sb2Se3 solar cells based on La-doped SnO2 buffer layer. Sol. Energy 2019, 187, 404–410. [Google Scholar] [CrossRef]
- Wen, X.; He, Y.; Chen, C.; Liu, X.; Wang, L.; Yang, B.; Leng, M.; Song, H.; Zeng, K.; Li, D.; et al. Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 2017, 172, 74–81. [Google Scholar] [CrossRef]
- Gharibshahian, I.; Orouji, A.A.; Sharbati, S. Alternative buffer layers in Sb2Se3 thin-film solar cells to reduce open-circuit voltage offset. Sol. Energy 2020, 202, 294–303. [Google Scholar] [CrossRef]
- Gharibshahian, I.; Orouji, A.A.; Sharbati, S. Towards high efficiency Cd-Free Sb2Se3 solar cells by the band alignment optimization. Sol. Energy Mater. Sol. Cells 2020, 212, 110581. [Google Scholar] [CrossRef]
- Yun, J.; Tan, J.; Jung, Y.K.; Yang, W.; Lee, H.; Ma, S.; Park, Y.S.; Lee, C.U.; Niu, W.; Lee, J.; et al. Interfacial Dipole Layer Enables High-Performance Heterojunctions for Photoelectrochemical Water Splitting. ACS Energy Lett. 2022, 7, 1392–1402. [Google Scholar] [CrossRef]
- He, M.; Qiu, F.; Lin, Z. Toward high-performance organic-inorganic hybrid solar cells: Bringing conjugated polymers and inorganic nanocrystals in close contact. J. Phys. Chem. Lett. 2013, 4, 1788–1796. [Google Scholar] [CrossRef]
- Rombach, F.M.; Haque, S.A.; Macdonald, T.J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161–5190. [Google Scholar] [CrossRef]
- Peng, L.; Liu, Z. Reduce the hysteresis effect with the PEIE interface dipole effect in the organic-inorganic hybrid perovskite CH3NH3PbI3-xClx solar cell. Org. Electron. 2018, 62, 630–636. [Google Scholar] [CrossRef]
- Gogolin, R.; Zielke, D.; Descoeudres, A.; Despeisse, M.; Ballif, C.; Schmidt, J. Demonstrating the high Voc potential of PEDOT:PSS/c-Si heterojunctions on solar cells. Energy Procedia 2017, 124, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, N.; Meng, K.; Liu, Z.; Hu, Y.; Xu, Q.; Wang, X.; Li, S.; Cheng, L.; Chen, G. A New Organic Interlayer Spacer for Stable and Efficient 2D Ruddlesden-Popper Perovskite Solar Cells. Nano Lett. 2019, 19, 5237–5245. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Allen, T.; Yang, X.; Zeng, G.; De Wolf, S.; Javey, A. Polymeric Electron-Selective Contact for Crystalline Silicon Solar Cells with an Efficiency Exceeding 19%. ACS Energy Lett. 2020, 5, 897–902. [Google Scholar] [CrossRef]
- Diaz, A.F.; Castillo, J.I.; Logan, J.A.; Lee, W.-Y. Electrochemistry of conducting polypyrrole films. J. Electroanal. Chem. Interfacial Electrochem. 1981, 129, 115–132. Available online: https://www.sciencedirect.com/science/article/pii/S0022072881800083 (accessed on 1 February 2023). [CrossRef]
- Kang, E.T.; Neoh, K.G.; Tan, K.L. Polyaniline: A polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 1998, 23, 277–324. [Google Scholar] [CrossRef]
- Ros, E.; Tom, T.; Rovira, D.; Lopez, J.; Masmitjà, G.; Pusay, B.; Almache, E.; Martin, I.; Jimenez, M.; Saucedo, E.; et al. Expanding the Perspective of Polymeric Selective Contacts in 2 Photovoltaic Devices Using Branched Polyethylenimine. ACS Appl. Energy Mater. 2022, 5, 10702–10709. [Google Scholar] [CrossRef]
- Saadati, M.; Akhavan, O.; Fazli, H. Single-Layer MoS2-MoO3−x Heterojunction Nanosheets with Simultaneous Photoluminescence and Co-Photocatalytic Features. Catalysts 2021, 11, 1445. [Google Scholar] [CrossRef]
- Nelson, R.; Lide, D.; Maryott, A. Dipole Moment Table. In National Standard Reference Data System; National Bureau of Standards (NBS) publications: Washington, DC, USA, 1967; pp. 1–50. [Google Scholar]
- Puigdollers, J.; Voz, C.; Ros, E. Physics and Technology of Carrier Selective Contact Based Heterojunction Silicon Solar Cells. In Energy Harvesting and Storage: Fundamentals and Materials; Jayaraj, M.K., Antony, A., Subha, P.P., Eds.; Springer Nature: Singapore, 2022; pp. 61–95. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Li, Y.; Chen, L. Interfacial Dipole in Organic and Perovskite Solar Cells. J. Am. Chem. Soc. 2020, 142, 18281–18292. [Google Scholar] [CrossRef]
- Kang, J.H.; Park, Y.J.; Khan, Y.; Ahn, Y.; Seo, J.H.; Walker, B. Cationic polyelectrolytes as convenient electron extraction layers in perovskite solar cells. Dye. Pigment. 2020, 182, 108634. [Google Scholar] [CrossRef]
- Reichel, C.; Würfel, U.; Winkler, K.; Schleiermacher, H.F.; Kohlstädt, M.; Unmüssig, M.; Messmer, C.A.; Hermle, M.; Glunz, S.W. Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells. J. Appl. Phys. 2018, 123, 024505. [Google Scholar] [CrossRef]
- Wan, Y.; Samundsett, C.; Yan, D.; Allen, T.; Peng, J.; Cui, J.; Zhang, X.; Bullock, J.; Cuevas, A. A magnesium/amorphous silicon passivating contact for n -type crystalline silicon solar cells. Appl. Phys. Lett. 2016, 109, 113901. [Google Scholar] [CrossRef]
- Allen, T.G.; Bullock, J.; Zheng, P.; Vaughan, B.; Barr, M.; Wan, Y.; Samundsett, C.; Walter, D.; Javey, A.; Cuevas, A. Calcium contacts to n-type crystalline silicon solar cells. Prog. Photovolt. Res. Appl. 2017, 25, 636–644. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, A. Absolute work function measurement by using photoelectron spectroscopy. Curr. Appl. Phys. 2021, 31, 52–59. [Google Scholar] [CrossRef]
- Tan, J.; Yang, W.; Lee, H.; Park, J.; Kim, K.; Hutter, O.S.; Phillips, L.J.; Shim, S.; Yun, J.; Park, Y.; et al. Surface restoration of polycrystalline Sb2Se3 thin films by conjugated molecules enabling high-performance photocathodes for photoelectrochemical water splitting. Appl. Catal. B Environ. 2021, 286, 119890. [Google Scholar] [CrossRef]
- Yang, X.; Ying, Z.; Yang, Z.; Xu, J.R.; Wang, W.; Wang, J.; Wang, Z.; Yao, L.; Yan, B.; Ye, J. Light-Promoted Electrostatic Adsorption of High-Density Lewis Base Monolayers as Passivating Electron-Selective Contacts. Adv. Sci. 2021, 8, 2003245. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, B.; Lian, W.; Wu, C.; Wang, X.; Ju, H.; Zhu, C.; Fan, F.; Chen, T. Efficient defect passivation of Sb2Se3 film by tellurium doping for high performance solar cells. J. Mater. Chem. A 2020, 8, 6510–6516. [Google Scholar] [CrossRef]
- Mendes, J.O.; Della Gaspera, E.; van Embden, J. High-Resistance Metal Oxide Window Layers for Optimal Front Contact Interfaces in Sb2Se3 Solar Cells. Sol. RRL 2022, 6, 2200265. [Google Scholar] [CrossRef]
- Swatowska, B.; Powroźnik, W.; Czternastek, H.; Lewińska, G.; Stapiński, T.; Pietruszka, R.; Witkowski, B.S.; Godlewski, M. Application properties of ZnO and AZO thin films obtained by the ALD method. Energies 2021, 14, 6271. [Google Scholar] [CrossRef]
- Hutter, O.S.; Phillips, L.J.; Durose, K.; Major, J.D. 6.6% Efficient Antimony Selenide Solar Cells Using Grain Structure Control and an Organic Contact Layer. Sol. Energy Mater. Sol. Cells 2018, 188, 177–181. [Google Scholar] [CrossRef]
- Kondrotas, R.; Chen, C.; Tang, J. Sb2S3 Solar Cells. Joule 2018, 2, 857–878. [Google Scholar] [CrossRef] [Green Version]
- Reeves, G.K.; Harrison, H.B. Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron Device Lett. 1982, 3, 111–113. [Google Scholar] [CrossRef]
- Grover, S. Effect of Transmission Line Measurement (TLM) Geometry on Specific Contact Resistivity Determination. Master’s Thesis, Rochester Institute of Technology, Rochester, NY, USA, 2016. Available online: https://scholarworks.rit.edu/theses/9343 (accessed on 1 February 2023).
ETL Stack | Ideality Factor, n | Series Resistance, Rs (Ω·cm2) | Shunt Resistance, Rsh (kΩ) |
---|---|---|---|
CdS/Al | 1.65 | 4.14 | 160 |
CdS/b-PEI/Al | 1.46 | 3.40 | 115 |
ZnO/Al | 1.70 | 0.65 | 6 |
ZnO/b-PEI/Al | 1.65 | 0.50 | 12 |
w/o PEI | PEI 0.01 wt.% | PEI 0.05 wt.% | PEI 0.1 wt.% | |
---|---|---|---|---|
Voc (mV) | 243.84 | 292.23 | 293.42 | 344.23 |
JSC (mA/cm2) | 19.35 | 21.05 | 22.93 | 20.67 |
FF (%) | 33.07 | 31.39 | 35.36 | 34.42 |
Efficiency (%) | 1.536 | 1.917 | 2.294 | 2.411 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rovira, D.; Ros, E.; Tom, T.; Jiménez, M.; Miguel Asensi, J.; Voz, C.; López-Vidrier, J.; Puigdollers, J.; Bertomeu, J.; Saucedo, E. Polymeric Interlayer in CdS-Free Electron-Selective Contact for Sb2Se3 Thin-Film Solar Cells. Int. J. Mol. Sci. 2023, 24, 3088. https://doi.org/10.3390/ijms24043088
Rovira D, Ros E, Tom T, Jiménez M, Miguel Asensi J, Voz C, López-Vidrier J, Puigdollers J, Bertomeu J, Saucedo E. Polymeric Interlayer in CdS-Free Electron-Selective Contact for Sb2Se3 Thin-Film Solar Cells. International Journal of Molecular Sciences. 2023; 24(4):3088. https://doi.org/10.3390/ijms24043088
Chicago/Turabian StyleRovira, David, Eloi Ros, Thomas Tom, Maykel Jiménez, José Miguel Asensi, Cristobal Voz, Julian López-Vidrier, Joaquim Puigdollers, Joan Bertomeu, and Edgardo Saucedo. 2023. "Polymeric Interlayer in CdS-Free Electron-Selective Contact for Sb2Se3 Thin-Film Solar Cells" International Journal of Molecular Sciences 24, no. 4: 3088. https://doi.org/10.3390/ijms24043088